四川鸢尾属植物的系统学及种子休眠与萌发特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸢尾属(Iris L.)是鸢尾科(Iridaceae)最大的一个属,为多年生草本,是绿化、美化、香化城市,装饰花坛、花径、花带、路旁及草坪的优良材料。全世界约300种,广泛分布于北温带。我国约产60种13变种及5变型,广布于全国各省,以西南、西北最多。一直以来,鸢尾属植物的分类与系统学都存在很大的争议。争论的焦点主要在于:(1)白花马蔺I. lactea Pall.和马蔺I. lactea var. chinensis (Fisch) Koidz.的分类学问题。基于形态和地理分布的差异,赵毓棠(1985)把马蔺I. lactea var. chinensis (Fisch) Koidz.作为白花马蔺I. lactea Pall的变种。但高宝莼(1985)认为I. lactea var. chinensis (Fisch) Koidz.是白花马蔺I. lactea Pall.的异名。(2)四川鸢尾I sichuanensis Y. T. Zhao、薄叶鸢尾I. leptophylla Lingelsh.和锐果鸢尾I. goniocarpa Baker的分类学问题。赵毓棠(1980)认为四川鸢尾与薄叶鸢尾近似,但花茎较高,花较大,苞片宽披针形或狭卵圆形相区别,是两个不同的物种。但高宝莼(1985)认为四川鸢尾是薄叶鸢尾的异名。锐果鸢尾花与四川鸢尾、薄叶鸢尾极其相似,只是叶片大小上略有区别,很难区分。(3)蝴蝶花I. japonica Thunb.、扁竹兰I. confusa Sealy和扇形鸢尾I. wattii Baker的分类学问题。赵毓棠(1980)报道扁竹兰的花、果与蝴蝶花近似,但有地上茎,叶片丛生于茎顶等特征又与扇形鸢尾近似,三者极易混淆。Waddick (1994)认为蝴蝶花、扁竹兰可能是同一个物种的两个变种。本研究通过形态学、孢粉学、染色体核型分析、细胞核rDNA的ITS区序列分析,探讨了四川省鸢尾属7物种1变种的表型特征、染色体核型、孢粉形态、种内分化变异,为解决长期争议的物种分类处理疑虑提供资料。同时,对11种1变种鸢尾属植物的花粉生活力和柱头可授性,以及4种鸢尾植物的种子休眠与萌发特性进行了研究,为鸢尾属植物种质资源的繁殖及育种创新和利用提供依据。本研究获得的主要结果如下:
     1.基于27个形态性状,对7种1变种鸢尾属植物进行了表型分支分析。经简约分析,得到了4颗同等最大简约分支树。结果表明:(1)马蔺作为白花马蔺的一个变种来处理比较合适;(2)四川鸢尾和薄叶鸢尾的亲缘关系较锐果鸢尾近;(3)扁竹兰和扇形鸢尾的关系较蝴蝶花更近。
     2.对9种1变种鸢尾属植物的核型进行了观察和分析,其中四川鸢尾、薄叶鸢尾、锐果鸢尾、白花马蔺、扁竹兰和德国鸢尾的核型为首次报道。这些物种的核型公式如下:四川鸢尾2n=26=12m (4SAT)+12sm (2SAT)+2st;薄叶鸢尾2n=26=14m(2SAT)+10sm(4SAT)+2st;锐果鸢尾2n=26=12m+12sm+2st(2SAT):白花马蔺2n=40=28m+10sm+2st;扁竹兰2n=32=8m+18sm+6st;德国鸢尾2n=40=16m+20sm+4st.金脉鸢尾,鸢尾,马蔺的核型公式分别为2n=40=18m+22sm(2SAT);2n=28=16m+12sm+6st(6SAT);2n=40=18m+16sm+6st(6SAT).研究结果表明:(1)马蔺作为白花马蔺的变种是可行的;(2)四川鸢尾、薄叶鸢尾和锐果鸢尾是三个亲缘关系很近的独立物种;(3)扇形鸢尾和扁竹兰、蝴蝶花能从染色体水平上区分开来。
     3.对四川鸢尾11种1变种进行了孢粉形态学研究。结果显示:(1)白花马蔺和马蔺花粉大小相似,形状、萌发孔、外壁纹饰和网脊形态相同,网脊宽度不同;(2)四川鸢尾、薄叶鸢尾和锐果鸢尾三者之间的花粉形状、外壁纹饰和网脊形态相同,均无明显萌发孔,锐果鸢尾花粉较薄叶鸢尾和四川鸢尾小,表明这3个物种的亲缘关系较近;(3)蝴蝶花和扁竹兰花粉大小基本相同,前者形状为扁球形,后者为近球形;萌发器官、表面纹饰和网脊形态相同,网眼内无颗粒,表明该两物种亲缘关系较近;(4)扇形鸢尾与蝴蝶花和扁竹兰二者相比,在花粉粒大小,表面纹饰均上均有较大差异,表明扇形鸢尾与蝴蝶花和扁竹兰的亲缘关系较远。本研究还讨论了鸢尾属五个亚属的花粉形态特征及演化趋势。
     4.对四川鸢尾9种1变种的nrDNA ITS序列进行分析,构建了ITS系统发育树。结果表明:(1)采自四川同一地点的白花马蔺和马蔺聚为一个小支,支持率非常高为98%,另外两个来自不同地点的白花马蔺和马蔺间分别聚为两个不同的小支,说明两者间不同地理分布,分化较大;(2)四川鸢尾、薄叶鸢尾和锐果鸢尾三物种聚为一大支,其中四川鸢尾和薄叶鸢尾聚为一小支。说明四川鸢尾和薄叶鸢尾的关系较锐果鸢尾为近;(3)扁竹兰和蝴蝶花聚为一小支,扇形鸢尾单独聚为一支,推测扁竹兰和蝴蝶花的关系比扇形鸢尾要近。
     5.对10种1变种鸢尾属物种花粉生活力和柱头可授性进行了研究。结果表明:(1)10种1变种鸢尾花粉活力最佳状态均为12:0014:00左右,柱头可授性的最佳状态出现在10:00—14:00左右;(2)花药颜色变化和柱头颜色变化不能表现花粉活力高低和柱头可授性的强弱。
     6.对4个鸢尾属物种的种子休眠特性进行了研究。结果表明:(1)鸢尾、金脉鸢尾、白花马蔺和扁竹兰4物种没有物理休眠;(2)4物种均为光敏性休眠种子。其中,金脉鸢尾、白花马蔺和扁竹兰3物种在没有光照的条件下,种子不能萌发,会进入强迫休眠状态;(3)金脉鸢尾、白花马蔺和扁竹兰的种皮含有抑制物,3物种具有生理休眠。
     7.对4个鸢尾属物种的种子萌发特性进行了研究。结果表明:(1)种皮对金脉鸢尾、白花马蔺和扁竹兰发芽的机械阻力较胚乳大。在鸢尾种子中,种子发芽受胚乳的机械阻力大;(2)在鸢尾种子中,种皮对种子的发芽率有促进作用;(3)白花马蔺和扁竹兰对土壤基质要求不高,对环境适应能力很强。鸢尾种子的最适土壤发芽基质为粘土;(4)变温20/30℃是扁竹兰、鸢尾和白花马蔺种子萌发的最佳温度;(5)低温冷层积对促进4物种的种子发芽没有明显效果。
Iris L. is a large genus in Iridaceae and involves about 300 species in the world. Because of its beautiful and specially shaped, it is preferable in viewing and admiring as garden plants. Species of Iris are herbs perennial and distributing in the north temperate regions (Goldblatt 1990). There are 60 species,13 varieties, and 5 forms in China, which is a distribution center of Iris (Zhao 1985). The taxonomic status of Iris species are still under discussion today. The main dispute is focus on:(1) the interspecific relationships of I. lactea Pall.and I. lactea var. chinensis (Fisch) Koidz.. Based on their geographical and morphological differences, Zhao (1985) treated I. lactea var. chinensis as a variety of I. lactea. But, Gao (1985) suggested that I. lactea var. chinensis should be a homonymy of I. lactea, not a variety of I. lactea. (2) the relationship among I. sichuanensis Y. T. Zhao, I. leptophylla Lingelsh.and I. goniocarpa Baker. Their morphological characteristics, except the size of leaf, are similar to each other. The taxonomic classification of these three species is always mixed up. Based on the size of leaf, Zhao (1985) suggested that I. sichuanensis and I. leptophylla should be two independent species. However, according to the similar flower and geographic distribution of I. sichuanensis and I. leptophylla, Gao (1985) suggested that I. sichuanensis should be a homonymy of I. leptophylla. (3) the relationship among I. japonica Thunb.,I. confusa Sealy andI. wattii Baker. Zhao (1980) reported that the flowers and fruits of I. confusa were similar to those of I. japonica, while the vegetative parts of I. confusa were similar to those of I. wattii. Waddick (1994) suggested that I. japonica and I. confusa may be the variants of a same species. The relationship between I. confusa and I. wattii were still uncertain (Waddick and Zhao 1992). In order to investigate the relationships of I. lactea, I. lactea var. chinensis; I. sichuanensis, I. leptophylla, I. goniocarpa, I. japonica, I. confusa and I. wattii, morphology, cytology, pollen morphology, and nrDNA internal transcribed spacer (ITS) sequences analysis were used in this study. The stigma receptivity, seed dormancy and germinaton characters of Iris species were also investigated in this study for provide some new theory evidence with propagation and breeding for Iris genus. The main results are as follows:
     1. A cladistic analysis based on 27 morphologic characters of 7 taxa and 1 variety in Iris species was presented. Maximum parsimony analysis of the aligned sequences yielded 4 maximally parsimonious trees. The results indicated that:(1)I. lactea was closely related to I. lactea var. chinensis; (2)I. sichuanensis was related to I. leptophylla than that to I. goniocarpa; (3) I. japonica had a more close relationship with I. wattii than that with I. confusa.
     2. Karyotype analysis of 9 taxa and 1 variety in the genus Iris were investigated in this study. The karyotypes of I. sichuanensis, I. leptophylla, I. goniocarpa, I. lactea, I. confusa and I. germanica were reported firstly in this study. The karyotype formulate were: I. sichuanensis,2n=26=12m(4SAT)+12sm(2SAT)+2st;I. leptophylla,2n=26=14m(2SAT) +10sm(4SAT)+2st;I. goniocarpa,2n=26=12m+12sm+2st(2SAT).I. lactea,2n=40= 28m+10sm+2st;I. confusa,2n=32=8m+18sm+6st;I. germanica,2n=40=16m+20sm+4st. The karyotypes of I. chrysographes, I. tectorum and I. lactea var. chinensis were also carried out. I. chrysographes,2n=40=18m+22sm(2SAT); I. tectorum,2n=28=16m +12sm+6st(6SAT);I. lactea var. chinensis,2n=40=18m+16sm+6st(6SAT). The results showed as follows:(1)I. wattii, I. confusa and I.japonica are three independent species; (2) I. sichuanensis, I. leptophylla and I. goniocarpa are three independent species with close relationships; (3) it is reasonable to treat I. lactea var. chinensis as a variety of I. lactea.
     3. Pollen morphologies of 11 taxa and 1 variety in Iris were investigated under scanning electron microscope. The results showed that (1) except the width of spine, the shape and size of pollen grains, shape of aperture, extine sculpture of I. lactea and I. lactea var. chinensis were similar. (2) the shape of pollen grains, extine sculpture and width of spine of I. leptophylla, I. sichuanensis and I. goniocarpa were highly approximate and no aperture was found among the three species. The pollen grain of I. goniocarpa was smaller than those of I. leptophylla and I. sichuanensis. (3) pollen of I. japonica and I. confusa had similar size and shape, and no grains existed in the meshes of these two species. The shape of pollen grains in I. japonica was suboblate while that in I. confusa was subspheroidal. (4) I. wattii was distinctly different from I. japonica and I. confusa in pollen size and exine ornamentation, suggesting that I. wattii had relatively distant relationship with I. japonica and I. confusa. We discussed briefly the pollen morphological characteristic and evolutionary trend of the five subgenus of Iris.
     4. To estimate the phylogenetic relationships of Iris species, nuclear ribosomal internal transcribed spacer (ITS) of 10 taxa and 1 variety were analyzed. I. lactea var. chinensis and I. lactea collected from one place were clustered in same clade. The other two species of I. lactea var. chinensis and I. lactea collected from different place were clustered in to two sub-clades. The result indicated that geography differentiation existed in I. lactea var. chinensis and I. lactea. I. leptophylla, I. sichuanensis and I. goniocarpa in one clade. Within this clade,I. leptophylla and I. sichuanensis were clustered in the same sub-clades. The results suggested that I. leptophylla have more close relationship with I. sichuanensis than that with I. goniocarpa. I. japonica and I. confusa were clustered in one clade, and I. wattii was single clustered in one clade. The recults suggested that the relationship of I. japonica and I. confusa were more closely than those with I. wattii.
     5. Pollen viability and stigma receptivity of 11 taxa and 1 variety of Iris were were estimated in this study. The results indicated that:(1) The best time of pollen viability was appeared in 12:00—14:00 and the best time of stigma receptivity was appeared in 10:00—14:00. (2) All of the anther and stigma colour could not show the pollen viability and stigma receptivity ability.
     6. Seed dormancy in four Iris species were carried out in this study. The results indicate that:(1) the 4 species of I. tectorum, I. lactea, I. confusa and I. chrysographes were not have physical dormancy; (2) all four Iris species were light sensitive seeds, a light requirement for I. lactea, I. confusa and I. chrysographes for seed germination were very necessary; (3) the seed coat had inhibitory effects on I. lactea, I. confusa and I. chrysographes, they all have physiological dormancy phenomena.
     7. Seed germination in four Iris species were carried out in this study. The results indicate that:(1) seed coat was the biggest resistance for seeds to germination in I. lactea, I. confusa and I. chrysographes. In I. tectorum endosperm was the biggest resistance for seed germination; (2) in I. tectorum seed coats had promoted effects on seed germination; (3)I. lactea and I. confusa adapted well to environment. The optimum substratum for I. tectorum seed germination was clay soils; (4) alternating temperatures 20/30℃were more suitable for I. lactea, I. confusa and I. chrysographes seeds germination; (5) 4℃stratification have no obvious effect for promote seed germination.
引文
1. 陈德芬,杨焕婷,马钟艳.外源激素对鸢尾组织培养的影响.天津农业科学,1997,3(3):18-20
    2. 陈家宽,杨继.植物进化生物学.武汉:武汉大学出版社,1994:232-381
    3. 董晓东,李继红.中甸鸢尾的核型分析.大理学院学报,2002,1(4):47-48
    4. 董晓东,谢航,马玉心,等.云南四种鸢尾属植物的核型研究.植物研究,1994,14(4):26-32
    5. 董晓东,谢航,赵宏.大理鸢尾及其近缘种高原鸢尾的花粉形态和分类研究.大理师专学报,1998(2):26-28
    6. 董晓东,谢航.大理鸢尾和高原鸢尾的花粉形态.云南植物研究,1998,18(2):149-151
    7. 董晓东,杨晓霞,李继红,等.矮紫苞鸢尾分类地位的研究.大理师专学报,1999,2:69-70
    8. 董晓东,李继红,赵毓棠.中甸鸢尾(Iris subdichotoma Y.T.Zhao)系统分类位置的探讨研究.东北师范大学报自然科学版(生物学专辑),1999,4
    9. 董晓东,李继红.中甸鸢尾核型分析.大理学院学报,2002.1(4):47-48
    10.董玉芝,咎少平,李宁,等.中亚鸢尾的花粉生活力及其授粉.东北林业大学学报,2003,31(6):78-79
    11.傅立国,陈潭清,郎楷永,等主编.中国高等植物,第十三卷.青岛:青岛出版社,2002
    12.高宝莼.四川鸢尾属的研究.西南师范学院学报,1985,(3):11-15
    13.高宝莼.四川植物志(第九卷),成都,四川民族出版社,1989:320-370
    14.高亦珂,刁晓华.四种鸢尾属植物种子休眠和萌发研究.种子,2006,25(4):41-44
    15.葛颂.植物群体遗传结构研究的回顾和展望.李承森主编.植物科学进展(第一卷),北京:高等教育出版社,2002:319
    16.郭翎.鸢尾.上海:上海科技出版社,2001:1-73
    17.郭瑛,高亦珂.鸢尾属植物种子体眠原因及提高萌发率方法综述.种子,2006,25(2):42-45
    18.洪德元.植物细胞分类学.北京:科学出版社,1990:172-212
    19.侯元同,王康满,姚淑敏.一些植物花粉的微形态学研究.四川师范学院学报,1999,20(4):329-334
    20.胡蕙露,杨景华,陈慧,等.若干科观赏植物花粉形态电镜观察与比较.安徽农业大学学报,2001,28(3):320-325
    21.胡嘉琪,崔鸿宾,张玉龙.国产爵床科芦莉花族植物的花粉形态.植物分类学报,2005,43(2):123-150
    22.胡金勇,曾英,桑玉英.双向电泳分析鸢尾绿白嵌合叶片的蛋白质.云南植物研究,2002,24(3):387-391
    23.胡正海.植物比较解剖学在中国50年的进展和展望.西北植物学报.2003,23(2):344-355
    24.黄荣福,沈颂东,卢学峰.青藏高原东北部植物染色体数目和多倍性研究.西北植物学报,1996,16(3):310-318
    25.黄苏珍,顾姻,韩玉林.鸢尾属(Iris L.)植物的杂交育种.植物资源与环境,1998,7(1):35-39
    26.黄苏珍,韩玉林,谢明月,等.中国鸢尾属观赏植物资源的研究与利用.中国野生植物资源,2003,22(1):4-7
    27.黄苏珍,韩玉林,谢明云,等.杂种鸢尾的组织培养和植株再生.植物生理学通讯,2003,39(6):638
    28.黄苏珍,谢明云,佟海英,等.荷兰鸢尾(Iris xiphium L. var. hybridum)的组织培养.植物资源与环境,1999,8(3):48-52
    29.黄苏珍,韩玉林,谢明云,等.德国鸢尾的组织培养.江苏林业科技,2000,27:37-44
    30.黄苏珍.鸢尾属(Iirs L.)部分植物资源评价及种质创新研究.南京:南京农业大学,博士学位论文.2004
    31.黄双全,郭友好.传粉生物学的研究进展.科学通报,2000,145(3):225-237
    32.黄芸,杨光.RAPD法鉴定射干类中药.中草药,2002,33(10):935-937
    33.江明,谢文申.香根鸢尾的组织培养和快速繁殖.园艺学报,1995,22(3):301-302
    34.柯立明,杨秀莲.鸢尾种间杂交不亲和性原因的研究.林业科技开发,2003,17(1):21-23
    35.李红星,王卿,王飞,等.几种园林植物花粉生活力的鉴定.陕西林业科技,2004(2):1-4
    36.李懋学,陈瑞阳.关于植物核型分析的标准化问题.武汉植物学研究,1985,3:297-302
    37.李懋学,张(?)方.植物染色体研究技术.哈尔滨:东北林业大学出版社,1991:31-58,142-191
    38.李蓉,秦民坚.薄叶鸢尾的化学成分研究.中国药科大学学报,2003,2:122-124
    39.刘晓东.国产十种鸢尾属植物的核型研究.哈尔滨:东北师范大学,硕士学位论文.1985
    40.刘瑛.中国之鸢尾.中国植物学杂志,1936.3(2):929-956
    41.刘云.吉林省八种鸢尾植物的RAPD分析及结构植物学分析.哈尔滨:东北师范大学,硕士学位论文.2001
    42.卢海英.中国北方8种鸢尾属植物ITS序列分析及其分子系统学意义的研究.硕士学位论文,哈尔滨,东北师范大学,2006
    43.卢海英.中国北方8种鸢尾属植物ITS序列分析及其分子系统学意义研究,哈尔滨:东北师范大学,硕士学位论文.2006
    44.卢继承.鸢尾的染色体核型分析.山东师范大学学报,2000,15(2):214-216
    45.陆静梅,韩丽娟,张力,等.粗根鸢尾染色体核组型分析.长春师范学院(自然科学版),1993,1:36-38
    46.路覃坦,张金政,孙国峰,等.4种中国野生无髯鸢尾种子休眠原因的研究.园艺学报,2008, 35(10):1497-1504
    47.罗长维,李昆,陈友,等.膏桐花粉活力与柱头可授性及其生殖特性研究.西北植物学报,2007,27(10):1994-2001
    48.毛节锜,薛详骥.浙江几种鸢尾科植物的染色体.浙江农业大学学报,1986,12(1):97-101
    49.牟少华,韩蕾,孙振元,等.鸢尾属植物马蔺的研究现状与开发利用建议.莱阳农学院学报,2005,77(2):125-128
    50.牟少华.我国部分鸢尾属(Iirs)植物系统位置研究.北京:中国林业科学研究院,博士学位论文,2005
    51.齐春晖.鸢尾属植物在园林中的应用.中国花卉园艺,2003,(19):26-27
    52.齐建红,翟永功,赵长琦.鸢尾属植物的化学成分及其生物活性.天然产物研究与开发,2006,18(1):165-170
    53.齐耀斌,赵毓棠.中国鸢尾属花粉形态研究.植物分类学报,1987,25(6):430-436
    54.奇文清,尤瑞麟,陈晓麟.濒危植物南川升麻传粉生物学研究.植物学报,1998,40(8):688-694
    55.秦民坚,胡军,余国奠,等.射干和鸢尾的染色体的核型分析.基层中药杂志,2002,16(4):18-19
    56.秦民坚,黄芸,杨光,等.射干及类似药用植物叶绿体rbcL基因序列分析.药学学报,2003,38(2):147-152
    57.秦民坚,徐路珊,川中俊弘,等.中国鸢尾属植物根茎中异黄酮类成分分布的初步研究及其系统学意义.植物分类学报,2000,38(4):343-349
    58.秦民坚.鸢尾科药用根茎类的生药学研究.南京:中国药科大学,博士学位论文.1995
    59.桑涛,徐炳声.分支系统学当前的理论和方法概述及华东地区山胡椒属十二个种的分支系统学研究.植物分类学报,1996,34(1):12-28
    60.沙伟,王丽华,杨晓杰,等.东北产20种植物染色体数目.武汉植物学研究,1995,13(2):180-182
    61.沈云光,王仲朗,管开云.国产13种鸢尾属植物的核型研究.植物分类学报,2007,45(5):601-618
    62.舒焕麟,颜济,杨俊良.Iris Confusa Sealy的细胞学研究.四川农业大学学报,1992,10(4):586-591
    63.孙明洲.用结构方法对中国北方鸢尾属植物的分类学研究.哈尔滨:东北师范大学,硕士学位论文.2003
    64.孙星衍,孙冯翼.神农本草经.北京:人民卫生出版社,1982:101,104-105
    65.孙跃春,樊奋成,陈海蛟.不同预处理引起马蔺种子激素的变化.种子,2005,24(2):60-64
    66.孙跃春.马蔺种子休眠解除技术与适宜萌发条件研究.北京:中国农业大学,硕士学位论 文.2004
    67.唐小敏.鸢尾属(Iris)观赏植物的引种及试种研究.浙江农业科学,2001,1:16-19
    68.宛涛,卫智星,温学媛,等.内蒙古草原地区主要植物的花粉形态.中国草地,1995,6:3-11
    69.王冰,孙永久.紫花鸢尾的细胞学研究.国土与自然资源研究,1993,3:70-72
    70.王冰,徐岩,郑太坤,等.马蔺的核型分析.中药材,1998a,21(5):217-219
    71.王冰,徐岩,郑太坤,等.射干鸢尾的核型分析.中国药学杂志,1998b,33(12):716-719
    72.王定康,孙桂芳,郭志明,等.滇重楼的花粉活力测定方法比较.安徽农业科学,2007,35(35):11451-11453
    73.王俊.四种野生鸢尾的花卉生物学研究.北京:北京林业大学,硕士学位论文.2008
    74.王宏,申晓辉,郭瑛.野鸢尾染色体的核型分析及其分类地位探讨.上海交通大学学报,2007,25(3):289-292
    75.王开发,王宪曾.1983.孢粉学概论.北京:北京大学出版社,30-32
    76.王玲,卓丽环.基于ITS序列的鸢尾属植物部分种的系统分类.东北林业大学学报,2006,(34)4:54-57
    77.王玲,卓丽环.鸢尾属部分种种子微形态特征与系统演化关系.植物研究,2006,26(3):286-290
    78.王玲.鸢尾属部分种发育生物学与系统演化研究.哈尔滨:东北林业大学,博士学位论文.2005
    79.王小蓉,汤浩茹,黄力,等.树莓部分野生种及栽培品种花粉亚显微形态的比较.园艺学报,2007,34(6):1395-1404
    80.伍碧华,颜济,周永红,等.种皮对扁竹兰鸢尾(Iris confusa)杂种种子萌发的抑制作用.四川农业大学学报,1998,16(13):337-340
    81.谢航.中国鸢尾有关分类群的讨论及属下分类系统的修订.哈尔滨:东北林业大学,博士学位论文.1996
    82.徐本美,龙雅宜,顾增辉.十三种花卉种子室内萌发初探.种子,1998,(3):12-16
    83.许玉凤,王文元,孙晓梅,等.鸢尾属植物的研究概况.安徽农业科学,2006,34(24):6478-6479
    84.许玉凤,张轲,王文元,等.9种鸢尾植物花粉形态的扫描电镜观察.沈阳农业大学学报,2008,39(6):733-736
    85.闫丽梅,王艳,沙伟.细叶鸢尾的染色体核型分析.齐齐哈尔大学学报,1999,15(1):67-69
    86.阎贵兴,张素贞,薛凤华,等.35种国产饲用植物染色体数目的观测.中国草地学报,1995,1:16-20
    87.杨瑞林.射干和马蔺的花粉形态.广西植物,2002,22(3):237-238
    88.余小芳,周永红.鸢尾种子的休眠与萌发特性研究.种子,2006,25(10):55-57
    89.袁梅芳,杨建瑛,吴保平.球根鸢尾的病毒鉴定及试管脱毒成球技术.园艺学报,1998,25(2):175-178
    90.袁涛.中国牡丹部分种与品种(群)亲缘关系的研究.,北京:北京林业大学,博士学位论文.1998
    91.张金政,石雷,王平,等.有髯莺尾“常春黄”的组织培养.植物生理学通讯,2004,40(2):210
    92.张玲慧,夏宜平.地被植物在园林中的应用及研究现状.中国园林,2003,19(09):54-57
    93.张义贤.山西关帝山部分植物的染色体研究.武汉植物学研究,1994,12(2):201-206
    94.赵毓棠,陆静梅.国产三种鸢尾染色体核型研究.东北师大学报自然科学版,1986.2:71-78
    95.赵毓棠.鸢尾欣赏与栽培利用.北京:金盾出版社,2005
    96.赵毓棠.国产鸢尾属之研究.植物分类学报,1980,18(1):53-62
    97.赵毓棠.中国植物志(第十六卷第一分册).北京:科学出版社,1985:120-198
    98.周繇.长白山区鸢尾属植物资源及其开发利用.中国野生植物资源,2003,22(1):20-21
    99.周永红,伍碧华,颜济,等.Iris japonica×Iris confnsa种间杂种的细胞遗传学研究.云南植物研究,2003,25(4):497-502
    100. Abbott RJ, Horrill JC, Noble GD. Germination behaviour of the radiate and non-radiate morphs of groundsel, senecio vuggaris L. Heredity,1988,60:15-20
    101. Anzidei M, Schiff S, Bennici A. Trial on in vitro germination in Iris pallida Lam. Atti convegno internazionale:Coltibazione emiglioramento dipiante officinali, Trento, Italy,1996:559-561
    102. Arnold ML, Robinson JJ, Buckner CM. Bennet Pollen dispersal and interspecific gene flow in Louisiana Irises. Heredity,1992,68:399-404
    103. Baldwin BG, Sanderson MJ, Porter JM, et al.. The ITS region of nuclear ribosome DNA:a valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard,1995,82:247-277
    104. Blumenthal A, Lerner HR, Werker E, et al. Germination preventing mechanisms in Iris Seeds, Annals of Botany,1986,58:551-561
    105. Boltenkov EV, Labetskaya NV, Lauve LS, et al. Introduction of Iris oxypetala Bunge into in vitro culture. Pacтнтельные pecypcы,2000,36(1):67-70
    106. Carol A, Wilson. Phylogenetic relationships in Iris series Californicae based on ITS sequences of nuclear ribosomal DNA. Sytematic Botany,2003,28(1):39-46
    107. Chimphamba BB. Cytogenetic studies in the genus Iris:Subsection evansia Benth. Cytologia, 1973,38:501-514
    108. Chaudhary SA, Chaudhary GA, Akram M. Karyotypes of some Iris taxa. Bot Notiser,1977,130: 263-267
    109. Colasante M, Sauer W. The genus Iris L. in Latium:general remarks on the morphological and karyological differentiation as well as on the ecological adaptation and flowering periods. Linzer Biologische Beitrage,1993,25:1189-1204
    110. Dafai A. Pollination ecology. Oxford Univ. Press, New York,1992,59-89
    111. Darlington CD, Wylie AP. Chromosome Altas of Flowering Plants. London:George Allen & Unwin Ltd.1955,383-390
    112. Doronkin VM, Krasnikov AA. Cytotaxonomic studies in some Siberian species of the genus Iris (Iridaceae). Botaniceskjij urnal SSSR,1984,65(5):683-685
    113. Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus,1990,12,13-15
    114. Dykes WR. The genus Iris. Cambridge:cambridge university press,1913
    115. Edward K, Michael L, Arnold S, et al. Characterization of high-copy-number retrotransposons from the large genomes of the Louisiana Iris species and their use as molecular markers. Genetics Society of America,2003,685-697
    116. Ellis JR. The crested Irises of Asia. New Plantsman,2000,7(2):123-125
    117. Fedorov AA. Chromosome numbers of flowering plants. Leningrad:Komarov Botanical Institute, Academy of Science of the USSR. Reprint.1974. Koenigstein:Otto Koeltz Science Publishers. 1969,352-356
    118. Goldblatt P, Johnson DE. Index to plant chromosome numbers. Missouri:Missouri Botanical Garden,1966-1997
    119. Goldblatt P. Phylogeny and classification of Iridaceae. Ann. Missouri Bot. Gard.1990,77: 607-627
    120. Gustafsson M, Wendelbo P. Kayotype analysis and taxonomic comments on Irises form SW and Casia. Bot. Notiser,1975,128:208-222
    121. Harman GL, Orick MW. Isozyme diversity in Iris cristata and the threatened glacial endemic I. lacustris (Iridaceae). American Journal of Botany.2000,87 (3):293-301
    122. Hida A, Shimizu K, Nagata R, et al. Plant regeneration from protoplasts of Iris hollandica Hort. Euphytica,1999,105 (2):99-102
    123. Holloway PS. Seed Germination of Alaska Iris, Iris setosa ssp. Interior. Hortscience,1987,22(5): 898-899
    124. Hsiao C, Chatterton NJ, Asay KH, et al. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome,1995,38:221-223
    125. Huang SF, Zhao ZF, Chen SJ, et al.1989. Chromosome counts on one hundred species and infraspecific taxa. Acta Botanica Austro Sinica,5:161-176
    126. Ishmuratova MM. Features of in vitro cultivation of plants of different ecological groups using the example of species of the genus Iris L. Pacтнтельные pecypcы,1999,35(4):67-78
    127. Jelnic Z, Lee SP, David J, et al. Genetic transformation of Iris germanica mediated by agrobacterium tumefaciens. Journal of the American Society for Horticultural Science,1999, 124(6):575-580
    128. Jevremovic S, Radojevic IJ. Plant regeneration from suspension cultures of Iris pumila L. Acta Horticulturae,2002,572:59-65
    129. Johnston JA, Arnold ML, Donovan LA. High hybrid fitness at seed and seedling life history stages in Louisiana Irises. Journal of Ecology,2003,91:438-446
    130. Karihaloo V. Microsporogenesis in desynaptic Iris tectorum Maxim. Journal of Cytology and Genetics,1984,19:102-105
    131. Kazao N. Cytological studies on Iris. Sci Rep Tohoku Univ. (b) Biol.,1929,4:543-549
    132. Kim SC, Jung YH, Jang KC, et al. Phylogenetic analysis and the bulbous-specific band identification using Random Amplified Polymorphic DNA in the Genus Iris. J. Kor. Soc. Hort. Sci., 2003,44 (22):238-232
    133. Kimura T, Ishii HS, Sakai S. Selfed-seed production depending on individual size and flowering sequence in Iris gracilipes (Iridaceae). Canadian Journal of Botany.2002,80(10):1096-1102
    134. Koch M, Al-Shehbaz IA. Molecular systematics of the Chinese Yinshania (Brassicaceae): evidence from plastid trnL intron and nuclear ITS DNA sequence data. Annals of the Missouri Botanical Garden,2000,87:246-272
    135. Liu QL, Wu DX, Tian YT, et al. Preliminary report on induced mutation of Iris somaclonals. Acta Horticulturae,1995,44:91-94
    136. Malakhova LA. Kariologocheskij analiz prirodnykh populjacij redkich i ischezajushchikh rastenij na juge Tomskoj Oblasti. Bjulleten' Glavnogo Botaniceskogo Sada,1990,155:60-66
    137. Mathew B.1981. The Iris. London:B. T. Batsford Ltd
    138. Morgan MD. Seed germination characteristics of Iris virginica. American Midland Naturalist,1990, 124(2):209-213
    139. Mitra J. Karyotype analysis of bearded Iris. Bot Gaz,1956,117(4):265-293
    140. Nigel S. Iris perrieri, legitimized at last. The Plantsman N. S.,2003,6:90-93
    141. Neilp O. Natural selection on genetically correlated phenological characters in Lythrum salicaria L. (Lythraceae). Evolution,1997,51:267-274
    142. Pinar NM, Donmez EO. Pollen morphology of Turkish Iris L. (Iridaceae) with reference to evolutionary trends at the infra generic level. Israel journal of plant sciences,2000,48 (2):129-141
    143. Popp M, Oxelman B. Inferring the history the polyploid Silene aegaea (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences. Mol Phylogenet Evol,2001,20:474-481
    144. Randolph LF. Embryo culture of Iris seeds. Bul. Amer. Iris Sco.1945,97:33-45
    145. Randolph LF, Cox LG. Factors influencing the germination of Iris seed and the relation of inhibiting substances to embryo dormancy. Proc. Amer. Sco. Hort. Sci,1943,43:284-300
    146. Rodionenko GI. The Genus Iris L.1961. Translated and published by the British Iris Society, 1985,90(4):253-303
    147. Rodionenko GI. The Genus Iris L.(Questions of Morphology, Biology, Evolution and Systematics). Bridgwater:Bigwood & Staple Ltd,1987
    148. Schemske DW. Flowering phenology and seed set in claytonia virginica (Portulaceae). Bulletin of the Torrey Botanical Club,1977,104:254-263
    149. Shimizu K, Miyabe Y. Nagaike H et al. Production of somatic hybrid plants between Iris ensata Thunb. and I. germanica L.. Euphytica,1999,107(2):105-113
    150. Shimizu K, Nagaike H, Yabuya T, et al. Plant regeneration from suspension culture of Iris germanica. Plant Cell, Tissue and Organ Culture,1997,50(1):27-31
    151. Shimizu K, Yabuya T, Adachi T. Plant regeneration from protoplasts of Iris Germanicca L.. Euphytica,1996,89(2):223-227
    152. Stebbins GL. Chromosomal evolution in higher plant. London:Edward Arnold Ltd,1971:87-93
    153. Stebbins GL. Flowering plants:evolution above the species level. Cambridge, Massachusetts: Harvard university press, USA,1974
    154. Stoltz LP. Iris seed dormancy. Physiologia plantarum,1968,21:1328-1331
    155. Swofford DL. PAUP*:Phylogenetic analysis using parsimony (and other method). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts, USA.2003
    156. The species group of brithish Iris society. A guide to species Iries (their identification) and cultivation). Edinburgh:cambridge university press,1997
    157. Thompson JD, Higgins DG, Gibson TJ. et al. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res,1994,22:4673-4680
    158. Thompson JD. Skewed flowering distributions and pollinator attraction. Ecology,1980,61: 572-579
    159. Tsukatani N, Aii J, Miyabe Y, et al. Identification of somatic hybrids between Iris ensata Thunb. and I. germanica L. by designing species-specific primers of its regions of nuclear rDNA. Cytologia,2002,67(4):361-366
    160. Tsutomu Y. Chromosome Associations and Crossability with Iris ensata Thunb. in induced amphidiploids of I. laevigata Fisch.×I. ensata. Euphytica,1991,55:85-90
    161. Veerle L, Isabel R, Els C, et al. A Study of genetic variation in Iris pseudacorus populations using Amplified Fragment Length Polymorphisms (AFLPs). Aquatic Botany,2002,73:19-31.
    162. Waddick JW, Zhao, YT. Iris of China. Timber Press, Portland,1992
    163. Waddick JW. Collecting Irises in Western China. Bulletin of the American Iris society,1994, (3): 74-92
    164. Walker JW. The origin and early evolution of angiosperm. Zhang Yulong. Beijing Science Press, 1981
    165. Wang YX, Jeknic Z, Ernst RC, et al. Improved plant regeneration from suspension-cultured cells of Iris germanica L.'Skating party'. HortScience,1999b,34(7):1271-1276
    166. Wang YX, Jeknic Z, Ernst RC, et al. Efficient plant regeneration from suspension-cultured cells of tall bearded Iris. HortScience,1999,34(3):730-735
    167. Waser NM. Competition for hummingbird pollination and sequential flowering in two Colorado wildflowers. Ecology,1978,59:934-944
    168. Wendel JF, Schnable A, Seelanan T. Bi-direction interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA,1995,92:280-284
    169. Won MP, Sang SL, Sun HC, et al.. Sequence analysis of the coat protein gene of a Korean isolate of Iris severe Mosaic Potyvirus from Iris plant. The Plant Pathology Journal,2000,16:36-42
    170. Wroblewska AA, Emilia B, Bozenna C, et al. High levels of genetic diversity in populations of Iris Aphylla L. (Iridaceae), an endangered species in Poland Botanical Journal of the Linnean Society, 2003,142:65-72
    171. Yabuya T, Goto M, Minamitani Y, et al. Variation in the nucleolar organizing regions in regenerated plants of Japanese garden Iris ensata Thunb.. Cytologia,1997a,62 (3):249-252
    172. Yabuya T, Ikeda Y, Adachi T. In vitro Propagation of Japanese garden Iris, Iris ensata Thunb. Euphytica,1991,57(1):77-81
    173. Yabuya T, Kihara S, Yoshino H, et al. Behavior of NOR-bearing telosomes in Japanese garden Iris (Iris ensataThunb.). Cytologia,1997b,62(1):47-51
    174. Yabuya T, Kihara S, Yoshino H, et al. Variation in the nucleolar organizing regions in Japanese garden Iris and its wild forms (Iris ensata Thunb). Cytologia,1995,60(4):383-387
    175. Yen C., Sun GL, Yang JY. The Mechanism of the Origimation of Auto-allopoly-ploidy and Aneuploidy in Higher Plants Based on the Cases of Iris and Triticeae. Proceeding of the 2nd International Tirticeae Symposium.1994,45-50
    176. Yi TS, Li H, Li DZ. Chromosome variation in the genus Pinellia (Araceae) in China and Japan. Botanical Journal of the Linneau Society,2005,147(4):449-455
    177. Zhuravlev YN, Kozyrenko MM, Ariyukova EV, et al. Finger printing genomes of the far Eastern species of the genus Iris L. by RAPD-PCR. Генетика,1998,34(3):368-372