联吡啶钌及其衍生物电化学发光性质研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文回顾了电化学发光分析法的发展历史,介绍了电化学发光反应的基本原理、优点、主要反应类型及其应用,评述了电化学发光分析法与流动注射、高效液相色谱、毛细管电泳联用技术和微流控芯片电泳的联用技术,详细讲述了电化学发光传感器及其应用。在已有文献的基础上,成功地建立了羟基脲片、精胺以及生物体中NO的顺序注射-电化学发光测定新方法,并研制成了用介孔材料固定联吡啶钌的修饰电极。具体开展了以下几方面工作:
     1.基于羟基脲对联吡啶钌-正三丙胺体系电化学发光的抑制作用及精胺对联吡啶钌电化学发光的增强效应,建立了顺序注射-电化学发光分析法在线测定羟基脲和精胺的新方法。结果表明,在最优条件下,本法测定羟基脲的线性范围为2×10~(-6)~1×10~(-3) mol/L,检出限为3.63×10~(-7) mol/L,对羟基脲浓度为2×10~(-6) mol/L平行测定11次,相对标准偏差为1.0%,对羟基脲进行样品测定,误差范围均在2%以内,对羟基脲片及羟基脲在健康人血清和健康人尿液中含量进行了加标回收分析,加标回收率均在94.9%~108.6%之间;本法测定精胺时相对电化学发光值与精胺浓度在5×10~(-7)~5×10~(-4) mol/L范围内呈现良好的线性关系,对5×10~(-7) mol/L浓度的精胺进行11次平行测定,其相对标准偏差为3.0%,检出限为3.03×10~(-7) mol/L。
     2.固定发光试剂的优点是节省昂贵试剂联吡啶钌的耗费。价格低廉的高分子聚合物壳聚糖/介孔材料是一种有效的制备复合物膜的方法,通过离子交换采用壳聚糖/MCM-41成功地将联吡啶钌固定在铂电极表面。此修饰电极在磷酸缓冲溶液中有良好的电化学发光特性,并对正三丙胺电化学发光响应较快,而且电化学发光稳定性较强,测定羟基脲及精胺溶液效果较好。这种电极的修饰方法为其他固态ECL的检测开辟了道路。
     3.基于[Ru(bpy)_2(dabpy)]~(2+)电化学发光较弱,但其与NO反应生成的[Ru(bpy)2(T-bpy)]2+电化学发光较强,建立了一种使用联吡啶钌衍生物检测水溶液和生物样品中NO含量的ECL方法,该方法灵敏度高且具有较高的选择性,可在复杂生物体系中检测NO。并将这种探针用于羟基脲溶液的测定,效果较好。在最优条件下,测定HU的线性范围为2×10~(-6)~5×10~(-4) mol/L,检出限为6.86×10~(-7) mol/L,对HU浓度为2×10~(-6) mol/L平行测定11次,相对标准偏差为3.7%,对羟基脲片、及羟基脲在健康人血清和健康人尿液中含量进行了加标回收分析,加标回收率均在95.6%~109.2%之间。
In this thesis, the principles, main reaction systems, mechanism and the application of electrochemiluminesence (ECL) were reviewed. New methods based on SI-ECL have been developed for determining hydroxyurea, spermine and NO. The work was summarized as follows:
     1. The development of a sequential injection electrochemiluminescence(SI-ECL) method for the determination of hydroxyurea and spermine. It is based on the facts that hydroxyurea could inhibit the ECL of Ru(bpy)_3~(2+) and spermine could enhance the ECL of Ru(bpy)_3~(2+). Under the optimal conditions, the determination of hydroxyurea: a linear range of 2×10~(-6)~1×10~(-3) mol/L was derived along with RSD values of 1.0% at 2×10~(-6) mol/L, and a detection limit of 3.63×10~(-7) mol/L was achieved; the determination of spermine: a linear range of 5×10~(-7)~5×10~(-4) mol/L was derived along with RSD values of 3.0% at 5×10~(-7) mol/L, and a detection limit of 3.03×10~(-7) mol/L was achieved. The recoveries were in the range of 94.9%~108.6% for the determination of hydroxyurea in hydroxyurea tablet, human blood serum and urine samples.
     2. A novel ECL sensor with high sensitivity and long-term stability was prepared by immobilizing Ru(bpy)_3~(2+) on the surface of Chitosan/MCM-41 composite films modified Pt electrode via an ion-exchange process and their electrogenerated chemiluminescence were investigated.The experimental results showed that the immobilized Ru(bpy)_3~(2+) maintained its electrochemistry behaviors very well. The modified electrode showed a fast ECL response to TprA. Meanwhile, the modified electrode was applied to the detection of hydroxyurea and spermine. The electrode could be easily regenerated and exhibited good stability which make it a promising candidate for sensitive electrochemical sensors for hydroxyurea and spermine.
     3. A ruthenium(II) complex based turn-on ECL probe for the detection of nitric oxide and turn-off ECL probe for the detection of hydroxyurea. A selective and sensitive ECL method for the detection of NO in aqueous and biological samples using a modified Ru(bpy)_3~(2+) complex, [Ru(bpy)_2(dabpy)]~(2+), as a probe was described. Compared to the reported ECL quenching method, the new ECL enhancement method has the advantages of higher selectivity and sensitivity, and wider linear range, which allows it to be favorably useful for the ECL detection of NO in complicated biological samples. Additionally, the ECL probe was successfully applied to the detection of hydroxyurea. Under the optimal conditions, a linear range of 2×10~(-6)~5×10~(-4) mol/L was derived along with RSD values of 3.7% at 2×10~(-6) mol/L. The recoveries were in the range of 95.6%~109.2% for the determination of hydroxyurea in hydroxyurea tablet, human blood serum and urine samples.
引文
[1] Dufford R T, Nightingale D, Gaddum L W. Luminescence of Grignard Compounds in Electric and Magnetic Fields, and Related Electrical Phenomena. J. Am. Chem. Soc., 1927, 49(8): 1858-1864.
    [2] Harvey N. Luminescence during Electrolysis. J. Phys. Chem., 1929, 33(10): 1456-1459.
    [3] Michael P R, Faulkner L R. Electrochemiluminescence from the thianthrene-2, 5-diphenyl-1, 3, 4-oxadiazole system. Evidence for light production by the T route. J. Am. Chem. Soc., 1977, 99(24): 7754-7761.
    [4] Park S M, Tryk D A. Excited state intermediates probed by electrogenerated chemiluminescence. Research on chemical intermediates, 1981, 4: 43-79.
    [5] Bard A J. Electrogenerated Chemiluminescence, New York: Dekker, 2004.
    [6] Richter M M. Electrochemiluminescence (ECL). Chem. Rev., 2004, 104: 3003-3036.
    [7] Pyati R, Richter M M. ECL-Electrochemical luminescence. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 2007, 103: 12-78.
    [8] Miao W. Electrogenerated Chemiluminescence and Its Biorelated Applications. Chem. Rev., 2008, (108): 2506-2553.
    [9]陶颖,林志杰,陈晓梅等.联吡啶钌修饰电极固相电致化学发光.化学进展, 2008, 20(2/3): 362-367.
    [10] Tokel N E, Bard A J. Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing tris(2,2'-bipyridine)ruthenium(II) dichloride. J. Am. Chem. Soc., 1972, 94(8): 2862-2863.
    [11] Rubinstein I, Bard A J. Polymer films on electrodes. 5. Electrochemistry and chemiluminescence at Nafion-coated electrodes. J. Am. Chem. Soc., 1981, 103(17): 5007-5013.
    [12] Rubinstein I, Bard A J. Electrogenerated chemiluminescence. 37. Aqueous ecl systems based on tris(2, 2'-bipyridine)ruthenium(2+) and oxalate or organic acids. J. Am. Chem. Soc., 1981, 103(3): 512-516.
    [13] White H S, Bard A J. Electrogenerated chemiluminescence. 41. Electrogenerated Chemiluminescence and chemiluminescence of the Ru(bpy)32+-S2O82- system in acetonitrile-water solutions. J. Am. Chem. Soc., 1982, 104: 6891-6895.
    [14] Ege D, Becker W G, Bard A J. Electrogenerated chemiluminescent determination of tris(2, 2'-bipyridine)ruthenium ion (Ru(bpy)32+) at low levels. Anal. Chem., 1984, 56(13): 2413-2417.
    [15] Zhang X, Bard A J. Electrogenerated chemiluminescent emission from an organized (L-B) monolayer of a Ru(bpy)32+-based surfactant on semiconductor and metal electrodes. J. Phys. Chem., 1988, 92(20): 5566-5569.
    [16] Obeng Y S, Bard A J. Electrogenerated chemiluminescence. 53. Electrochemistry and emission from adsorbed monolayers of a tris(bipyridyl)ruthenium(II)-based surfactant on gold and tin oxide electrodes. Langmuir, 1991, 7(1): 195-201.
    [17] Xu X H, Bard A J. Immobilization and Hybridization of DNA on an Aluminum(Ⅲ) Alkanebisphosphonate Thin Film with Electrogenerated Chemiluminescent Detection. J. Am. Chem. Soc., 1995, 117(9): 2627-2631.
    [18] Sung Y E, Gaillard F, Bard A J. Demonstration of Electrochemical Generation of Solution-Phase Hot Electrons at Oxide-Covered Tantalum Electrodes by Direct Electrogenerated Chemiluminescence. J. Phys. Chem. B, 1998, 102(49): 9797-9805.
    [19] Bard A J, Leland J K, Siga G B, et al. Encyclopedia of Analytical Chemistry Chichester:Wiley. 2000:
    [20] Kanoufi F D R, Zu Y, Bard A J. Homogeneous Oxidation of Trialkylamines by Metal Complexes and Its Impact on Electrogenerated Chemiluminescence in the Trialkylamine /Ru(bpy)32+ System. J. Phys. Chem. B, 2001, 105: 210-216.
    [21] Miao W J, Choi J P, Bard A J. Electrogenerated Chemiluminescence 69: The Tris(2, 2'-bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) System Revisited A New Route Involving TPrA?+ Cation Radicals. Am. Chem. Soc., 2002, 124(48): 14478-14485.
    [22] Stagni S, Palazzi A, Zacchini S, et al. A New Family of Ruthenium(II) Polypyridine Complexes Bearing 5-Aryltetrazolate Ligands as Systems for Electrochemiluminescent Devices. Inorg. Chem., 2006, 45(2): 695-709.
    [23] Zhan W, Bard A J. Electrogenerated Chemiluminescence. 83. Immunoassay of Human C-Reactive Protein by Using Ru(bpy)32+-Encapsulated Liposomes as Labels. Anal. Chem., 2007, 79(2): 459-463.
    [24] Chang Y L, Palacios R E, Fan F R F, et al. Electrogenerated chemiluminescence of single conjugated polymer nanoparticles. Journal of the American Chemical Society, 2008, 130(28): 8906-8907.
    [25] Sartin M M, Shu C F, Bard A J. Electrogenerated chemiluminescence of a spirobifluorene-linked bisanthracene: A possible simultaneous, two-electron transfer. Journal of the American Chemical Society, 2008, 130(15): 5354-5360.
    [26] Yu J G, Fan F R F, Pan S L, et al. Spontaneous Formation and Electrogenerated Chemiluminescence of Tris(bipyridine) Ru(II) Derivative Nanobelts. J. Am. Chem. Soc., 2008, 130(23): 7196-7197.
    [27] Omer K M, Ku S Y, Wong K T, et al. Efficient and Stable Blue Electrogenerated Chemiluminescence of Fluorene-Substituted Aromatic Hydrocarbons. Angewandte Chemie-International Edition, 2009, 48(49): 9300-9303.
    [28] Xiao X Y, Pan S L, Jang J S, et al. Single Nanoparticle Electrocatalysis: Effect of Monolayers on Particle and Electrode on Electron Transfer. J. Phys. Chem. C, 2009, 113: 14978-14982.
    [29] Tian D Y, Duan C F, Wang W, et al. Sandwich-type electrochemiluminescence immunosensor based on N-(aminobutyl)-N-ethylisoluminol labeling and gold nanoparticle amplification. Talanta, 2009, 78(2): 399-404.
    [30] Kurita R, Arai K, Nakamoto K, et al. Development of Electrogenerated Chemiluminescence-Based Enzyme Linked Immunosorbent Assay for Sub-pM Detection. Anal. Chem., 2010, 82(5): 1692-1697.
    [31] Huang H P, Jie G F, Cui R J, et al. DNA aptamer-based detection of lysozyme by an electrochemiluminescence assay coupled to quantum dots. Electrochemistry Communications, 2009, 11(4): 816-818.
    [32] Zhang L Y, Li D, Meng W L, et al. Sequence-specific DNA detection by using biocatalyzed electrochemiluminescence and non-fouling surfaces. Biosensors & Bioelectronics, 2009, 25(2): 368-372.
    [33] Hua L Z, Xu G B. Applications and trends in electrochemiluminescence. Chem. Soc. Rev., 2010, 39: 3275-3304.
    [34] Zhang C X, Huang J C, Zhanga Z J, et al. Flow injection chemiluminescence determination of catecholamines with electrogenerated hypochlorite. Analytica Chimica Acta, 1998, 374(1): 105-110.
    [35] Wang H Y, Xu G B, Dong S J. Electrochemiluminescence of tris(2, 2'-bipyridine)ruthenium(II) immobilized in poly(p-styrenesulfonate)-silica-Triton X-100 composite thin-films. Analyst, 2001, 126(7): 1095-1099.
    [36]郭志慧,郑行望,章竹君.流动注射电化学发光分析法测定间苯三酚.分析化学研究简报, 2002, 30(4): 461-463.
    [37] Wang H Y, Xu G B, Dong S J. Electrochemiluminescence sensor using tris(2, 2'-bipyridyl)ruthenium(II) immobilized in Eastman-AQ55D–silica composite thin-films. Analytica Chimica Acta, 2003, 480(2): 285-290.
    [38] Yin X B, Dong S J, Wang E K. Analytical applications of the electrochemiluminescence of tris (2, 2'-bipyridyl) ruthenium and its derivatives. Trends in Analytical Chemistry, 2004, 23(6): 432-441.
    [39] Zhuang Y F, Ju H X. Determination of Reduced Nicotinamide Adenine Dinucleotide Based on Immobilization of Tris(2, 20-bipyridyl) Ruthenium(II) in Multiwall Carbon Nanotubes/Nafion Composite Membrane. Analytical Letters, 2005, 38: 2077-2088.
    [40] Gao W, Xia X H, Xu J J, et al. Three-Dimensionally Ordered Macroporous Gold Structure as an Efficient Matrix for Solid-State Electrochemiluminescence of Ru(bpy)32+/TPA System with High Sensitivity. J. Phys. Chem. C, 2007, 111(33): 12213-12219.
    [41] Chen X M, Wu G H, Chen J M, et al. A novel electrochemiluminescence sensor based on bis(2,2 '-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) covalently combined with graphite oxide. Biosensors & Bioelectronics, 2010, 26(2): 872-876.
    [42] Wang X Y, Zhang X Y, He P A, et al. Sensitive detection of p53 tumor suppressor gene using an enzyme-based solid-state electrochemiluminescence sensing platform. Biosensors and Bioelectronics, 2011, 26(8): 3608-3613.
    [43]鞠熀先.电分析化学与生物传感技术.北京:科学出版社, 2006.
    [44]傅志东,林仲华,黄少华等.鲁米诺电致化学发光机理的研究.物理化学学报, 1994, (4): 371-375.
    [45]孙玉刚,崔华,林祥钦.鲁米诺在铂电极上阳极电致化学发光的机理研究.化学学报, 2000, 58(5): 567-571.
    [46] Knight A W. A review of recent trends in analytical applications of electrogenerated chemiluminescence. TrAC Trends in Analytical Chemistry, 1999, 18(1): 47-62.
    [47]宋玲,郑行望,李桂新.聚鲁米诺-金属离子复合物膜的电化学发光特性及其分析应用研究.高等学校化学学报, 2007, 28: 1869-1874.
    [48]张军瑞,陈健,刘仲明.电化学发光免疫检测技术研究进展.分析化学评述与进展, 2010, 38(8): 1219-1226.
    [49] Wilson R, Schiffrin D J. Electrochemically oxidized ferrocenes as catalysts for the chemiluminescence oxidation of luminol. Journal of Electroanalytical Chemistry, 1998, 448(1): 125-130.
    [50] Ouyang C S, Wang C M. Clay-Enhanced Electrochemiluminescence and Its Application in the Detection of Glucose. J. Electrochem. Soc., 1998, 145(8): 2654-2659.
    [51] Hercules D M, Lytle F E. Chemiluminescence from Reduction Reactions. J. Am. Chem. Soc., 1966, 88(20): 4745-4746.
    [52]易长青,李梅金,陶颖等.联吡啶钌-草酸体系电致化学发光猝灭法检测苯胺和联苯胺.分析化学研究报告, 2004, 32(11): 1421-1425.
    [53] Leland J K, Powell M J. Electrogenerated Chemiluminescence: An Oxidative-Reduction Type ECL Reaction Sequence Using Tripropyl Amine. The Electrochemical Society, 1990, 137(2): 3127-3131.
    [54] Chiu T C, Lin Y W, Huang Y F, et al. Analysis of biologically active amines by CE. Electrophoresis, 2006, 27: 4792-4807.
    [55]高文燕,李利军,蔡卓, et al.联吡啶钌体系电化学发光法测定舒必利的研究.分析科学学报, 2010, 26(5): 521-525.
    [56] Knight A W, Greenway G M. Relationship between structural attributes and observed electrogenerated chemiluminescence (ECL) activity of tertiary amines as potential analytes for the tris(2,2-bipyridine)ruthenium(II) ECL reaction. A review. Analyst, 1996, 121: 101R-106R.
    [57] Noffsinger J B, Danielson N D. Generation of chemiluminescence upon reaction of aliphatic amines with tris(2, 2'-bipyridine)ruthenium(III). Anal. Chem., 1987, 59(6): 865-868.
    [58] Lu Y M, Young J, Meng Y G. Electrochemiluminescence to detect surface proteins on live cells. Current Opinion in Pharmacology, 2007, 7(5): 541-546.
    [59]李彦青,高文燕,李利军等.联吡啶钌体系电致化学发光测定盐酸苯海索的研究.化学与生物工程, 2010, 27(7): 87-91.
    [60]刘凤玉,杨雪.电化学发光法检测三聚氰胺.化工学报, 2010, 61(S1): 51-55.
    [61] Guo Z Y, Gaia P P. Development of an ultrasensitive electrochemiluminescence inhibition method for the determination of tetracyclines. Analytica Chimica Acta, 2011, 688(2): 197-202.
    [62] Wang H Y, Sun D Y, Tan Z A, et al. Electrochemiluminescence immunosensor forα-fetoprotein using Ru(bpy)32+-encapsulated liposome as labels. Colloids and Surfaces B: Biointerfaces, 2011, 84(2): 515-519
    [63] Bae S W, Oh J W, Shin I S, et al. Highly sensitive detection of DNA by electrogenerated chemiluminescence amplification using dendritic Ru(bpy)32+-doped silica nanoparticles. Analyst, 2010, 135(3): 603-607.
    [64] Hansen E H, Ruzicka J. Flow injection analysis part I: a new concept of fast continuous flow analysis. Anal Chim Acta, 1975, 78: 145-157.
    [65] Ruzicka J, Marshall G D. Sequential injection: a new concept for chemical sensors, process analysis and laboratory assays. Anal Chim Acta, 1990, 237(2): 329-343.
    [66]方肇伦.流动注射分析法,北京:科学出版社, 1999.
    [67] Economou A. Sequential-injection analysis (SIA): A useful tool for on-line sample-handling and pre-treatment. TrAC Trends in Analytical Chemistry, 2005, 24(5): 416-425.
    [68] Economou A, Tzanavaras P D, Themelis D G. Sequential-Injection Analysis: A Useful Tool for Clinical and Biochemical Analysis. Current Pharmaceutical Analysis, 2007, 3(4): 249-261.
    [69]柴晓莉,赵常志,陶晟辰等.流动注射电化学发光法测定盐酸麻黄碱.分析试验室, 2008, 27(6): 108-111.
    [70]赵常志,陶晟辰,李莹等.流动注射电化学发光分析法测定土霉素.辽宁师范大学学报(自然科学版), 2008, 31(4): 457-459.
    [71] Waseem A, Yaqoob M, Nabi A, et al. Determination of thyroxine using tris(2, 2'-bipyridyl)ruthenium(III)-NADH enhanced electrochemiluminescence detection. Analytical Letters, 2007, 40(4-6): 1071-1083.
    [72] Lindino C A, Bulh?es L O S. Determination of fenoterol and salbutamol in pharmaceutical formulations by electrogenerated chemiluminescence. Talanta, 2007, 72(5): 1746-1751.
    [73]杨梅,张娇,何长涛.顺序注射-电化学发光体系研究茶多酚的抗氧化性.辽宁师范大学学报(自然科学版), 2008, 31(4): 466-468.
    [74] Noffsinger J B, Danielson N D. Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2'-bipyridine)ruthenium(III). Anal. Chem., 1987, 59(6): 865-868.
    [75]杨红兵,张成孝.高效液相色谱电化学发光法测定丙酮酸.分析试验室, 2004, 23(8): 58-61.
    [76]王卫,内仓和雄.高效液相色谱-电化学发光检测法测定磷酸丙毗胺片中丙毗胺的含量.药物分析杂志, 2005, 25(11): 1299-1302.
    [77]杨红兵,张成孝,洪成林.高效液相色谱电化学发光法检测抗坏血酸.理化检验-化学分册, 2006, 42(7): 526-530.
    [78]柴晓莉.电化学发光分析法测定含氮药物的研究:(硕士学位论文).青岛:青岛科技大学, 2008.
    [79]石鑫,王捷,刘仲明.毛细管电泳Ru(bpy)32+电化学发光的研究进展.化学研究, 2010, 21(4): 92-95.
    [80]银慧慧.毛细管电泳-电化学发光在三种含胺类药物分析中的研究与应用:(硕士学位论文).桂林:广西师范大学, 2010.
    [81] Wang J W, Zhang X J, Pi F F, et al. Tris(2,2 '-bipyridyl) ruthenium(II)-bisoprolol-based electrochemiluminescence coupled with capillary zone electrophoresis. Electrochimica Acta, 2009, 54(8): 2379-2384.
    [82] Sun X M, Niu Y, Bi S, et al. Determination of ascorbic acid in individual rat hepatocyte cells based on capillary electrophoresis with electrochemiluminescence detection. Electrophoresis, 2008, 29(13): 2918-2924.
    [83] Vickers M S, Martindale K S, Beer P D. Imidazolium functionalised acyclic ruthenium(II) bipyridyl receptors for anion recognition and luminescent sensing. Materials Chemistry, 2005, 15: 2784-2790.
    [84] Hosono H, Satoh W, Fukuda J, et al. On-chip handling of solutions and electrochemiluminescence detection of amino acids. Sensors and Actuators B: Chemical, 2007, 122(2): 542-548.
    [85] Hosono H, Satoh W, Toya M, et al. Microanalysis system with automatic valve operation, pH regulation, and detection functions. Sensors and Actuators B-Chemical, 2008, 132(2): 614-622.
    [86] Naseri N G, Baldock S J, Economou A, et al. Disposable Injection-Moulded Cell-on-a-Chip Microfluidic Devices with Integrated Conducting Polymer Electrodes for On-Line Voltammetric and Electrochemiluminescence Detection. Electroanalysis, 2008, 20(4): 448-454.
    [87] Nieciecka D, Krysinski P. Interactions of Doxorubicin with Self-Assembled Monolayer-Modified Electrodes: Electrochemical, Surface Plasmon Resonance(SPR), and Gravimetric Studies. Langmuir, 2011, 27(3): 1100-1107.
    [88] Tao Y, Lin Z J, Chen X M, et al. Tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence sensor based on carbon nanotube/organically modified silicate films. Analytica Chimica Acta, 2007, 594: 169-174.
    [89] Zhuang Y F, Ju H X. Study on Electrochemiluminesce of Ru(bpy3)2+ Immobilized in a Titania Sol-Gel Membrane. Electroanalysis, 2004, 16(17): 1401-1405.
    [90]刘洋,杨秀荣.有序介孔材料SBA-15吸附Ru(bpy)32+修饰电极的电化学发光研究.高等学校化学学报, 2007, 28(4): 640-644.
    [91]李卫滨,兰小鹏.适体技术在临床治疗及药物研究中的应用.国外医学内科学分册, 2006, 33(10): 449-452.
    [92]漆红兰,李延,李晓霞, et al.适体传感器研究新进展.化学传感器, 2007, 27(3): 1-8.
    [93] Jing Z, Ping P C, Xiao Y W, et al. A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe. Biosensors & Bioelectronics, 2011, 26(5): 2645-2650.
    [94] Zhu D B, Zhou X M, Xing D. A new kind of aptamer-based immunomagnetic electrochemiluminescence assay for quantitative detection of protein. Biosensors & Bioelectronics, 2010, 26(1): 285-288.
    [95] Wang Z P, Duan N, Hun X, et al. Electrochemiluminescent aptamer biosensor for the determination of ochratoxin A at a gold-nanoparticles-modified gold electrode using N-(aminobutyl)-N-ethylisoluminol as a luminescent label. Analytical and Bioanalytical Chemistry, 2010, 398(5): 2125-2132.
    [96] Lin Z Y, Chen L F, Zhu X, et al. Signal-on electrochemiluminescence biosensor for thrombin based on target-induced conjunction of split aptamer fragments. Chemical Communications, 2010, 46(30): 5563-5565.
    [97] Zhang G F, Chen H Y. Studies of polyluminol modified electrode and its application in electrochemiluminescence analysis with flow system. Analytica Chimica Acta, 2000, 419(1): 25-31.
    [98] Cao W D, Ferrance J P, Demas J, et al. Quenching of the Electrochemiluminescence of Tris(2, 2'-bipyridine)ruthenium(II) by Ferrocene and Its Potential Application to Quantitative DNA Detection. J. Am. Chem. Soc., 2006, 128(23 ): 7572-7578.
    [99] Marquette C A, Blum L J. Electro-chemiluminescent biosensing. Analytical and Bioanalytical Chemistry, 2008, 390(1): 155-168.
    [100]杨梅.顺序注射-阀上实验室-微型化分子光谱分析系统研究及应用: (博士学位论文).沈阳:东北大学, 2008.
    [101]杨建一,韩宁,李莉, et al.羟基脲致雄性小鼠睾丸细胞DNA的损伤作用.毒理学杂志, 2009, 23(2): 118-121.
    [102] Lee M, Kwon J, Kim S N, et al. cDNA microarray gene expression profiling of hydroxyurea, paclitaxel, and p-anisidine, genotoxic compounds with differing tumorigenicity results. Environmental and MolecularMutagenesisi, 2003, 42(2): 91-97.
    [103]陈瑶,姚英民.β-地中海贫血药物基因治疗研究进展.中国优生与遗传杂志, 2003, 11(2): 123-132.
    [104] Lisziewicz J, Foli A, Wainberg M, et al. Hydroxyurea in the Treatment of HIV Infection: Clinical Efficacy and Safety Concerns. Drug Safety, 2003, 26(9): 605-624.
    [105]孙长勇,周振环,杨淑莲, et al.羟基脲致急性肿瘤溶解综合征1例分析.中国误诊学杂志, 2010, 10(36): 9045.
    [106]国家药典委员会编.中华人民共和国药典.化学工业出版社, 2005(Ⅱ): 661.
    [107]朱兆武.羟基脲-新型无盐试剂在Purex流程中的应用研究: (博士学位论文).北京:中国原子能科学研究, 2003.
    [108]刘德胜,徐玉文,陈向明, et al. HPLC法测定羟基脲片的含量.中国生化药物杂志, 2010, 31(3): 190-192.
    [109]徐玉文,刘德胜. HPLC法和TLC法测定羟基脲及羟基脲片中的有关物质.药物分析杂志, 2010, 30(12): 2385-2387.
    [110] Khuhawar M Y, Qureshib G A. Polyamines as cancer markers: applicable separation methods. Chromatography B, 2001, 764: 385-407.
    [111] Bachrach U. Polyamines and cancer: minireview article. Amino Acids, 2004, 26: 307-309.
    [112] Taibi G, Schiavo M R, Rindina P C, et al. Micellar electrokinetic chromatography of polyamines and monoacetylpolyamines. Chromatogrphy A, 2001, 921(2): 323-329.
    [113] Nohta H, Satozono H, Koiso K, et al. Highly Selective Fluorometric Determination of Polyamines Based on Intramolecular Excimer-Forming Derivatization with a Pyrene-Labeling Reagent. Anal. Chem, 2000, 72(17): 4199-4204.
    [114] Lin M S, Chen C H, Chen Z. Development of structure-specific electrochemical sensor and its application for polyamines determination. Electrochimica Acta, 2011, 56(3): 1069-1075.
    [115] Liu J F, Yang X R, Wang E K. Direct tris(2,2' -bipyridyl)ruthenium (II) electrochemiluminescence detection of polyamines separated by capillary electrophoresis. Electrophoresis, 2003, 24: 3131-3138.
    [116]彭晓娟.有序介孔碳及其复合材料修饰电极研究: (硕士学位论文).长春:东北师范大学, 2008.
    [117]仲慧,张莉莉,徐继明, et al.壳聚糖/凹凸棒土固定联吡啶钌修饰电极的电化学发光行为.分析测试学报, 2008, 27(2): 123-126.
    [118] Bredt D S, Snyder S H. Nitric Oxide: A Physiologic Messenger Molecule. Annual Review of Biochemistry, 1994, 63: 175-195.
    [119] Ricciardolo F L M, Sterk P J, Gaston B, et al. Nitric Oxide in Health and Disease of the Respiratory System. Physiol Rev, 2004, 84(3): 731-765.
    [120] Kim J H, Heller D A, Jin H, et al. The rational design of nitric oxide selectivity in singlewalled carbon nanotube near infrared fluorescence sensors for biological detection. Nat Chem 1, 2009, 6: 473-481.
    [121] Robinson J K, Bollinger M J, Birks J W. Luminol/H2O2 Chemiluminescence Detector for the Analysis of Nitric Oxide in Exhaled Breath. Anal. Chem., 1999, 71(22): 5131-5136.
    [122] Katayama Y, Soh N, Maeda M. A New Strategy for the Design of Molecular Probes for Investigating Endogenous Nitric Oxide Using an EPR or Fluorescent Technique. ChemPhysChem, 2001, 2(11): 655-661.
    [123] Chen J Y, Miyake M, Chi Y W, et al. Determination of Nitric Oxide by Quenching Electro-Chemiluminescence of Tris(2,2'-Bipyridyl)ruthenium in Flow Injection Analysis. Electroanalysis, 2007, 19(2-3): 181-184.
    [124] Sun S, Yang Y, Liu F, et al. Study of highly efficient bimetallic ruthenium tris-bipyridyl ECL labels for coreactant system. Anal Chem, 2009, 81(24): 10227-10231.
    [125] Zhang R, Ye Z Q, Wang G L, et al. Development of a Ruthenium(II) Complex Based Luminescent Probe for Imaging Nitric Oxide Production in Living Cells. Chemistry - A European Journal, 2010, 16(23): 6884-6891.
    [126] Setsukinai K-I, Urano Y, Kakinuma K, et al. Development of Novel Fluorescence Probes That Can Reliably Detect Reactive Oxygen Species and Distinguish Specific Species. Biological Chemistry, 2003, 278: 3170-3175.
    [127] Miyamoto S, Martinez G R, Martins A P B, et al. Direct Evidence of Singlet Molecular Oxygen [O2 (1Δg)] Production in the Reaction of Linoleic Acid Hydroperoxide with Peroxynitrite. J. Am. Chem. Soc., 2003, 125(15): 4510-4517.
    [128] Guo W H, Ye Z Q, Wang G L, et al. Measurement of oligochitosan-tobacco cell interaction by fluorometric method using europium complexes as fluorescence probes. Talanta, 2009, 78(3): 977-982.
    [129] Davies B W, Kohanski M A, Simmons L A, et al. Hydroxyurea Induces Hydroxyl Radical-Mediated Cell Death in Escherichia coli. Molecular Cell, 2009, 36(5): 845-860.