修饰电极增敏CE-ECL法对药物成分分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电泳电致化学发光技术,是近十年来发展最快的一种新型分离分析技术,它集成了毛细管电泳的高效分离能力和电化学发光检测的高灵敏度。目前电致化学发光分析中应用最为广泛的发光试剂是Ru(bpy)_3~(2+) ,它由于具有水溶性好、化学性质稳定、氧化还原可逆等特点倍受人们青睐。在CE-ECL技术中,工作电极表面性能对Ru(bpy)_3~(2+)的发光效率影响极大,尤其在复杂试样的分离分析中工作电极的抗毒化能力更是决定了检测的可靠性。PB-Eu修饰电极能够催化联吡啶钌的氧化过程,且自身具有良好的稳定性,藉此可改善CE-ECL方法的检测灵敏度及重现性。
     本工作的主要内容是利用PB-Eu修饰电极为CE-ECL工作电极,以大环内酯类药物,麻黄碱类药物为研究对象,研究了该电极上被分析物的分离分析特性,实现了药物药剂和中药中几种有效成份含量的测定,并发展了CE-ECL测定药物-蛋白结合常数的分析方法。
     论文的主要研究内容包括以下四部分:
     第一章综述
     简述了毛细管电泳的发展状况及前途,对毛细管电泳的原理、分离模式、检测器种类做了简单介绍;概述了CE-ECL技术在药物、环境及生命物质分析中的应用;介绍了新型功能材料在联吡啶钌发光体系中的应用情况,并着重介绍了新型材料在ECL技术中的应用,对该分析体系发展中存在的问题进行了探讨并对其发展方向进行了展望。
     第二章毛细管电泳电致化学发光法测定琥乙红霉素
     铕离子掺杂普鲁士蓝化学修饰铂电极对联吡啶钌的电催化氧化作用可显著增强联吡啶钌/琥乙红霉素体系的电致化学发光强度,据此建立了毛细管电泳电致化学发光检测琥乙红霉素的分析新方法。在优化条件下,体系发光强度与琥乙红霉素的浓度在1 ?g/mL~100 ?g/mL(R=0.9993)之间呈良好线性关系,检测限为0.25 ?g/mL (S/N=3)。对浓度为10 ?g/mL的琥乙红霉素标准溶液连续测定6次,其发光强度和迁移时间的RSD分别为2.26 %和0.81 %。本法快速、灵敏、准确,且分析试样无需复杂处理可直接用于药剂及人尿中琥乙红霉素含量的测定。
     第三章毛细管电泳电致化学发光法测定阿奇霉素、罗红霉素和克林霉素及其与人血清白蛋白结合常数
     以PB-Eu化学修饰电极为工作电极,建立了毛细管电泳电致化学发光法同时灵敏快速分离和检测阿奇霉素、罗红霉素和克林霉素含量及其与蛋白结合常数的新方法。考察了检测电位,缓冲介质及酸度,分离缓冲液种类,添加剂等条件对电泳分离及检测结果的影响。在优化条件下,三种药物在5分钟内即可达到基线分离,其峰面积与样品浓度对阿奇霉素在0.025-2.50μg/mL之间,罗红霉素在0.50-100μg/mL之间和克林霉素在0.10-100μg/mL之间呈良好线性关系。对浓度为1.00μg/mL的混合样进行6次平行测定,其峰高和迁移时间的RSD分别在0.53-1.8%和0.53-0.57%之间。将本方法用于测定药剂中三种药物含量的测定,加标回收率在94.6%~104.6%之间。并测得三种药物与蛋白结合常数分别为阿奇霉素3.55×103 L/mol,罗红霉素1.44×104 L/mol,克林霉素1.67×104 L/mol。
     第四章毛细管电泳电致化学发光法测定麻黄中的麻黄碱、伪麻黄碱和甲基麻黄碱
     以PB-Eu化学修饰电极为工作电极,离子液体为拆分添加剂,首次建立了毛细管电泳电致化学发光法同时分离和检测麻黄碱、伪麻黄碱和甲基麻黄碱的新方法。考察了检测电位,缓冲介质及酸度,分离缓冲液种类,添加剂等条件对电泳分离及检测结果的影响。在优化条件下,三种药物在8分钟内可达到基线分离,其峰面积与样品浓度对甲基麻黄碱在0.025~10μg/mL之间,麻黄碱在0.025~25μg/mL之间和伪麻黄碱在0.05~10μg/mL之间呈良好的两段线性关系。对浓度为1.00μg/mL的混合样进行6次平行测定,其峰面积和迁移时间的RSD分别在3.95% ~ 4.30%和0.14% ~ 0.94%之间。将本方法用于测定药剂和中药中三种物质含量的测定,回收率在104.3%~111.2%之间。
Capillary electrophoresis (CE) with electrochemiluminescence detection (ECL) is one of the most fast developed analysis and separation technology, it is combined the high efficiency of separation of capillary electrophoresis with the high sensitivity of ECL detection. At present, Tris(2,2’-bipyridyl)ruthenium(II) (Ru(bpy)_3~(2+)) is the most widely used electrochemiluminescence reagents in CE-ECL. It has become the most favorite reagents because of its good water soluble, excellent chemical stability and reversible redox. However, the working electrode surface condition has great impact on the electrochemiluminescence efficiency of Ru(bpy)_3~(2+) in CE-ECL. In particular, in the analysis and separation of complicated samples the work electrode conditions is crucial for the determination. PB-Eu modified electrode possesses good stability, and has excellent catalytic oxidation activity on Ru(bpy)_3~(2+), so it can improve sensitivity and reproducibility of CE-ECL.
     In this thesis, we study the analysis and separation characteristics of macrolide antibiotics and Ephedrine on CE-ECL by using PB-Eu modified platinum electrode as a working electrode. The contents of macrolide antibiotics in drugs and Ephedrine in Chinese herb medicines are detected. This work has enlarged the method for the determination of binding constants between drug and human serum albumin.
     This paper including the following four parts:
     Chapter one: Review.
     A brief introduction for the current situation, the future trend, the principle, separation mode and detectors of capillary electrophoresis are given; Furthermore, the application of CE-ECL technology in medicine, environment and life analysis are summarized; Last, the application of new functional materials in Ru(bpy)_3~(2+) luminescence system and particular in ECL determined technology is reviewed. The problems existed in this system has been discussed and the development directions are prospected.
     Chapter two: Determination of erythromycin ethyisuccinate(EES) by capillary electrophoresis coupled with chemically modified electrode electrochemiluminescence detector
     A Eu-PB modified platinum electrode is used as working electrode of CE-ECL detector, it shows excellent electrocatalytic activity for the oxidation of Ru(bpy)_3~(2+). Therefore, the ECL intensity of Ru(bpy)_3~(2+) could be markedly enhanced for measuring EES. A simple and novel method for the determination of EES in pharmaceutical preparations has been developed. Parameters affecting separation and detection are also optimized. Good linear relationships between the peak area and the concentration of EES is observed in the range of 1μg/mL to 100μg/mL and detection limit is 0.25μg/mL (S/N=3).When the concentration of EES was 10.0μg/mL, the RSD value of migration time and peak height were 2.2% and 0.81% for six repeating detection, respectively. This method is fast, sensitive, accurate and sample can be injected for anaylsis without complicated pretreatment. It has been applied to the determination of EES in erythromycin ethyisuccinate granules drug and human urine sample.
     Chapter Three: Simultaneous separation and determination of azithromycin roxithromycin and clindamycin by CZE coupled with end-column PB-Eu modified electrode electrochemiluminescence detection and application for the determination the binding constants between three compounds and human serum albumin
     Based on PB-Eu chemically modified electrode as a work electrode, a fast and sensitive method for the simultaneous determination of AZM, Rox, CLI and the binding constants between the three compounds with human serum albumin has been developed. The effects factors such as the detection potential, the kinds of buffer solution, acidity and concentrations of separating buffer and additive on CE-ECL technology are investigated. Under the optimum conditions, three drugs are separated well in five minutes and the peak area and concentration of samples is good linear relationships for AZM 0.025-2.50μg/mL, for Rox 0.50-100μg/mL and for CLI 0.10-100μg/mL. When the three analytes concentration are 1.00μg/mL, the RSD of peak height and migration time are in the range of 0.53-1.8%, 0.53-0.57%, respectively (n=6). The method has been successfully applied to the determination of three analytes in pharmaceutical preparations with the recoveries from 94.6% to 104.6% .The binding constants between three drugs and human serum albumin are obtained, the binding constants for AZM, Rox and CLI are 3.55×103 L/mol,1.44×104 L/mol and 1.67×104 L/mol, respectively.
     Chapter four: Simultaneous separation and determination of Ephedrine, Pseudoephedrine, Methylephedrine by CZE coupled with end-column PB-Eu modified electrode electrochemiluminescence detection
     Based on PB-Eu chemically modified electrode as a work electrode, ion liquid as an additive, a novel and sensitive method for the simultaneous determination of ME, E, PE has been developed in the first time. The effect factors such as the detection potential, the kinds of buffer solution, acidity and concentration of separating buffer, on CE-ECL technology are also investigated. Under the optimum conditions, three drugs are separated well in eight minutes and the peak area is linear with the analytes concentration for ME 0.025~10μg/mL, for E 0.025~25μg/mL and for PE 0.05~10μg/mL. With the concentration of 1.0μg/mL ME, E and PE, the RSD of peak area and migration time are in the rang of 3.95%~4.30%,0.14%~0.94%, respectively(n=6).The method has been used for the determination of the three analytes in pharmaceutical preparations and in Chinese herbal Ma-Huang with the recoveries 104.3%~111.2%.
引文
[1] Tiselius A.A new apparatus for electrophoretic analysis of colloidal mixtures. Transactions of the Faraday Society,1937,33: 524.
    [2] Jorgenson J W, Lukacs K D, Free-Zone Electrophoresisin GlassCapillaries. CLINICALCHEMISTRY, 1981, 27(9): 1551.
    [3] Terabe, S, Otsuka K, Ichikawa K., et al. Electrokinetic Separations with Micellar Solutions and Open-Tubular.Capillaries.Anal. Chem. 1984, 56(1): 111.
    [4] Hjertén S, Elenbring K, Kilár F, et al.High-performance electrophoresis with special reference to isoelectric focusing.Journal of Biochemical and Biophysical Methods. 1987, 14(S1): S14.
    [5]汪尔康,21世纪的分析化学.科学出版社,2001,102.
    [6]竺安,等速电泳及其在生物医学中的应用.生物化学与生物物理进展,1984,11(4),53.
    [7]陈义,竺安,扁形毛细管区带电泳.中国科学(B辑),1991,6,561.
    [8] Nicholas W. Frost, Meng Jing, and Michael T. Bowser. Capillary Electrophoresis.Anal. Chem. 2010, 82(12): 4682.
    [9]刘彦明,刘二保,程介克.检测溶液中单分子.分析化学,2002,30 (8):1000.
    [10]王荣,贾正平,阮金秀.毛细管电泳-激光诱导荧光法测定缺氧缺血新生大鼠脑组织中氨基酸.分析化学,2006,34(4): 543.
    [11] Miao W J, Electrogenerated Chemiluminescence and Its Biorelated Applications. Chem. Rev. 2008, 108(7): 2506.
    [12] Liu X, Guo L, Cheng L X, et al. Determination of nitrite based on its quenching effect on anodic electrochemiluminescence of CdSe quantum dots. Talanta, 2009,78(3): 691.
    [13] Huang H P, Jie G F, Cui R J,et al. DNA aptamer-based detection of lysozyme by an electrochemiluminescence assay coupled to quantum dots. Electrochemistry Communications. 2009, 11(4): 816.
    [14] Ding S N, Xu J J, Shan D, et al.Electrochromic response and electrochemiluminescence of CdS nanocrystals thin ?lm in aqueous solution.Electrochemistry Communications. 2010,12(5): 713.
    [15] Guo Z Y, Gai P P. Development of an ultrasensitive electrochemiluminescenceinhibition method for the determination of tetracyclines. Analytica Chimica Acta, 2011, 688(2):197.
    [16] Hsieh Y C, Whang C W. Analysis of ethambutol and methoxyphenamine by capillary electrophoresis with electrochemiluminescence detection. Journal of Chromatography A. 2006, 1122 (2): 279.
    [17] Zhou M, Li Y J, Ma Y J, et al. Determination of ketotifen fumarate by capillary electrophoresis with tris(2,2′-bipyridyl) ruthenium(II) electrochemiluminescence detection. DOI 10.1002/ bio.1231, in press.
    [18] Liu S C, Liu Y j, Li J, Guo M l, Pan W. Determination of mefenacet by capillary electrophoresis with electrochemiluminescence detection.Talanta.2006,69(2): 154.
    [19]张小军,郑丽华,汪敬武.毛细管电泳-电致化学发光法分离并测定盐酸倍他司汀.分析科学学报,2008, 24(4): 457.
    [20] Gao Y, Tian Y L, Sun X H,et al. Determination of ranitidine in urine by capillary electrophoresis-electrochemiluminescent detection. Journal of Chromatography B.2006, 832(2): 236.
    [21]刘彦明,曹俊涛,郑艳丽.毛细管电泳间接电致化学发光灵敏检测去甲肾上腺素及其在尿样分析中的应用.高等学校化学学报,2008, 29(1): 81.
    [22]熊凤梅,唐玉海,孙四娟,等.毛细管电泳电化学发光法测定盐酸帕罗西汀的研究.分析试验室,2008, 27(10): 63.
    [23] Deng B Y, Shi A H, Kang Y H, et al.Determination of metformin hydrochloride using precolumn derivatization with acetaldehyde and capillary electrophoresis coupled with electrochemiluminescence.DOI 10.1002/ bio.1276, in press.
    [24] Huang Y, Pan W, Guo M L,et al.Capillary electrophoresis with end-column electrochemiluminescence for the analysis of chloroquine phosphate and the study on its interaction with human serum albumin. Journal of Chromatography A, 2007, 1154(1-2): 373.
    [25] Sun J Y, Xu X Y, Wang C Y,et al.Analysis of amphetamines in urine with liquid–liquid extraction by capillary electrophoresis with simultaneous electrochemical and electrochemiluminescence detection. Electrophoresis, 2008, 29(19): 3999.
    [26] Liu Y M, Tian W, Jia Y X, et al. Simultaneous determination of methylephedrineand pseudoephedrine in human urine by CE with electrochemiluminescence detection and its application to pharmacokeinetics. Biomed.Chromatogr., 2009, 23(11): 1138.
    [27] Du Y, Wang E k.Separation and Detection of Narcotic Drugs on a Microchip Using Micellar Electrokinetic Chromatography and Electrochemiluminescence. Electroanalysis, 2008, 20(6): 643.
    [28] Li J G, Ju H X.Simultaneous determination of ethamsylate, tramadol and lidocaine in human urine by capillary electrophoresis with electrochemi- luminescence detection. Electrophoresis, 2006, 27(17): 3467.
    [29] Sun H W, Li L Q, Su M. Simultaneous Determination of Lidocaine, Proline and Lome?oxacin in Human Urine by CE with Electrochemiluminescence Detection. Chromatographia,2008, 67(5-6): 399.
    [30] Han B Y, Du Y, Wang E k.Simultaneous determination of pethidine and methadone by capillary electrophoresis with electrochemiluminescence detection of tris(2,2′-bipyridyl)ruthenium(II).Microchemical,2008,89(2): 137.
    [31] Yuan J P, Yin J Y, Wang E K.Characterization of procaine metabolism as probe for the butyrylcholinesterase enzyme investigation by simultaneous determination of procaine and its metabolite using capillary electrophoresis with electrochemi- luminescence detection. Journal of Chromatography A,2007, 1154 (2): 368.
    [32]邵艳清,吴晓忠,唐玉海,等.毛细管电泳-电化学发光法测定盐酸曲马多制剂及血浆中曲马多.理化测试,2010, 46(2): 164.
    [33]张祖玲,李建军,屈凌波,等.毛细管电泳-电致化学发光法测定甲磺酸帕珠沙星.分析化学,2008,36(7): 941.
    [34] Fu Z F, Liu Y, Wang L, et al.Simultaneous Quantitation of Quinolone Residues in Biological Fluid by CE Combined with Electrogenerated-Chemiluminescent Detection. Chromatographia, 2009, 69(9-10): 1101.
    [35]苏彩娜,康艳辉,邓必阳.毛细管电泳-电致化学发光测定诺氟沙星的研究.分析化学,2006,34(S1), S135.
    [36] Deng B Y, Su C N, Kang Y H.Determination of norfloxacin in human urine by capillary electrophoresis with electrochemiluminescence detection.Anal Bioanal Chem,2006,385(7): 1336.
    [37] Liu Y M, Cao J T, Tian W,et al.Determination of levofloxacin and norfloxacin by capillary electrophoresis with electrochemiluminescence detection and application in human urine. Electrophoresis, 2008, 29(15): 3207.
    [38] Liu Y M, Shi Y M, Liu Z L.Determination of enoxacin and ofloxacin by capillary electrophoresis with electrochemiluminescence detection in biofluids and drugs and its application to pharmacokinetics.Biomed. Chromatogr. 2010, 24(9): 941.
    [39] Sun H W, Li L Q, Wu Y Y.Capillary electrophoresis with electrochemi- luminescence detection for simultaneous determination of proline and fleroxacin in human urine. Drug Test. Analysis,2009,1(2): 87.
    [40] Deng B Y, Kang Y H, Li X F, et al.Determination of josamycin in rat plasma by capillary electrophoresis coupled with post-column electrochemiluminescence detection. Journal of Chromatography B,2007,859(1): 125.
    [41] Deng B Y, Kang Y H, Li X F, et al. Determination of Erythromycin in Rat Plasma with Capillary Electrophoresis Electrochemiluminescence Detection of Tris(2,2?-bipyridyl)ruthenium(Ⅱ).Journal of Chromatography B,2007,857(1):136.
    [42] Wang J W, Peng Z B, Yang J,et al.Detection of clindamycin by capillary electrophoresis with an end-column electrochemiluminescence of tris(2,2-bypyridine)ruthenium(II).Talanta, 2008, 75(3): 817.
    [43] Wang J W, Yang Z M, Wang X X, et al.Capillary electrophoresis with gold nanoparticles enhanced electrochemiluminescence for the detection of roxithromycin.Talanta, 2008,76(1): 85.
    [44] Liu Y M, Shi Y M, Liu Z L,et al.A sensitive method for simultaneous determination of four macrolides by CE with electrochemiluminescence detection and its application in human urine and tablets. Electrophoresis,2010,31(2): 364.
    [45] Deng B Y, Shi A H, Li L Q, et al.Pharmacokinetics of amoxicillin in human urine using online coupled capillary electrophoresis with electrogenerated chemiluminescence detection. Journal of Pharmaceutical and Biomedical Analysis, 2008,48(4): 1249.
    [46]陆桦,徐泉秀,施爱红,等.毛细管电泳-电化学发光间接测定人血浆中盐酸甲氯芬酯.分析科学学报.2009, 25(6): 639.
    [47] Pan W, Liu Y J, Huang Y,et al. Determination of difenidol hydrochloride bycapillary electrophoresis with electrochemiluminescence detection. Journal of Chromatography B. 2006,831(2): 17.
    [48] Li J G, Zhao F J, Ju H X. Simultaneous determination of psychotropic drugs in human urine by capillary electrophoresis with electrochemiluminescence detection. Anal Chim Acta,2006,575(1): 57.
    [49] Li J G, Zhao F J, Ju H X. Simultaneous electrochemiluminescence determination of sulpiride and tiapride by capillary electrophoresis with cyclodextrin additives. Journal of Chromatography B. 2006,835(1): 84.
    [50]汪敬武,彭志兵,杨佳.毛细管电泳-电致化学发光法测定维C银翘片中的马来酸氯苯那敏.分析实验室,2007,26(4): 26.
    [51] Fang L Y, Yin X B, Sun X H, et al.Determination of disopyramide in human urine by capillary electrophoresis with electrochemi- luminescence detection of tris(2,2′-bipyridyl) ruthenium(II). Analytica Chimica Acta,2005,537(1-2): 25.
    [52] Wang Y C, Wu Q, Cheng M R, et al.Determination ofβ-blockers in pharmaceutical and human urine by capillary electrophoresis with electrochemiluminescence detection and studies on the pharmacokinetics. Journal of Chromatography B,2011,in press.
    [53] Gao Y, Tian Y L, Wang E K. Simultaneous determination of two active ingredients in Flosdaturae by capillary electrophoresis with electrochemi- luminescence detection. Anal Chim Acta.2005,545(1): 137.
    [54] Zhou M., Ma Y J, Ren X N, et al. Determination of sinomenine in Sinomenium acutum by capillary electrophoresis with electrochemiluminescence detection. Anal Chim Acta. 2007,587(1): 104.
    [55] Chen X., Yi C Q, Li M J, et al. Determination of sophoridine and related lupin alkaloids using tris(2,2?-bipyridine)ruthenium electrogenerated chemi- luminescence. Anal Chim Acta, 2002, 466(1): 79.
    [56]虞科,林中营,程翼宇.粒子群算法优化中药化学成分的毛细管电泳分离条件.分析化学,2006,30(7): 963.
    [57] Liu Y M, Peng L F, Mei L, et al. Determination of diastereoisomeric alkaloids in urine by capillary electrophoresis with electrochemiluminescence detection. Chinese Chemical Letters.2011,22(2): 197.
    [58]任小娜,马永钧,周敏,等.毛细管电泳-电致化学发光检测法分离测定中药马尿泡中的托烷类生物碱成分.色谱,2008,26(2): 223.
    [59]任小娜,周敏,宋青云,等.毛细管电泳电致化学发光法测定洛贝林的研究.分析试验室,2008,27(4): 40.
    [60] Gao Y, Xu Y H, Han B Y, et al. Sensitive determination of verticine and verticinone in Bulbus Fritillariae by ionic liquid assisted capillary electrophoresis–electrochemiluminescence system. Talanta,2009, 80(2): 448.
    [61] Deng B Y, Ye L, Yin H H, et al. Determination of pseudolycorine in the bulb of lycoris radiata by capillary electrophoresis combined with online electrochemiluminescence using ultrasonic-assisted extraction. Journal of Chromatography B, 2011,in press.
    [62] Yuan B Q, Du H W,You T Y.A novel tris (2,2′-bipyridine) ruthenium(II)/ tripropylamine cathodic electrochemiluminescence in acetonitrile for the indirect determination of hydrogen peroxide.Talanta, 2009,79(3):730.
    [63] Xi Z J, Zhang Z J, Sun Y H, et al. Determination of indole-3-acetic acid and indole-3-butyric acid in mung bean sprouts using high performance liquid chromatography with immobilized Ru(bpy)32+–KMnO4 chemiluminescence detection.Talanta ,2009,79(2): 216.
    [64] Lei R, Xu X, Xu D, et al.Enhanced anodic Ru(bpy)32+ electrogenerated chemiluminescence by polyphenols.Alytica Chimica Acta,2008,625: 13.
    [65]郭志慧,唐隆健,章竹君.碳纳米管/Nafion-吡啶钌修饰电极电化学发光法测定激动素.分析化学,2009,37(1): 13.
    [66] Pittman T L, Thomson B, Miao W J.Ultrasensitive detection of TNT in soil, water, using enhanced electrogenerated chemiluminescence. Analytica Chimica Acta,2009,632(2):197.
    [67] Jin JY, Takahashi F,Kaneko T,et al.Characterization of electrochemiluminescence of tris(2,2′-bipyridine)-ruthenium(II) with glyphosate as coreactant in aqueous solution.Electrochimica Acta 2010,55(20): 5532.
    [68] McCall J, Alexander C, Richter M M.Quenching of Electrogenerated Chemiluminescence by Phenols, Hydroquinones, Catechols, and Benzoquinones. Anal.Chem.1999,71(13): 2523.
    [69] Kang J Z, Liu J F, Yin X B, et al.Capillary Electrophoresis with Indirect Electrochemiluminescence Detection. Analytical Letters, 2005,38(7): 1179.
    [70]易长青,李梅金,陶颖,陈曦.联吡啶钌-草酸体系电致化学发光猝灭法检测苯胺和联苯胺.分析化学,2004,3(11): 1421.
    [71] Yin X B, Guo J M,Wei W.Dual-cloud point extraction and tertiary amine labeling for selective and sensitive capillary electrophoresis electrochemiluminescent detection of auxins.Journal of Chromatography A, 2010,1217(8): 1399.
    [72] Chiu H Y, Lin Z Y, Tu H L, et al. Analysis of glyphosate and aminomethylphosphonic acid by capillary electrophoresis with electrochemi- luminescence detection.Journal of Chromatography A,2008,1177(1): 195.
    [73] Robert J. Forster, James F. Rusling. Simultaneous Direct Electrochemi- luminescence and Catalytic Voltammetry Detection of DNA in Ultrathin Films Lynn Dennany.J. AM. CHEM. SOC,2003, 125(17): 5213.
    [74] Chen Z F, Zu Y B. Selective detection of uric acid in the presence of ascorbic acid based on electrochemiluminescence quenching.Journal of Electroanalytical Chemistry, 2008,612(1): 151.
    [75] Fang L Y, Lu Z Z,Wei H, et al.Quantitative electrochemiluminescence detection of proteins:Avidin-based sensor and tris(2,2′-bipyridine) ruthenium(II) label.Biosensors and Bioelectronics, 2008,23(11): 1645.
    [76] Deng B Y, Shi A H, Li L Q, et al.Pharmacokinetics of amoxicillin in human urine using online coupled capillary electrophoresis with electrogenerated chemiluminescence detection. Journal of Pharmaceutical and Biomedical Analysis. 2008,48(4): 1249.
    [77] Shao J Y,Sun T, Ji S B,et al.Luminescence detection of DNA-[Ru(bpy)2tatp]2+ conjugates on a polyaniline/ITO electrode associated with in situ electrochemical tuning.Chemical Physics Letters.2010,492(1-3): 170.
    [78] Huang R F, Wang L R, Guo L H.Highly sensitive electrochemiluminescence displacement method for the study of DNA/small molecule binding interactions. Analytica Chimica Acta,2010,676(1-2): 41.
    [79] Yun W,Wang X Y, Dong P,et al.Electrogenerated Chemiluminescence Immunoassay for Human IgG with Electrochemical Polymerization-basedImmobilization Method .Chin J Anal Chem, 2009, 37(1): 8.
    [80] Liu L L, Bao J C, Fang M,et al.Electrogenerated chemiluminescence for the sensitive detection of leucine using Ru(bpy)32+ immobilized on dendritic Pd nanoparticle.Sensors and Actuators B,2009,139: 527.
    [81] Zhang J, Qi H L, Li Y,et al.Electrogenerated Chemiluminescence DNA Biosensor Based on Hairpin DNA Probe Labeled with Ruthenium Complex.Anal.Chem. 2008, 80: 2888.
    [82] Li J G, Yan Q Y, Gao Y H, et al.Electrogenerated Chemiluminescence Detection of Amino Acids Based on Precolumn Derivatization Coupled with Capillary Electrophoresis Separation.Anal.Chem.,2006,78(8): 2694.
    [83] Deng L, Zhang L H, Shang L, et al.Electrochemiluminescence detection of NADH and ethanol based on partial sulfonation of sol–gel network with gold nanoparticles. Biosensors and Bioelectronics, 2009,24(7): 2273.
    [84] Lee J G, Yun K, Lim G S, et al.DNA biosensor based on the electrochemi- luminescence of Ru(bpy)32+ with DNA binding intercalators. Bioelectrochemistry, 2007,70(2): 228.
    [85] Li Y, Qi H L , Yang J, et al. Detection of DNA immobilized on bare gold electrodes and gold nanoparticle-modified electrodes via electrogenerated chemiluminescence using a ruthenium complex as a tag.Microchim Acta, 2009,164(1-2): 69.
    [86] Mao L,Yuan R, Chai Y Q, et al. A new electrochemiluminescence immunosensor based on Ru(bpy)32+-doped TiO2 nanoparticles labeling for ultrasensitive detection of human chorionic gonadotrophin. Sensors and Actuators B,2010, 149(1): 226.
    [87] Zhang J, Chen P P, Wu X Y, et al.A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe. Biosensors and Bioelectronics, 2011,26(5): 2645.
    [88] Yuan S R, Yuan R, Chai Y Q, et al. Sandwich-type electrochemiluminescence immunosensor based on Ru-silica@Au composite nanoparticles labeled anti-AFP.Talanta, 2010, 82(4): 1468.
    [89] Hendrik E, Günther W. Analytical in situ characterization of chemical reactivities at interfaces in aqueous systems. Marine Chemistry,1996, 53(1-2): 17.
    [90] Downey T M, Nieman T A.Chemiluminescence Detection Using Regenerable Tris(2,2-bipyridyl)ruthenium(Ⅱ) Immobilized in Nafion.Anal.Chem.1992,64(3): 261.
    [91] Martin A F, Nieman T A. Glucose quantitation using an immobilized glucose dehydrogenase enzyme reactor and a tris(2,2?-bipyridyl) ruthenium(II) chemiluminescent sensor. Anal Chim Acta, 1993, 281(3): 475.
    [92] Qi B, Yin X B, Du Yan.,et al. Unique electrochemiluminescence behavior of Ru(bpy)32+ in a gold/Nafion/Ru(bpy)32+ composite.Materials Letters.2008,62 (3): 458.
    [93] Hun X, Zhang Z J.A Novel Electrogenerated Chemiluminescence (ECL) Sensor Based on Ru(bpy)32+-Doped Titania Nanoparticles Dispersed in Nafion on Glassy Carbon Electrode .Electroanalysis, 2008, 20(8): 874.
    [94] Ding S N, Xu J J, Zhang W J,et al.Tris(2,2?-bipyridyl)ruthenium(II)– Zirconia–Nafion composite modified electrode applied as solid-state electrochemiluminescence detector on electrophoretic microchip for detection of pharmaceuticals of tramadol, lidocaine and ofloxacin.Talanta,2006,70(3): 572.
    [95] Zhang L B,Li J, Xu Y H, et al. Solid-state electrochemiluminescence sensor based on the Na?on/poly(sodium4-styrene sulfonate) composite ?lm.Talanta, 2009,79(2): 454.
    [96] Liu H J, Yuan R, Chai Y Q, et al.A novel solid-state electrochemiluminescence detector for capillary electrophoresis based on tris(2,2′-bipyridyl)ruthenium(II) immobilized in Na?on/PTC-NH2 composite ?lm. Talanta,2011,84(2): 387.
    [97] Li H J,Chen J,Han S,et al.Electrochemiluminescence from tris(2,2′-bipyridyl)- ruthenium(II)–graphene–Na?on modi?ed electrode. Talanta, 2009,79(2): 165.
    [98] Wang H Y, Xu G B, Dong S J. Electrochemistry and electrochemi- luminescence of stable tris(2,2’-bipyridyl)ruthenium(II) monolayer assembled on benzene sulfonic acid modified glassy carbon electrode. Talanta,2001, 55(1): 61.
    [99] Chen X M, Wu G H, Chen J M, et al. A novel electrochemiluminescence sensor based on bis(2,2′-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) covalently combined with graphite oxide.Biosensors and Bioelectronics,2010,26(2): 872.
    [100] Ding S N, Xu J J,Chen H Y. Tris(2,2?-bipyridyl)ruthenium(II)-zirconia- Nafion composite films applied as solid-state electrochemiluminescence detector for capillary electrophoresis. Electrophoresis, 2005,26(9):1737.
    [101] Cao W D, Jia J B, Yang X R, et al, Capillary electrophoresis with solid-state electrochemiluminescence detector. Electrophoresis, 2002, 23(21): 3692.
    [102] Xing B, Yin X B.Electrochemiluminescence from hydrophilic thin ?lm Ru(bpy)32+-modi?ed electrode prepared using natural halloysite nanotubes and polyacrylamide gel.Biosensors and Bioelectronics ,2009,24(9): 2939.
    [103] Yun W,Xu Y,Dong P,et al.Solid-state electrochemiluminescence sensor through the electrodeposition of Ru(bpy)32+/AuNPs/chitosan composite ?lm onto electrode. Analytica Chimica Acta 2009,635(1): 58.
    [104]刘洋,杨秀荣.有序介孔材料SBA-15吸附Ru(bpy)32+修饰电极的电化学发光研究.高等化学学报,2007,4(4): 640.
    [105] Hun X, Zhang Z J.Electrogenerated chemiluminescence sensor for itopride with Ru(bpy)32+-doped silica nanoparticles/chitosan composite ?lms modi?ed electrode. Sensors and Actuators B, 2008,131(2): 403.
    [106] Xiang M H, Lei R, Li N, et al.Electrogenerated chemiluminescence of ruthenium(II)bipyridyl complex directly immobilized on glassy carbon electrodes. J Appl Electrochem,2009,39(6): 921.
    [107] Shan D, Ding S N, Xu J J, et al.Electrochemistry and electrochemiluminescence for the host–guest system laponite–tris(2,20-bipyridyl)-ruthenium(II). Electrochemistry Communications,2010 ,12(2): 227.
    [108] Sun C Y, Lu W, Gao Y F, et al. Electrochemiluminescence from Ru(bpy)32+ immobilized in poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)–poly (vinyl-alcohol) composite ?lms. Analytica Chimica Acta, 2009,632(2): 163.
    [108] Mao L, Yuan R, Chai Y Q,et al. Multi-walled carbon nanotubes and Ru(bpy)32+/nano-Au nano-sphere as ef?cient matrixes for a novel solid-state electrochemiluminescence sensor. Talanta,2010,80(5): 1692.
    [110] Yang X, Yuan R, Chai Y Q,et al. Ru(bpy)32+-doped silica nanoparticles labeling for a sandwich-type electrochemiluminescence immunosensor. Biosensors andBioelectronics,2010, 25(7): 1851.
    [111] Wang K, Li H N, Ju C, et al.3D nanostructured Ni(OH)2 microspheres as an ef?cient immobilization matrix of Ru(bpy)32+ for high-performance electrochemi- luminescence sensor.Talanta, 2010, 82(3): 1068.
    [112] Liu D Y, Xin Y Y, He X W, et al. The electrochemiluminescence of ruthenium complex/tripropylamine systems at DNA-modi?ed gold electrodes.Biosensors and Bioelectronics,2011,26(5): 2703.
    [113]周秀英,周敏,付周周,等.铕离子掺杂普鲁士蓝化学修饰电极对三联吡啶钌(Ⅱ)的电催化氧化研究.西北师范大学学报(自然科学版),2007,43(1): 54.
    [114] Dai H, Wang Y M, Wu X P, et al.An electrochemiluminescent sensor for methamphetamine hydrochloride based on multiwall carbon nanotube/ionic liquid composite electrode. Biosensors and Bioelectronics, 2009,24(5): 1230.
    [115] Cao G M,Liu Q,Huang Y,et al.Generation of gold nanostructures at the surface of platinum electrode by electrodeposition for ECL detection for CE. Electrophoresis, 2010, 31(6): 1055.
    [116] Jared Roop , Michael Nothnagel , Megan Schnuriger , Mark M. Richter , Gary A. Baker.Ionic liquid adsorbate enhanced electrogenerated chemiluminescence of ruthenium, osmium, and iridium complexes in water.Journal of Electroanalytical Chemistry.2011,in press.
    [117] Qi H L, Cao Z Z, Hou L. Electrogenerated chemiluminesence method for the determination of ribo?avin at an ionic liquid modi?ed gold electrode. Spectrochimica Acta Part A, 2011,78(1): 211.
    [118] Parajuli S, Miao W J. Sensitive Determination of Hexamethylene Triperoxide Diamine Explosives,Using Electrogenerated Chemiluminescence Enhanced by Silver Nitrate. Anal. Chem. 2009, 81(13): 5267.
    [119] Wang J W, Yang Z M, Wang X X,et al. Capillary electrophoresis with gold nanoparticles enhanced electrochemiluminescence for the detection of roxithromycin.Talanta ,2008, 76(1): 85.
    [1]国家基本药物-西药.人民卫生出版社.1999.8: 61.
    [2]关日晴.高效液相色谱法测定琥乙红霉素.中国药品标准,2002,3(3): 33.
    [3]晏敏红,俞丽君,严福慧.分光光度法测定琥乙红霉素片中含量.天津药学,2002, 14(4): 76.
    [4]李俊,李全民,王新明.琥乙红霉素与7,7,8,8-四氰基对二次甲基苯醌的荷移反应.药物分析杂志,2006,26(2): 225.
    [5]张社争,马红燕.流动注射化学发光法测定琥乙红霉素.理化检验,化学分册,2007, 43(5): 345.
    [6] Deng B Y, Kang Y H, Li X F,et al. Determination of erythromycin in rat plasma with capillary Electro-phoresis electrochemiluminescence detection of tris(2,2-bipyridyl) ruthenium(II). Journal of Chromatography B,2007,857 (1): 136.
    [7] Wang J W, Yang Z M, Wang X X, et al.Capillary electrophoresis with gold nanoparticles enhanced electrochemiluminescence for the detection of roxithromycin.Talanta 2008, 76 (1): 85.
    [8] Kumar A S, Zen J M.Characteristic and electrocatalytic behavior of ruthenium Prussian blue analogue film in strongly acidic media. Journal of Molecular Catalysis A: Chemical, 2006, 252 (1-2): 63.
    [9] Pan K C, Chuang C S, Cheng S H,et al. Electrocatalytic reactions of nitric oxide on Prussian blue film modified electrodes. Journal of Electroanalytical Chemistry, 2001, 501 (1-2): 160.
    [10] Haghighi B, Varma S, Alizadeh Sh F M,et al. Prussian blue modified glassy carbon electrodes-study on operational stability and its application as a sucrose biosensor. Talanta, 2004, 64(1): 3.
    [11]任小娜,马永钧,周敏,霍淑慧,等.毛细管电泳-电致化学发光检测法分离测定中药马尿泡中的托烷类生物碱成分.色谱,2008, 26(2): 223.
    [12]周秀英,周敏,付周周.等.铕离子掺杂类普鲁士蓝化学修饰电极对三联吡啶钌(Ⅱ)的电催化氧化研究.西北师范大学学报,自然科学版, 2007,43 (1): 54.
    [1] Kees F, Spangler S, Wellenhofer M, Determination of macrolides in biological matrices by high-performance liquid chromatography with electrochemical detection.J. Chromatogr.A ,1998, 812(1-2): 287.
    [2] Gonzalez de la Huebra M J, Vincent U. Analysis of macrolide antibiotics by liquid chromatography. J. Pharm.Biomed. Anal. 2005, 39(3-4): 376.
    [3] Gonzalez de la Huebra M J, Bordin G, Rodriguez A R. A multiresidue method for the simultaneous determination of ten macrolide antibiotics in human urine based on gradient elution liquid chromatography coupled to coulometric detection (HPLC–ECD). Analytica Chimica Acta, 2004, 517(1-2): 53.
    [4] Abuin S, Codony R, Compa?n′o R,et al. Analysis of macrolide antibiotics in river water by solid-phase extraction and liquid chromatography–mass spectrometry. Journal of Chromatography A, 2006,1114(1): 73.
    [5] Wang J W, Peng Z B, Yang J, et al.Detection of clindamycin by capillary electrophoresis with an end-column electrochemiluminescence of tris(2,2-bypyridine)ruthenium(II) .Talanta,2008,75(3): 817.
    [6] Liu Y M, Shi Y M, Liu Z L,et al.A sensitive method for simultaneous determination of four macrolides by CE with electrochemiluminescence detection and its applications in human urine and tablets.Electrophoresis, 2010, 31(2): 364.
    [7] Yin X B, Wang E k.Capillary electrophoresis coupling with electrochemi- luminescence detection: a review. Analytica Chimica Acta,2005, 533(2): 113.
    [8] Feng Y C, Hu C Q.Construction of universal quantitative models for determination of roxithromycin and erythromycin ethylsuccinate in tablets from different manufacturers using near infrared reflectance spectroscopy. Journal of Pharmaceutical and Biomedical Analysis,2006, 41(2): 373.
    [9] Workman S, Rchter M M, The Effects of Nonionic Surfactants on the Tris(2,2‘-bipyridyl)ruthenium(II)?Tripropylamine Electrochemiluminescence System. Anal.Chem. 2000, 72(22): 5556.
    [10] Zhou X Y, Zhou M,Fu Z Z,et al. Electrocatalytic oxidation of Ru(bipy)32+ at Prussian blue analogue film doped with rare-earth ions electrode.J Northwest Normal Univ:Nat sci, 2007,43 (1): 54.
    [11] Ren X N, Ma Y J, Zhou M,et al. Determination of tropane alkaloid components in Przewalskia tangutica Maxim by capillary electrophoresis with electrochemiluminescence detection. Chin J Chromatogr, 2008, 26(2): 223.
    [12] Zhou M, Ma Y J, Ren X N, et al. Determination of sinomenine in sinomenium acutum by capillary electrophoresis with electrochemiluminescencen detection. Anal Chimica Acta, 2007, 587(1): 104.
    [13] Zu Y B, Allen J. Bard.Electrogenerated Chemiluminescence. 66. The Role of Direct Coreactant Oxidation in the Ruthenium Tris(2,2′-)bipyridyl/Tripropylamine System and the Effect of Halide Ions on the Emission Intensity .Anal.Chem.2000, 72: 3223.
    [14] Yang Z Y, Wang L, Tang X.Determination of azithromycin by ion-pair HPLC with UV detection. Journal of Pharmaceutical and Biomedical Analysis.2009,49: 811.
    [15] Qi M L, Wang P, Cong R H, et al.Simultaneous determination of roxithromycin and ambroxol hydrochloride in a new tablet formulation by liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2004,35: 1287.
    [16] Fieger-Bu¨schges H, Schu¨?ler G, Larsimont V,et al.Determination of clindamycin in human plasma by high-performance liquid chromatography using coupled columns. Journal of Chromatography B, 1999,724: 281.
    [17] Chu Y H, Luis Z. Avila.Hans A.et al. Use of Affinity Capillary Electrophoresis To Measure Binding Constants of Ligands to Proteins. J. Med. Chem. 1992,35: 2915.
    [18] Heegaard N H, Nissen M H, Chen D D.Applications of on-line weak affinity interactions in free solution capillary electrophoresis.Electrophoresis,2002,23(6): 815.
    [19] Gomez F A, Avlla L Z, Chu Y H, et al. Determination of Binding Constants of Ligands to Proteins by Affinity Capillary Electrophoresis:Compensation for Electroosmotic Flow.Anal.Chem.1994,66(11): 1785.
    [20] Rundlett K L, Armstrong D W. Methods for the determination of binding constants by capillary electrophoresis. Electrophoresis.2001;22(7): 1419.
    [21]郑丽辉,郑新宇,童萍,等.毛细管电泳电化学淌度移动法测定利尿剂和牛血清白蛋白结合常数.分析化学.2009,37(1): 115.
    [1]江苏新医学院编,中药大辞典(下册),上海人民出版社,1977: 2221.
    [2]高湘,许爱霞,宋平顺,等.甘肃不同采收期人工种植及野生麻黄中麻黄碱与伪麻黄碱含量分析.兰州大学学报(医学版),2006, 32(2): 43.
    [3] Niemann R A, GAY M L. Determination of Ephedrine Alkaloids and Synephrine in Dietary Supplements by Column-Switching Cation Exchange High-Performance Liquid Chromatography with Scanning-Wavelength Ultraviolet and Fluorescence Detection. J. Agric. Food Chem.,2003, 51(19): 5630.
    [4] Pellati F, Benvenuti S. Determination of ephedrine alkaloids in Ephedra natural products using HPLC on a penta?uorophenylpropyl stationary phase. Journal of Pharmaceutical and Biomedical Analysis, 2008,48(2): 254.
    [5] Moore C, Rana S, Coulter C. Determination of meperidine, tramadol and oxycodone in human oral ?uid using solid phase extraction and gas chromatography–mass spectrometry. Journal of Chromatography B, 2007, 850(1-2): 370.
    [6]赵婕,邵兵,孟娟,等.气相色谱-质谱测定保健食品中的麻黄碱和伪麻黄碱.色谱,2004, 22(2): 188.
    [7] Li F. Ding Z T.Cao Q E.Separation and determination of ephedrine and pseudoephedrine in Ephedrae Herba by CZE modified with a Cu(II)–L-lysine complex.Electrophoresis 2008, 29(3): 658.
    [8] Liu Y M, Tian W, Jia Y X, et al.Simultaneous determination of methylephedrine and pseudoephedrine in human urine by CE with electrochemiluminescence detection and its application to pharmacokeinetics Simultaneous determination of methylephedrine and pseudoephedrine.Biomed. Chromatogr, 2009, 23(11): 1138.
    [9] Zhang C M. Guo H Z. Guan L, et al.Simultaneous Determination of Ephedrine and Pseudoephedrine in Mice Plasma by Capillary Zone Electrophoresis. International.Journal of Chemistry, 2011, 3 (1): 202.
    [10] Phinney K W, Ihara T, Sander L C. Determination of ephedrine alkaloid stereoisomers in dietary supplements by capillary electrophoresis.Journal of Chromatography A, 2005,1077(1): 90.
    [11] Zhang J Y. Xie J P. Liu J Q. et al.Microemulsion electrokinetic chromatography with laser-induced fluorescence detection for sensitive determination of ephedrine and pseudoephedrine. Electrophoresis, 2004, 25(1): 74.
    [12]刘涛,王晓辉,赵云丽,等.离子对色谱法测定麻杏石甘汤中的麻黄碱和伪麻黄碱.色谱,2006,24(4): 417.
    [13]柴晓莉,赵常志,陶晟辰,等.流动注射电化学发光法测定盐酸麻黄碱.分析试验室,2008,27(6): 108.
    [14] Pan Z W, Chen X G, Hu Z D.Continuous capillary electrophoresis with ?ow injection and its application for determination of Ephedrine and Pseudoephedrine in Chinese medicinal preparations.Biomed.Chromatogr.2004, 18(8): 581.
    [15] López-Pastor M. Simonet BM. Lendl B.et al. Ionic liquids and CE combination. Electrophoresis, 2008, 29 (1): 94.
    [16]肖小华,刘淑娟,刘霞,等.离子液体及其在分离分析中的应用进展.分析化学,2005,33(4): 569.
    [17] Pan Z W, Chen X G, Hu Z D.Continuous capillary electrophoresis with flow injection and its application for determination of Ephedrine and Pseudo-ephedrine in Chinese medicinal preparations. Biomed. Chromatogr., 2004,18: 581.
    [18] Okamura N, Miki H, Harada T,et al.Simultaneous determination of ephedrine, pseudoephedrine,norephedrine and methylephedrine in Kampo medicines by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis,1999, 20: 363.