电化学发光分析法测定含氮药物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文回顾了电化学发光分析法的发展历史,介绍了电化学发光反应的基本原理和电化学发光的主要反应体系及其反应机理,评述了电化学发光分析法与流动注射、高效液相色谱和毛细管电泳联用技术,在药物分析领域的应用。在已有文献的基础上,成功地建立了盐酸麻黄碱、苯海拉明及青霉素类抗生素等药物测定的新方法,摘要如下:
     1.基于盐酸麻黄碱(EPH)对三联吡啶合钌(Ru(bpy)32+)电化学发光(ECL)的增敏作用,建立了流动注射?电化学发光(FIA?ECL)分析法测定EPH的新方法,并将本法应用于药品中EPH含量的测定。研究结果表明,在pH10.0的0.1 mol/L Na2B4O7-NaOH介质中,在电位1.10 V下进行恒电位电解,当Ru(bpy)32+的摩尔浓度为1.0×10-4 mol/L时,EPH对Ru(bpy)32+ECL强度的增敏效果较好。在上述优化条件下,本法测定EPH的线性范围为2.40-24.0 mg/L(r=0.9995),检出限为1.20 mg/L,相对标准偏差(RSD)小于1.60%(n=10),加标回收率为97.0-105%。
     2.胺类物质对Ru(bpy)32+ECL强度的增敏能力,与胺本身的结构有关。对伯仲叔胺而言,由于它们氨基的第一级电离化所需能量为伯>仲>叔胺,使得它们增敏Ru(bpy)32+ECL强度的能力为伯<仲<叔胺。盐酸麻黄碱(EPH)和苯海拉明(DPH)结构式中的胺基分别属于仲胺和叔胺,即DPH增敏Ru(bpy)32+ECL强度的能力强于EPH。从而应用FIA?ECL分析法,实现了无需先分离,即可直接选择性测定含有EPH的复合药剂中DPH的含量。实验结果表明,在优化的实验条件下,测定DPH的线性范围为2.00-40.0 mg/L(r=0.9995),检出限为2.00 mg/L,相对标准偏差(RSD)小于4.6%(n=5),加标回收率为98.0-106%。此方法较之于高效液相色谱法的优势在于:分析速度快、方法简单、经济、安全。
     3.应用高效液相色谱法?电化学发光(HPLC?ECL)联用技术,建立了同时测定青霉素、青霉素V、阿莫西林、氨苄西林等四种常用青霉素类抗生素的新方法。由于青霉素类抗生素的水解产物相比于其本身而言,对Ru(bpy)32+ECL强度有更强地增敏能力。这为实现电化学发光分析法测定青霉素类抗生素奠定了理论基础。本方法是通过同时测定四种青霉素类抗生素药物的水解产物,实现对四种青霉素类抗生素药物本身的间接测定。首先将四种青霉素类抗生素药物的NaOH溶液加热至其完全水解,再用流动相将其稀释至适当浓度进行HPLC?ECL分析。实验中采用XBP-C18色谱柱反相柱洗脱,以PBS缓冲溶液(pH值为8.0)-甲醇(85∶15)为流动相,于263 nm处检测,分离并测定了上述四种青霉素类抗生素药物。实验结果表明:四种青霉素类抗生素药物的水解产物均可在20 min内完全分离,且最低检出限低于0.1μg/mL。将本法用于尿样中药物含量的测定取得了满意的结果。四种青霉素类抗生素药物在尿样中的回收率平均为100.4%。实验证明该方法操作简便、快速灵敏、准确复性好,灵敏度高,适用于尿液中多组分青霉素类抗生素的确认和准确定量测定。
In the paper, the history of electrochemiluminesence (ECL) containing the principles, main reaction systems and mechanism of ECL and the application of ECL in pharmaceutical analytical field were reviewed. New methods based on ECL have been developed for determining ephedrine hydrochloride, diphenhydramine and penicillin-like antibiotics. Some chief results were shown as following:
     1. A new flow-injection electrochemiluminescence (FIA-ECL) analytical method of ephedrine hydrochloride has been proposed in this paper. It is based on a fact that ephedrine could react with tris(2,2′-bipyridine)ruthenium(II)(Ru(bpy)32+) to enhance electrochemiluminescence signal. In the Na2B4O7-NaOH solution of pH10.0, The best ECL response was obtained at potential of 1.10 V in the present of 1.0×10-4 mol/L Ru(bpy)32+ The linear range of the method is from 2.40 to 24.0 mg/L with a correlation coefficient of 0.9995 and the detection limit of 2.00 mg/L. The method has successfully applied to the determination of ephedrine hydrochloride in ephedrine injection and nasal drop. The relative standard deviation (RSD) was less than 1.60% (n=10) and recoveries were from 96.0% to 103% for the determination of practical samples.
     2. On the basis of the structural effect between diphenhydramine hydrochloride (DPH) and ephedrine hydrochloride (EPH) to enhance ECL intensity, FIA-ECL analysis of DPH in the present of EPH by utilizing Ru(bpy)32+. In the experimental conditions optimized, the linear ECL response to concentrations of DPH is from 2.00 to 40.0μg/L with a correlation coefficient of 0.9995 and a detection limit of 1.20μg/L. RSD was less than 4.6% (n=5) and recoveries were in the range of 98.0-106% for the determination of DPH in pharmaceutical samples. The method avoids triumphantly an interference of coexistent EPH in the compounding drug without prior separation. The method has advantages over HPLC method in terms of speed and convenience, economics and safe procedure, and could be an alternative for places where HPLC equipment is not available.
     3. A highly selective and sensitive detection method of Penicillin-like antibiotics based on HPLC?ECL with Ru(bpy)32+ has been developed. The ECL emission is based on the reaction between the hydrolysis of Penicillin-like antibiotics and Ru(bpy)33+. The experimental results showed that maximum ECL intensities are obtained after hydrolyzing 30 min, because ECL on the Penicillin-like antibiotics were strongly dependent on the hydrolysis time. Under the optimal condition, the linear detection range from 1.0 to100.0μg/mL and the detection limits are estimate to 0.1μg/mL with S/N of 3 for four Penicillin-like antibiotics. The RSDs is less than 6.0% (n=10) and recoveries were in the range of 96.3%-105.3% for the determination of four Penicillin-like antibiotics in human urine samples. The results are satisfactory compared with HPLC method.
引文
[1] Harvey N, Luminescence during electrolysis, J. Phys. Chem., 1929, 33: 1456-1459
    [2] Kuwana T, Epstein B, Seo E T, Electrochemical generation of solution luminescence, J. Phys. Chem., 1963, 67: 2243-2244
    [3] Kuwana T, Electro-oxidation followed by light emission, J. Electroanal. Chem., 1963, 6: 164-167
    [4] Marcus R A, On the theory of chemiluminescent electron-transfer reactions, J. Chem. Phys., 1965, 43(8): 2654-2657
    [5] Feldberg S W, Theory of controlled potential electrogeneration of chemiluminescence, J. Am. Chem. Soc., 1966, 88: 390-393
    [6] Zweig A, Metzler G, Maurer A H, et al., Electrochemiluminescence of aryl-substituted isobenzofurans, isoindoles, and related substances. J. Am. Chem. Soc., 1967, 89(16): 4091-4098
    [7]陈曦,王小如,黄本立,电致化学发光研究的新进展,分析化学, 1998, 26(6): 770-778
    [8]安镜如,林金明,电化学发光研究及其在分析化学上的应用,分析化学, 1991, 19(11): 1340-1346
    [9] Tokel N E, Bard A J, Electrogenerated chemiluminescence.IX.Electrochemistry and emission from systems containing tris(2,2'-bipyridine)ruthenium(II)dichloride, J. Am. Chem. Soc., 1972, 94: 2862-2863
    [10] Chang M M, Saji T, Bard A J, Electrogenerated chemiluminescence. 30. Electrochemical oxidation of oxalate ion in the presence of luminescers in acetonitrile solutions, J. Am. Chem. Soc., 1977, 99(16): 5399-5403
    [11] Tokel-Takvoryan N E, Hemingway R E, Bard A J, Electrogenerated chemiluminescence. XIII. Electrochemical and electrogenerated chemiluminescence studies of ruthenium chelates, J. Am. Chem. Soc., 1973, 95(20): 6582-6589
    [12] Wallace W L, Bard A J, Electrogenerated chemiluminescence. 35. Temperature dependence of the ECL efficiency of tris(2,2'-bipyridine)rubidium(2+) in acetonitrile and evidence for very high excited-state yields from electron-transfer reactions, J. Phys. Chem., 1979, 83(10): 1350-1357
    [13] Rubinstein I, Bard A J, Electrogenerated chemiluminescence. 37. Aqueous ecl systems based on tris(2,2'-bipyridine)ruthenium(2+) and oxalate or organic acids, J. Am. Chem. Soc., 1981, 103: 512-516
    [14] White H S, Bard A J, Electrogenerated chemiluminescence. 41. ElectrogeneratedChemiluminescence and chemiluminescence of the Ru(bpy)32+-S2O82- system in acetonitrile-water solutions. J. Am. Chem. Soc., 1982, 104: 6891-6895
    [15] Rubinstein I, Martin C R, Bard A J, Electrogenerated chemiluminescent determination of oxalate, Anal. Chem., 1983, 55: 1580-1582
    [16] Ege D, Becker W G, Bard A J, Electrogenerated chemiluminescent determination of tris(2,2'-bipyridine)ruthenium ion(Ru(bpy)32+) at low levels, Anal. Chem., 1984, 56: 2413-2417
    [17] Noffsinger J B, Danielson N D, Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2'-bipyridine)ruthenium(III), Anal. Chem., 1987, 59: 865-868
    [18] Gerardi R D, Barnet N W, Lewis S W, Analytical applications of tris(2,2'-bipyridyl)ruthenium(III) as a chemiluminescent reagents, Anal. Chem. Acta, 1999, 378: 1-41
    [19] Blackburn G F, Shah H P, Kenten J H, et al, Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics, Clin. Chem., 1991, 37(9): 1534-1539
    [20] Kenten J H, Casedei J, Link J, et al, Rapid electrochemiluminescence assays for polymerase chain reaction products, Clin. Chem., 1991, 37(9): 1626-1632
    [21]陈曦,易长青,李梅金等.取代基对胺化合物联吡啶钌电致化学发光影响的研究.化学学报, 2002, 60(9): 1662-1667
    [22] Richter M M, Electrochemiluminescence (ECL), chem. Rev., 2004, 104(6): 3003?3036
    [23]赵藻藩,周性尧,张悟铭,仪器分析,北京:高等教育出版社, 1990. 156-158
    [24] Fahnrich K A, Pravda M, Guilbault G G, Recent applications of electrogenrated Chemiluminescence in chemical analysis, Talanta, 2001, 54(4): 531-539
    [25]王伦,严凤霞,王筱敏,电致化学发光及其在分析化学中的应用,化学通报, 1991, 5: 8-13
    [26] Weller A, Zachariasse K, Chemiluminescence from chemical oxidation of aromatic anions, J. Chem. Phys., 1967, 46: 4984-4985
    [27] Maloy J T, Bard A J, Electrogenerated chemiluminescence. VI. Efficiency and mechanisms of 9, 10-diphenylanthracene, rubrene, and pyrene systems at a rotating-ring-disk electrode, J. Am. Chem. Soc., 1971, 93(23), 5968-5981
    [28] Weller A, InThe Exciplex. Gordon M, Ware WR Eds, New York: Academic, 1975. 23.
    [29] Mattes S L, Farid S, Exciplexes and electron transfer reactions, Science, 1984, 226(4677): 917-921
    [30] Michael P R, Faulkner L R, Electrochemiluminescence from the thianthrene-2,5-diphenyl-1,3,4 -oxadiazole system. Evidence for light production by the T route, J. Am. Chem.Soc., 1977, 99(24): 7754-7761
    [31] Faulkner L R, Tachikawa H, Bard A J, Electrogenerated chemiluminescence. VII. Influence of an external magnetic field on luminescence intensity, J. Am. Chem Soc., 1972, 94(3): 691-699
    [32] Velasco J G, Electrochemiluminescence, Electroanalysis. 1991, 3: 261-271
    [33]郭庆祥,王隽,刘有成,电子转移反应的Marcus理论,化学通报, 1993, 8, 3-8
    [34] Marcus R A, Electron transfer reactions in chemistry: Theory and experiment, Rev. Mod. Phys., 1993, 65(4): 599-610
    [35] Van Duyne R P, Fischer S F, A nonadiabatic description of electron transfer reactions involving large free energy changes, Chem. Phys, 1974, 5(2): 183-197
    [36]. Marcus R A, Siders P, Theory of highly exothermic electron transfer reactions, J. Phys. Chem., 1982, 86: 622-630
    [37] Dodeigne C, Thunus L, Lejeune R, Chemiluminescence as diagnostic tool. A review, Talanta, 2000, 51(3), 415-439
    [38]赵藻藩,周性尧,张悟铭,仪器分析,北京:高等教育出版社, 1990. 170-173
    [39] Deaver D R, A new non-isotopic detection system for immunoassays, Nature, 1995, 377(6551), 758-760
    [40] Xu X H, Bard A J, Immobilization and Hybridization of DNA on an Aluminum(III) Alkanebisphosphonate Thin Film with Electrogenerated Chemiluminescent Detection, J. Am. Chem. Soc., 1995,117(9): 2627-2631
    [41].王鹏,张文艳,周鸿等,免疫电化学发光,分析化学, 1998, 26(7): 898-903
    [42] Hercules D M, Lytle F E, Chemiluminescence from reduction reactions, J. Am. Chem. Soc.,1966, 88(20): 4745-4746
    [43] Knight A W, Greenway G M, Relationship between structural attributes and observed electrogenerated chemiluminescence (ECL) activity of tertiary amines as potential analytes for the tris(2,2-bipyridine)ruthenium(II) ECL reaction. A review,Analyst, 1996,121: 101R-106R
    [44] Knight A W, Greenway G M, Electrogenerated chemiluminescence determination of some local anesthetics, Anal. Commun., 1996,33(5): 171-174
    [45] Dolman S J L, Greenway G M, Determination of amitriptyline using electrogenerated chemiluminescence, Anal commun., 1996, 33(5): 139-141
    [46] Greenway G M, Knight A W, Knight P J, Electrogenerated chemiluminescent determination of codeine and related alkaloids and pharmaceuticals with tris(2,2′- bipyridine)ruthenium(II). Analyst, 1995, 120 (11) : 2549-2552
    [47]陈曦,李梅金,李真,某些含氮神经药物的流动注射联吡啶钉电致化学发光研究,分析化学, 2002, 30(5): 513-517
    [48]宋红杰,章竹君, Nano-TiO2/Nafion-吡啶钌复合物膜修饰的玻碳电极上电化学发光测定盐酸西替利嗪,分析实验室, 2007, 26(2): 1-5
    [49]熊小莉,肖丹,采用新支持体系固定联吡啶钌(Ⅱ)的溶解氧传感器,分析仪器, 2007, 1: 18-20
    [50] Miao W, Bard A J, Electrogenerated chemiluminescence. 77. DNA hybridization detection at high amplification with [Ru(bpy)[3]][2+]-Containing microspheres, Anal. Chem., 2004, 76(18): 5379-5386
    [51] Schutzbank T E, Smith J, Detection of human immunodeficiency virus type proviral DNA by PCR using an electrochemiluminescence-tagged probe, J. Clin. Microbiol., 1995, 33(8): 2036-2041
    [52] Brune S N, Bobbitt D R, Role of electron-donating/with drawing character. pH. and stoichiometry on the chemiluminescence reaction of tris(2,2’-bipyridyl)ruthenium(III) with amino acids, Anal. Chem., 1992, 64: 166-170
    [53] B1ackburn G F, Shah H P, Kenten J H, et al, Electrochemiluminescence detection for development of irnmunoassays and DNA probe assays for clinical diagnostics, Clin. Chem., 1991, 37(9): 1534?1539
    [54] Xu G B, Dung S J, Effect of metal ions on Ru(bpy)32+ electrochemiluminescence, Analyst, 1999, 124: 1085?1087
    [55] Muegge B D, Richter M M, Electrochemiluminescent detection of metal cations using a ruthenium(II)bipyrldyl complex containing a crown ether moiety, Ana1. Chem., 2002, 74, 547?550
    [56] Lai RY, Chiba M, Kitamura N, et al, Electrogenerated chemiluminescence. 68. Detection of sodium ion with a ruthenium(II)complex with crown ether moiety at the 3,3′-positions on the 2,2′-Bipyridine Ligand, Ana1. Chem., 2002, 74(3): 551? 553
    [57]刘晋峰,邢达,沈行燕等,电化学发光PCR技术检测转基因植物,生物化学与生物物理进展, 2004, 31(4): 375-378
    [58]唐亚兵,邢达,刘晋峰等,电化学发光反转录聚合酶链式反应技术检测齿兰环斑病毒,分析化学, 2006, 34(8), 1087-1090
    [59] Jameison F, Sanchez R I, DongL W, et al, Electrochemiluminescence-based quantitation of classical clinical chemistry analytes, Ana1. Chem., 1996, 68(8): 1298-1302
    [60]王建,池毓务,陈曦等,流动注射电致化学发光测定谷胱甘肽,福州大学学报(自然科学版), 1999, 27: 62
    [61] Dong L, Martin M T, Enzyme-triggered formation of electrochemiluminescent rutheniumcomplexs, Anal Biochem, 1996, 236: 344-347
    [62] Bruce D, Richter M M, Brewer K J, Electrochemiluminescence from Os(phen)2(dppene)2+ (phen=1,10-phenanthroline and dppene=bis(diphenylphos phino)ethene), Ana1.Chem., 2002, 74(13): 3157-3159
    [63] Muegge B D, Richter M M, Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging, Ana1. Chem., 2004, 76: 73-77
    [64] Zhang M N, Zhang C X, Qi H L, Energy transfer electrogenerated chemiluminescence for the determination of sulrite. Microchimica Acta, 2004, 144: 155-160
    [65] Chen G N, Lin R E, zhao Z F, et al, Electrogenerated chemiluminescence for determination of indole and tryptophan, Anal. Chim. Acta, 1997, 341: 251-256
    [66] Chen G N, Zing L, Lin R E, et al, The electrogenerated chemiluminescent behavior of heroin and its catalytic activity for the electrogenerated chemiluminescence of lucigenin. Talanta, 2000, 50: 1275?1281
    [67] Lin J M, Yamada M, Electrogenemted chemiluminescence of methyl-9-(p-formylpheny1) acridinium carboxylate fluomsulfonateand its applications to immunoassay, Microchemical Journal, 1998, 58(1): 105-116
    [68]陈曦,陈薇,王小如.流动体系中维生素B1的电致化学发光研究,化学学报, 2000, 58: 563-566
    [69] Zhang C X, Zhou G J, Zhang Z J, et al, Higly sensitive electrochemical luminescence determination of thiamine, Anal. Chim. Acta, 1999, 394: 165-170
    [70]何品刚,刘祥萍,余慧等,电致化学发光法测定药剂中盐酸表阿霉素的含量,分析化学, 2000, 28(9): 1062-1065
    [71] Richter M M, Fan F R F, Klavetter F, et al, Electrochemistry and electrogenerated chemiluminescence of films of the conjugated polymer 4-methoxy-(2-ethylhexoxyl)-2,5- polypheny lenevinylene, Chem. Phys. Lett., 1994, 226: 115-120
    [72] Richard T C, Bard A J, Evaluation of use of tris(2,2′-bipyridy1)ruthenium(II) as a chemiluminescent reagent for quantitation in flowing stream, Ana1. Chem., 1995, 67: 3140-3147
    [73] Collinson M M, Wightman R M, High-frequency generation of electrochemiluminescence at microelectrodes, Anal. Chem., 1993, 65: 2576-2582
    [74] Sakura S, Electrochemiluminescence of hydrogen peroxide-luminol at a carbon electrode, Ana1. Chim. Acta, 1992, 262(1): 49-57
    [75] Kulmala S, Ala-Kleme T, Kulmala A, et al, Cathodic electrogenerated chemiluminescence of luminol at disposable oxide-covered aluminum electrocles, Ana1. Chem., 1998, 70(6): 1112-1118
    [76]安镜如,陈欣曦,碱性水溶液中ABEI的电致化学发光的研究,高等学校化学学报, 1989, 10(11): 1110-1113
    [77] Arai K, Takahashi K, Kusu F, An electrochemiluminescence flow-through cell and its applications to sensitive immunoassay using N-(aminobuty1)-N-ethylisoluminol, Anal. Chem., 1999, 71(11): 2237-2240
    [78] Nocera D G, Gray H B, Electrochemical reduction of molybdenum(II) and tungsten(II) halide cluster ions. Electrogenerated chemiluminescence of tetradecachlorohexamolybdate(2-)ion, J. Am. Chem. Soc., 1984, 106: 824-825
    [79] Karatani H, Shizuki T, Luminescent electrooxidation of methanol in aqueous alkaline media, Electrochimica Acta, 1996, 41(10): 1667-1675
    [80] Kim J, Faulkner L R, Anomalous transient behavior in the electrogenerated chemiluminescence of 9,10-diphenylanthracence, J. Electroanal. Chem. Interfacial Electrochem., 1988, 242, 107-121
    [81] Bard A J, Faulkner L R, Electrochemical Methods: Fundamental and Applications, New York: Wiley, 1980. 621-622
    [82] Leland J K, Powell M J, electrogenerated chemiluminescence: an oxidative-reduction type ECL reaction sequence using tripropyl amine, J. Electrochem. Soc., 1990, 137(10): 3127-3131
    [83] Miao W, Choi J P, Bard A J, Electrogenerated Chemiluminescence 69: The Tris(2,2'-bipyridine) ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) System Revisited-A New Route Involving TPrA*+ Cation Radicals, J. Am. Chem. Soc., 2002, 124(48): 14478-14485
    [84] Zu Y, Bard A J, Electrogenerated Chemiluminescence. 66. The Role of Direct Coreactant Oxidation in the Ruthenium Tris(2,2')bipyridyl/Tripropylamine System and the Effect of Halide Ions on the Emission Intensity, Anal. Chem., 2000, 72(14): 3223-3232
    [85] Koval'chuk E P, Reshetnyak O V, Chemyak A O, et al, Electrochemiluminescence on np1-metals 1. The analysis of chemiluminescent reactions, Electrochim. Acta, 1999, 44(23), 4079-4086
    [86] Kulmala S, Helin M, Ala-Kleme T, et al, Electrochemiluminescent labels for applications in fully aqueous Solutions at oxide-covered aluminium electrodes, Anal. Chim. Acta, 1999, 386, 1-6
    [87] Sung Y F, Gaillard F, Bard A J, Demonstration of electrochemical generation of solution-phase hot electrons at oxide-covered tantalum electrodes by direct electrogenerated chemiluminescence, J. Phys. Chem. B, 1998, 102, 9797-9805
    [88] Kulmala S, Ala-Kleme T, Vare L, et al, Hot electron-induced Electrogenerated luminescence of Ti(I) at disposable oxide-covered aluminum electrodes, Anal. Chim. Acta, 1999, 398(1): 41-47
    [89] Fabrizio E F, Prieto I, Bard A J, Hydrocarbon Cation Radical Formation by Reduction of Peroxydisulfate, J. Am. Chem. Soc., 2000, 122(20): 4996-4997
    [90] Ala-Kleme T, Kulmala S, Vare L, et al, Hot electron-induced electrogeneratedchemiluminescence of Ru(bpy)32+ chelate at oxide-covered aluminum electrodes, Anal. Chem., 1999, 71(24), 5538-5543
    [91]陈曦,王小如,黄本立,电致化学发光研究进展,分析化学, 1998, 26(6): 770-778
    [92] Ala-Kleme T, Haapakka K, Latva M, Near-infrared electrogenerated chemiluminescence of ytterbium(III) chelates in aqueous electrolytes, Anal. Chim. Acta, 1999, 395, 205-211
    [93] Zhang C, Huang J, Zhang Z, et al, Flow injection chemiluminescence determination of catecholamines with electrogenerated hypochlorite, Anal. Chim. Acta, 1998, 374(1): 105-110
    [94] Litting J S, Nieman T A, Quantitation of acridinium esters using electrogenerated chemiluminescence and flow injection, Anal. Chem., 1992, 64: 1140-1144
    [95] Heinze K F, Nieman T A, Characterization of electrogenerated peroxyoxalate chemiluminescence, Anal. Chim. Acta, 1993, 284(24): 337-344
    [96]方肇伦等,流动注射分析法,北京:科学出版社, 1999. 1-4.
    [97] Knight A W, Greenway G M, Chesmore E D, Development of a silicon photodiode, electrogenerated chemiluminescence, flowthrough detector, Anal. Proc., 1995, 32(40): 125-127
    [98] Greenway G M, Knight P J, Determination of oxprenolol by electrogenerated chemiluminescence, Anal. Proc., 1995, 32(7): 251-253
    [99] Holeman J A,Daninelson N D, Chemiluminescence reaction of thiazide compounds with tris (2,2′-bipyridine) ruthenium(III), Anal. Chim. Acta, 1993, 277(11): 55-60
    [100]张社争,马红燕,流动注射电化学发光分析法测定琥乙红霉素,理化测试:化学分册, 2007, 43(5): 345-347
    [101]谢志鹏,蔡定建,钟华等,流动注射电化学发光分析法测定维生素B1及在尿液分析中的应用,分析试验室, 2006, 25(9): 64-67
    [102]杨红兵,梁兰秋,鲁立良,流动注射电化学发光法测定色氨酸,石河子大学学报, 2005, 23(6): 673-675
    [103]陈小利,马红燕,张琰图,流动注射电化学发光法测定头孢氨苄,分析科学学报, 2005, 21(6): 636-638
    [104]马红燕,流动注射电化学发光分析法测定注射液中的硫酸庆大霉素,光谱学与光谱分析, 2005, 25(8): 1210-1212
    [105]马红燕,陈小利,马宁等,流动注射电化学发光分析法测定氨苄西林,分析试验室, 2005, 24(3): 5-7
    [106] He L, Cox K A, Danielson N D, Chemiluminescence detection of amino acids, peptides, and proteins using tris-2,2'-bipyridine ruthenium(III), Anal. Lett., 1990,23(2): 195-210
    [107] Targove M A, Danielson N D, High-performance liquid chromatography of clindamycinantibiotics using tris(bipyridine) ruthenium(III) chemiluminescence detection, J. Chromatogr. Sci., 1990, 28(1010): 505-509
    [108] Holeman J A, Danielson N D, Liquid chromatography of antihistamines using post-column tris(2,2'-bipyridyl)ruthenium(III) chemiluminescence detection, J. Chromatogr. A, 1994, 679(2): 277-284
    [109] Lee W Y, tris(2,2'-bipyridine)ruthenium(II)electrogenerated chemiluminescence in analytical science, Mikrochim. Acta, 1997, 127: 19-39
    [110] Skotty D R, Nieman T A, Determination of oxalate in urine and plasma using reversed-phase ion-pair high-performance liquid chromatography with tris(2,2'-bipyridy1)ruthenium(II) electrogenerated chemiluminescence detection, J. Chromatogr. B: Biomed. Appl., 1995, 665(1): 27-36
    [111] Morita H, Konishi M, Electrogenerated chemiluminescence derivatization reagents for carboxylic acids and amines in high-performance liquid chromatography using tris(2 2'-bipyridine) ruthenium(II), Ana1. Chem., 2002, 74(7): 1584-1589
    [112] Chen G, Chi Y W, Wu X P, et al, Chemical Oxidation of p-Hydroxyphenylpyruvic Acid in Aqueous Solution by Capillary Electrophoresis with an Electrochemiluminescence Detection System, Anal. Chem., 2003, 75 (23): 6602-6607,
    [113] Qiu H B, Yan J L, Sun X H, et al, Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector, Ana1. Chem., 2003, 75(20): 5435-5440
    [1]国家药典委员会编,中华人民共和国2000年版药典二部,北京:化学工业出版社, 2000. 668
    [2]陆蕴,余菁,高效液相色谱法测定复方盐酸麻黄碱滴眼液中盐酸麻黄碱的含量中国药房, 2006, l7(l2): 939-940
    [3]李敏,张克荣,单扫描示波极谱法测定麻黄碱,中国卫生检验杂志,2003, 13(6): 709-710
    [4]徐泽民,李文洪,盐酸麻黄碱的单扫描示波极谱测定四川大学学报(自然科学版), 2004, 41(1): 218-220
    [5]屈爱桃,孙利明,刘笑融,电位滴定法测定氨酚伪麻片中盐酸伪麻黄碱的含量,内蒙古医学院学报, 2004, 26(3): 173-174
    [6]杨蕾,贺建华, HPLC测定宣肺祛痰口服液中盐酸麻黄碱的含量,中国药学杂志, 2000, 35(8): 548-550
    [7]谢天尧,刘绮文,李凤屏,毛细管电泳-方波安培法分离检测滴鼻液中的麻黄碱,分析化学, 2004, 32(7): 943-945
    [8]李延,张成孝,电化学发光在药物分析中应用的研究进展,西北药学杂志, 2006, 21(1): 45-47
    [1] Reynolds JEF, Martindale: the Extra Pharmacopoeia, 30th ed., London: The Pharmaceutical, 1993. 937
    [2] British Pharmacopoeia, HMSO, London, 1993. 886
    [3] Wirz D R, Wilson D L, Schenk G H, Fluorescence and Phosphorescence of Antihistamines Having the Diphenylmethane Chromophore, Anal. Chem., 1974, 46(7): 896
    [4] Shoukry A F, Badawy S S, Issa Y M, J. Electroanal. Chem., 1987, 223, 29
    [5] Kompany-Zareh M, Mirzaei S, Spectrophotometric resolution of ternary mixtures of pseudoephedrine hydrochloride, dextromethorphan hydrobromide, and sodium benzoate in syrups using wavelength selection by net analyte signals calculated with hybrid linear analysis, Anal. Chim. Acta, 2004, 526(1): 83-94
    [6] Tipparat P, Lapanantnoppakhun S, Jakmunee J, et al, Determination of diphenhydramine hydrochloride in some single tertiary alkylamine pharmaceutical preparations by flow injection spectrophotometry ,J. Pharm. Biomed. Anal., 2002, 30(1): 105-112
    [7] Raj S V, Kapadia S U, Argekar A P, Simultaneous determination of pseudoephedrine hydrochloride and diphenhydramine hydrochloride in cough syrup by gas chromatography (GC), Talanta, 1998, 46(1): 221-225
    [8] The United States Pharmacopoeia, 24th ed., United States Pharmacopoeial Convention, Inc., Rockville, 2000. 583
    [9] Luo H, Zhuo K, J. Chen, China Pharmacist, 2004, 7, 530.
    [10] Liu J, Cao W, Yang X, et al, Determination of diphenhydramine by capillary electrophoresis with tris(2,2′-bipyridyl)ruthenium(II) electrochemiluminescence detection, Talanta, 2003, 59(3): 453-459
    [11] Dong Y, Chen X, Chen Y, et al, Separation and determination of pseudoephedrine, dextromethorphan, diphenhydramine and chlorpheniramine in cold medicines by nonaqueous capillary electrophoresis, J. Pharm. Biomed. Anal., 2005, 39: 285-289
    [12] P. R. China Pharmacopoeia, National Pharmacopoeial Council, Beijing: Chemical Industry, 2000. 627.
    [13] Hansen E H, Flow-injection analysis: leaving its teen-years and maturing. A personal reminiscence of its conception and early development , Anal. Chim. Acta, 1995, 308: 3-13
    [14] Fahnrich K A, Pravda M, Guilbault G G, Recent applications of electrogenerated chemiluminescence in chemical analysis, Talanta, 2001, 54(4): 531-559
    [15] Fletcher P, Andrew K N, Calokerinos A C, et al, Analytical applications of flow injection with chemiluminescence detection-a review, Luminescence, 2001, 16(1): 1-13
    [16] Zu Y, Bard A J, Electrogenerated Chemiluminescence. 66. The Role of Direct Coreactant Oxidation in the Ruthenium Tris(2,2')bipyridyl/Tripropylamine System and the Effect of Halide Ions on the Emission Intensity, Anal. Chem., 2000, 72(14): 3223-3232
    [17] Knight A W, Greenway G M, Relationship between structural attributes and observed electrogenerated chemiluminescence (ECL) activity of tertiary amines as potential analytes for the tris(2,2-bipyridine)ruthenium(II) ECL reaction. A review Analyst, 1996, 121, 101R-106R
    [18] Noffsinger J B, Danielson N D, Generation of Chemiluminescence upon Reaction of Aliphatic Amines with Tris(2,2’-bipyridine)ruthenium(III), Anal. Chem., 1987, 59: 865-868
    [19] Ali M S, Ghori M, Rafiuddin S,et al, A new hydrophilic interaction liquid chromatographic (HILC) procedure for the simultaneous determination of pseudoephedrine hydrochloride (PSH), diphenhydramine hydrochloride(DPH) and dextromethorphan hydrobromide(DXH) in cough-cold formulations , J. Pharm. Biomed. Anal., 2007, 43(1): 158-167
    [1] Stephen Queener, sherry Queener, Beta-Lactam Antibiotics for Clinical Use, Unite state: Informa Healthcare, 1986
    [2] Althaus R, Torres A, Peris C, et a1, Accuracy of BRT and Delvotest Microbial Inhibition Tests as Affected by Composition of Ewe's milk, J. Food Prot., 2003, 66(3): 473-478
    [3] Gaudin V, Maris P, Fuselier R, et a1, Validation of a Microbiological Method: the STAR Protocol, a Five-plate Test, for the Screening of Antibiotic Residues in Milk, Food Addit. Contain., 2004,21(5): 422-433
    [4] Myllyniemi A L, Nuotio L, Lindfors E, et al, A Microbiological Six-plate Method for the Identification of Certain Antibiotic Groups in Incurred Kidney and Muscle Samples, Analyst, 2001, 126(5): 641-646
    [5] Ferrini A M, Mannoni V, Aureli P, Combined Plate Microbial Assay (CPMA): A 6-plate- method for simultaneous first and second level screening of antibacterial residues in meat, Food Addit. Contain., 2006, 23(1): 16-24
    [6] Molina P, Althaus R L, Zorraquino M A, et al, Evaluation of Penzym enzymatic Test in Ewe's Milk, Milchwissenschaft, 2002, 57(11): 33-35
    [7]王超,李淑娟,测定牛奶中5种青霉素残留量的高效液相色谱柱前衍生法,分析测试学报, 2000, 19(6):72-74
    [8]赵军,朱晨,王晖,反相高效液相色谱法同时测定多种β-内酰胺类抗生素,山东大学学报, 2006, 36(3): 69-72
    [9]蔡玉娥,蔡亚岐,牟世芬等,高效液相色谱-紫外光度法检测尿液和牛奶中多种头孢类抗生素,分析化学, 2006, 34(6):745-748
    [10]黄百芬,任一平,蔡增轩等,LC-MS/MS测定牛奶中六种青霉素类抗生素残留,中国食品卫生杂志, 2007, 19(1): 31-35
    [11] LIU Ping, LI Yu-guang, LIU Meng-you, et al, Detection of Penicillin Residues in Milk by Electrochemical Biosensors, Chinese J of light scattering, 2005, 17(1): 61-63
    [12]杨季冬,黄玉明,刘绍璞,流动注射化学发光测定头孢β-内酰胺抗生素,药物分析杂志, 2002, 22(5): 352-357
    [13] SUN Yuanyuan, TANG Yuhai, YAO Hong, et al, Flow Injection Chemiluminescence Analysis of Some Penicillins by Their Sensitizing Effect on the Potassium Permanganate-Glyoxal Reaction, Anal. Sci., 2005, 21: 457-460
    [14] Salem H, Selective spectrophotometric determination of phenolicβ-lactam antibiotics in pure forms and in their pharmaceutical formulations, Anal. chim. Acta, 2004, 515(2): 333-341
    [15]李鹏,李广洲,青霉素结构的探索,化学教育, 2007, 7: 1-4
    [16] Liang P, Sanchez R I, Martin M T, Electrochemiluminescence-Based Detection ofβ-Lactam Antibiotics andβ-Lactamases, Anal. Chem., 1996, 68(2): 426-431