油茶树体调控模式与技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树体管理粗放、树体结构紊乱、光能利用率低是油茶低产的重要原因,通过整形修剪改善树体结构状况,是提高油茶光合产量和丰产性能的有效途径。针对我国油茶生产中树体调控技术落后、精细化树体管理难度大的突出问题,分析普通油茶树体结构特征,提出油茶丰产树体结构指标体系;研究油茶对不同修剪措施的反应;建立树体结构调控模式,从树体生长发育、冠层光合特性、树体营养生理3个方面探讨不同树体结构调控模式机理,从而建立科学合理、节约高效的树体结构调控模式与技术体系,为油茶树体管理提供理论依据和技术基础。
     1、油茶生长发育对修剪的反应
     试验研究了角度调整、回缩、人工造伤和短截4种修剪方法对油茶生长发育的影响。主要研究结果如下:
     调整侧枝角度对新梢生长和光合特性有不同程度的影响,对油茶花果发育无明显影响,侧枝角度以45°处理的表现最好,花芽分化率、坐果率、新梢长度、光能利用率均高于90°处理和对照。
     回缩强度对油茶树体生长发育有重要影响,轻度回缩的新梢生长状况最佳,新梢抽梢数量、新梢长度和新梢直径分别较对照提高36.05%、108.60%、35.90%;中度回缩净光合速率最大。
     环剥与刻芽均在不同程度上抑制油茶新梢生长发育,并提高净光合速率和光能利用率;随着环剥宽度的增加,对新梢抽梢数量和新梢抽梢质量抑制程度增强,环剥宽度在0.6cm时净光合速率最高,为11.59μmolCO2/m2·s.刻芽能促进芽上方的新梢萌发,其中,在芽上方刻芽的新梢短而粗壮。
     短截不同类型和树冠不同部位枝条对油茶生长发育和光合特性有重要影响。短截强枝会促进萌生长而细的枝条,短截弱枝会抽生短而粗的枝条。短截冠层中层枝条提高新梢抽梢数量和质量;短截冠层上层外围枝条,促发的新梢数量少,但新梢短而粗壮,新梢净光合速率最高。
     2、油茶树体调控对生长发育的影响
     试验研究了精细修剪、简化修剪、粗放修剪和对照(不修剪)4种树体调控处理对树体生长发育的影响。主要研究结果如下:
     简化修剪最有利于春梢的抽梢数量和质量;精细修剪和粗放修剪效果相差不多,均优于对照组。精细修剪最有利于夏梢的抽梢及其生长发育。
     树体调控后促进了新叶生长,以精细修剪新叶生长状况最好,简化修剪次之。
     树体调控的花芽数量均高于对照,以简化修剪最有利于花芽形成和分化,平均花芽数量为376个,花芽分化率为55.26%,比对照提高14.56%。
     简化修剪产量最高,单株鲜果平均产量为6.74kg,是精细修剪的1.6倍,粗放修剪产量的1.2倍。精细修剪的单果性状最好。
     树体调控能改善树体结构,叶面积系数显著降低,精细修剪、简化修剪、粗放修剪和对照叶面积系数分别为3.83、4.77、6.89、7.56;精细修剪和简化修剪显著减少主枝数量、降低树高、提高主枝分枝高度。
     3、油茶树体调控冠层光合特性
     试验研究了精细修剪、简化修剪、粗放修剪和对照(不修剪)4种树体调控处理的冠层光合特性。主要研究结果如下:
     3种树体调控模式处理后净光合速率、蒸腾速率、气孔限制值、气孔导度、水分利用率、光能利用率的变化规律与对照组基本一致,但对数值大小有差异,其中净光合速率、水分利用效率和光能利用率具有显著性的差异,各调控模式的影响程度为:简化修剪>粗放修剪>精细修剪>对照。相关性分析结果表明,油茶树体调控是通过控制冠层光辐射和空气湿度从而改变净光合速率的。
     树体调控措施能增强油茶植株对弱光和强光的利用程度,以简化修剪和精细修剪的效果较好,新梢生长期和果实生长期,简化修剪的光补偿点分别为33μmol.m-2.s-1、35μmli.m-2.s-1,光饱和点分别为810μmol.m-2.s-1、715μmol.m-2.s-1。
     新梢生长期与果实生长期不同调控模式处理下的净光合速率规律一致。其大小顺序均为简化修剪>粗放修剪>对照>精细修剪。新梢生长期与果实生长期不同调控模式处理下的光能利用率大小变化规律与净光合速率相同。树体调控模式在油茶整个年生长周期中均有提高净光合速率的作用,但调控模式与光能利用率无密切关系。
     树体调控措施能很好的改善冠层相对光照强度。对不同调控模式间变化比较得出,精细修剪处理与简化修剪处理效果相当,整体冠层光照强度分布均呈漏斗形,冠层由上至下,由北向南光照强度逐渐增强;不同调控模式相对光照强度日变化规律均呈单峰变化,在12:00达到峰值,峰值大小随着修剪强度增加而增大。
     4、油茶树体调控营养生理
     试验研究了精细修剪、简化修剪、粗放修剪和对照(不修剪)4种树体调控模式的树体营养状况及酶活性。主要研究结果如下:
     不同调控模式下油茶树体可溶性糖、可溶性淀粉、可溶性蛋白质3种有机营养物质的含量变化呈现规律基本一致,可溶性糖含量和可溶性蛋白含量变化呈单峰曲线,在果实生长期达到峰值;可溶性淀粉含量变化趋势呈V形,在果实生长期含量最低。树体调控措施处理的3种营养物含量均高于对照组,以简化修剪最好,3种营养物含量在不同的生长发育阶段中均最高,精细修剪和粗放修剪基本相同。
     在新梢生长期和果实生长期3种营养物质含量与新梢长度均呈极显著相关性,但与新梢直径的相关性在不同时期表现不一致。在新梢生长期3种营养物质含量与新梢直径相关性极显著,在果实生长期仅与可溶性蛋白质含量呈显著相关性。
     对超氧化物歧化酶、硝酸还原酶、蔗糖合成酶、淀粉酶活性测定结果表明,不同调控模式对酶活性影响为简化修剪>粗放修剪>对照>精细修剪。简化修剪模式均最高,而精细修剪模式最低,表明适度修剪能提高酶活性,而过度修剪降低酶活性。
Camellia oleifera is a group of camellia species from whose seeds an edible oil with a very high content of unsaturated fatty acids can be extracted. Biologically, oil-tea trees are small and shrubby in tree form, and bloom abundantly twice every year, with the simultaneity of blooming and fruiting in Autumn. Unfortunately, however, the economic production of oil-tea plantations on a large scale is low due to poor management, the disorder of the tree structure, and the insufficient utility of the solar energy. Theory and practice have proved that rationally controlling the tree structure through pruning is an effective way to increase the photosynthetic efficiency and hence the fruit yield, but with thousands of hectares of established orchards tree regulation is complicated and intensive management is no easy job. In this dissertation, the author has piloted four pruning methods in four test plots of Camellia oleifera with different planting densities, hoping to create simple and practicable tree structures aiming at prolificacy. The study concentrated on the three aspects of introducing the system of indicators for high-yield tree structures on the basis of analyzing the characteristics of natural oil-tea tree structures; investigating the response of tree growth and fruiting to pruning; and establishing tree regulation patterns relative to regulation mechanism from the point of view of tree growth and development, photosynthetic features of the tree canopy, and tree nutrition physiology. The research findings are as follows.
     I. Response of tree growth and development to pruning
     Four methods of pruning were tried, including branching angle adjustment, shoot retraction, artificial injury, and cut-back. It was found that:i) adjusting the angle of the lateral shoots affected the growth of new sprouts and the photosynthesis, but showed no significant influence on floral and fruit development. When the angle was45degrees, the best effect was achieved in terms of floral bud differentiation, fruit set, shoot length, and utility rate of light, as compared to the treatments of90degrees and the check, ⅱ) shoot retraction posed a marked impact on tree growth and development. Slight retraction gave the best performance in shoot growth, and the number of shoots generated, shoot length, and shoot diameter increased by36.05%,108.60%, and 35.90%, respectively, than the check. Medium retraction resulted in the highest photosynthetic rate. iii) both girdling and bud cutting inhibited the shoot growth to some extent, but improved the net photosynthetic rate and the rate of light utility. The wider the girdling was, the worse the shooting percentage and shoot quality became. When the ringing was0.6cm in width, the highest net photosynthetic rate (11.59μ molCO2/m2·s) appeared. Bud cutting promoted shoot sprouting above the bud, and the sprouts were short and thick, iv) cutting back of different typed shoots and on different positions of the crown produced significant effects on the tree growth and development, and the photosynthesis was also remarkably affected. While cutting back of enriching shoots induced long and thin shoots, cutting back of weak shoots generated short and stout sprouts. Cutting back of shoots at the middle part of the crown increased the shooting quantity and quality; however, working with the outside shoots of the crown led to little shooting, although the shoots thus produced were thick with the highest net photosynthetic rate.
     II. Tree growth and development as affected by tree structure control
     Four tree body regulation treatments were conducted, i.e. intensive pruning, simplified pruning, casual pruning, and non-pruning (as for check). It was found that: i) simplified pruning was favorable for Spring shooting and the shoot quality; the effect of both intensive and casual prunings was more or less the same, but both treatments were better than the Check non-pruning in terms of shooting percentage and quality; and intensive pruning was most ideal for Autumn shooting and growth, ii) Tree structure regulation promoted the growth of new leaves, with intensive pruning being the best, followed by simplified pruning, iii) pruned trees were better in increasing the number of floral buds than that of the Check, and simplified pruning resulted in bud formation and differentiation in the most positive degree, with the mean number of376floral buds and55.26%bud differentiation, which is14.56%higher than the Check, ⅳ) simplified pruning produced the highest yield of fruit of6.74kg per individual tree, which is1.6and1.2times more than that of the intensive and casual prunings, respectively. However, with intensive pruning the economic characters of individual fruit ranked the first, ⅴ) tree shape regulation improved the tree structure, and lowered the leaf area coefficient. The leaf area coefficient of intensive, simplified, casual prunings, and non-pruning was3.83,4.77,6.89, and7.56, respectively. Intensive and simplified prunings noticeably lessened the number of leading shoots, minimized the tree height, and raised the branching height of the primary shoots.
     Ⅲ. Canopy photosynthetic properties as regulated by tree structure control
     The crown photosynthesis was studied with four treatments of intensive pruning, simplified pruning, casual pruning, and non-pruning (as for Check). It was found that: i) The pattern of change in net photosynthetic rate, transpiration rate, stomatal limitation value, stomatal conductance, water use efficiency, and efficiency for solar energy utilization by intensive, simplified, and casual prunings was basically the same as that of the Check, but they varied in logarithm value, among which net photosynthetic rate, water use efficiency, and efficiency for solar energy utilization showed significant variation. With the four regulation patterns, the impact of regulation followed the pattern in the descending order of simplified pruning, casual pruning, intensive pruning, and non-pruning. Correlation analysis revealed that the tree structure regulation in oil-tea camellia was completed through the chang of net photosynthetic rate via regulation of the light output and air humidity, ii) more weak light as well as strong light were utilized through tree structure control, and better effects were achieved with simplified and intensive prunings. At the stages of fresh shoot growth and fruit development, the light compensation point was33with simplified pruning and35with intensive pruning, whereas the light saturation point was810and715, respectively, iii) the pattern of net photosynthetic rate with the four regulation treatments was regular at both the shoot growing stage and the fruit development stage. The value of net photosynthetic rate followed the descending order of simplified, casual, non-, and intensive prunings. At both stages the efficiency for solar energy utilization coincided with net photosynthetic rate. Tree structure regulation increased the net photosynthetic rate in the annual life cycle of oil-tea camellia, but each treatment as not closely correlated with the utility efficiency of solar energy, iv) tree shape regulation could well improve the relative lighting intensity of the crown canopy. Comparative analysis indicated that the effect of improvement of intensive pruning was largely the same as simplified pruning, the overall distribution of light intensity on the crown fell in the shape of a funnel, with lighting intensified from top and north to bottom and south of the canopy layer. The diurnal change of relative lighting intensity by different treatments demonstrated a single curve, the peak value came at12:00, and the value increased with the enhancement of the pruning intensity.
     Ⅳ. The physiological foundation of tree structure regulation in Camellia oleifera
     The nutritional condition and enzyme activity of the trees in the test plot whose tree structure was regulated by either intensive pruning, simplified pruning, casual pruning, or non-pruning were analyzed. Results showed that:i) the soluble sugar, soluble starch, and soluble protein in the tree under different pruning treatments followed basically the same pattern of change. While the content of soluble sugar and soluble protein presented a single curve with the peak appearing at the fruit growth stage, the content of soluble starch was in the Ⅴ shape with the lowest content recorded at the fruit development stage. The three nutritional elements were all higher in content with the pruning treated trees than the non-pruned trees. Simplified pruning induced the highest nutritional content in different growth and development stages, followed by intensive and casual prunings whose nutritional content was almost identical, ⅱ) three nutritional elements by content were significantly in positive correlation with the length of the fresh shoots both at the shoot growing and fruit enlargement stages, but this was not true of the shoot size at varied growth periods. With shoot growth the content of nutrients posed an enormously positive correlation to the shoot size; however, fruit growth was only significantly correlated to the content of soluble protein, ⅲ) measurement of activity of superoxide dismutase, nitrate reductase, sucrose synthetase, and amylase showed that different regulation treatments presented activity in the descending order of simplified, casual, non-, and intensive prunings. The activity of all enzymes was the highest with simplified pruning, and the lowest with intensive pruning, indicative of the fact that moderate pruning could increase the enzyme activity, whereas excessive pruning could lower the enzyme activity.
引文
[1]胡芳名,谭晓风,刘惠民,等.中国主要经济树种栽培与利用[M].北京,中国林业出版社,2006.
    [2]顾红,方金豹,陈锦永,等.长枝修剪对早熟油桃生长及果实品质的影响[J].河南农业科技,2009,1:85-87.
    [3]吴传明.不同修剪量对纽荷尔脐橙生长的影响初报[J].耕作与栽培,2011,(5):33-34.
    [4]陈晓强,柴春燕,黄士文,等.大枝矮化修剪对荸荠种杨梅树的影响与修剪技术[J].农技服务,2009,26(12):85-86.
    [5]车凤斌,陈宝军,潘俨,等.匍匐石榴双层双扇形整形修剪光合作用研究[J].新疆农业科学,2007,44(6):756-760.
    [6]刘玉英,何永峰,张喜萍.苹果盛果期不同品种的修剪反应试验[N].农村科技,2009,(2):58-59
    [7]张春华,葛洪业.南果梨幼树提早开花结果的修剪方法[J].特种经济动植物,2011,6:52
    [8]李开森.不同修剪方法对金丝小枣生长、结果和品质的影响[J].河北林业科技,2009,10:5-6
    [9]宋宏峰,殷守防,马瑞娟.长枝修剪对桃树生长和果实品质的影响[J].江西农业学报2011,23(10):79-80.
    [10]林少韩.中国油茶生产现状及发展策略[J].世界林业研究,1989,2(4):70-76
    [11]张日清,等.中国经济林现状与对策-全国经济林学术研讨会论文选[A],北京,中国林业出版社,1996
    [12]杨小环环.油茶成林丰产栽培技术理论与实践[J].安徽林业,2009:47-48
    [13]刘小辉.油茶丰产栽培技术[J].现代农业科技,2009,(13):53-54
    [14]高集美.油茶丰产栽培技术[J].河北林业科技,2010,(1):93-94
    [15]邓敏.油茶丰产栽培技术[J].中国林业,2007:46
    [16]王刚.油茶丰产栽培技术[J].现代农业科技2008,(16):45-47
    [17]黄涛.油茶配方施肥技术研究[D].南京林业大学,南京,2012
    [18]唐光旭,张永生,唐丽湘,等.油茶丰产栽培肥力模式的研究[J].江西林业科技 1997,(3):11-17
    [19]余江帆,陆志科,谢碧霞.近10年中国油茶研究论文计量研究[J].经济林研究,2006,24(4):61-63.
    [20]江西省宜春油茶实验林场.宜春油茶实验林场油茶丰产经验,林业科学技术,1959,(39):1-3.
    [21]尹行信.关于油茶修剪问题[J].林业科学,1962,(2):67-168.
    [22]常德地区林科所.谈谈油茶高产稳产技术措施湖南林业科技,974,(6):12-13.
    [23]陈福.油茶低产林改造技术[J].林业科技,2011,(9):204-205.
    [24]袁斌荣,岳进.宜春市低产油茶林改造技术[J].江西林业科技,2005,(2):19-22.
    [25]周健.低产油茶林整形修剪[J].安徽林业,2009,(1):44.
    [26]张小安.广南县油茶栽培技术及低产林改造技术[J].中国果树,2009,(3):25-26.
    [27]陈永忠,陈隆升,孙,孙建一,等.油茶修剪技术[J].湖南林业科技,2011,38(6):91-94.
    [28]申巍.修剪施肥对油茶生长结实特性影响研究[D].西南大学,重庆,2011.
    [29]郝娟.整形对油茶幼树的生长特性和光合生理的影响[D].江西农业大学,南昌,2011.
    [30]肖青,李纪元,李锦明,等.不同强度修剪对幼龄期油茶无性系生长及结实的影响[J].江西林业科技,2008(2):7-9.
    [31]何志祥,孙颖,雷小林,等.油茶简化修剪光合特性研究[J].中国农学通报,2012,28(16):111-116.
    [32]段伟华.油茶高接换冠技术研究[D].中南林业科技大学,长沙,2012.
    [33]罗永平.成年苹果园树体结构指标与负载量的调查研究[J].山西果树,1982,(1):12-17.
    [34]马绍伟,夏国海,宋尚伟,等.伏南山区丰产苹果树体结构研究[J].河南农业科学,1994,(1):29-31.
    [35]李先明,刘先琴,涂俊凡.梨不同树形的结构特征、产量分布及果实品质差异[J].中国农学通报,2009,25(23):323-326.
    [36]薛新平.枣树的生长特性及整形修剪[J].山西果树,2011,2):22-23.
    [37]张庆辉,郝连君,张东华.冬枣秋冬季树体管理[J].农业知识,2006,(2):15.
    [38]叶万辉,关文彬.树体结构研究的历史发展和现状—兼论树体三态结构划分及其意义[J].世界林业研究,995,(3):22-27.
    [39]叶万辉.三大硬阔树体结构研究[D].哈尔滨,东北林业大学,1995.
    [40]张剑,林德佩.匍匐果树生长发育特性和栽培技术[J].新疆林业科学,1964,(5):169-173.
    [41]丰产树形的树体结构和要求[J].落叶果树,1974,(1):4-5.
    [42]李茂昌,王连捷,赵景秀,等.枣树的树体结构调查初报,华北农学报,1965,4(3):33-38.
    [43]赵天榜,陈志秀,杨凯亮.望春玉兰幼龄树体结构规律[J].河南林业科技,1990,(2):16-20.
    [44]赵丹宁,熊耀国,宋露露.泡桐树冠结构与生长性状遗传相关的研究[J].西北林学院学报,1995,10(4):11-16.
    [45]朱选伟,叶永忠,杜卫兵.栓皮栎植冠的构型分析[J].河南科学,2001,19(1):65-68.
    [46]孙艳霞,李丙智,张林森,等.陕西渭北7县苹果园树体结构参数调查研究[J].西北林学院学报,2012,27(5):97-100.
    [47]杨祖艳,孙熹,何加文,等.改善树体结构对提高龙眼产量和品质的影响试验[J].南方园艺,2012,23(2):3-6.
    [48]杨飞,卢桂宾,杜俊杰,等.树形结构对果树生产能力的影响分析[J].山西林业科技,2012,41(1):46-49.
    [49]赵庆玉.罐藏黄桃“金露”的树体改造与长枝修剪[J].北方果树,2012,(2):18-20.
    [50]郁俊谊,刘占德,屈学农,等.高产稳产型红阳猕猴桃树体结构及土壤养分状况分析[J].北方园艺,,2011,(22):20-22.
    [51]路超,王金政,薛晓敏,等.泰沂山区优质高产苹果的树体和群体结构参数研究[J].山东林业科学,2011,(9):44-47.
    [52]魏树伟,王宏伟,张勇,等.优质高产网架栽培梨园树体结构参数调查[J].山东农业科学2011,(9):48-50.
    [53]张祖成.豫南山区密植矮化板栗树体结构与产量的关系[J].江苏农业科学.2011.39(4):223-225.
    [54]薛跳,李丙智,张林森,等.黄土高原地区优质高产苹果树体结构与产量相关性研究[J].西北林学院学报,2010,25(4):101-103.
    [55]赵志鹏,周晓玲,梁玖华,等.基于分枝格局的油茶植物构件与产量关系的研究[J].贵州科学,2010,28(3):51-55.
    [56]何汉杏,童大志,龚榜初.油茶树体结构与产量关系的初步研究[J].中南林学院学报,1986,6(2):154-162.
    [57]潘华平,刘君昂,周国英.油茶树体结构与产量关系的研究[J].江西农业大学学报,2011,33(1):.58-62.
    [58]Campbell G.S.and Norman J.M.The description and measurement of plant canopy structure,In Plant canopies:their growth,form and function. Ed.G. Russell. B. Mars- hall,P.G.Jarvis. Cambridge University Press, Cambridge. 1989,1-19.
    [59]Ross.J. The radiation regime and architecture of plant stands[M].The Hague.W. Junk,1981.
    [60]王丽铃,张建新,鲁学浩.不同施肥量对棉花冠层结构的影响及其调控作用[J].新疆农垦科技,2008,5:58-59.
    [61]张旺锋.膜下滴灌对新疆高产棉花群体光合作用、冠层结构和产量形成的影响,中国林业科学,2002,(6):632-637.
    [62]吴玉娥,郜庆炉,杨文平,等.不同小麦品种冠层结构及产量研究[J].河南职业技术师范学院学报,2003,31(3):1-4.
    [63]吕新,李正尚,李正和,等.北疆超高产(2400kg/hm2);棉田冠层结构指标初步研究(简报)[J].石河子大学学报(自然科学版),1998,(增刊):107-108.
    [64]Harper John L. Canopies as populations [C].In:Plant canopies:their growth, form and funcaon GRussell, B.Marshall, P.GJarvis.1989,105-128.Cambridge Uni-versity Press,Cambridge
    [65]Tremmel D.C,Bazzaz F.A.Plant architecture and allocation in different neig-hborhoods:Implications for competitive success[J]. Ecology,1995,76(1):262-271.
    [66]金剑,刘晓冰,王光华,等.大豆生殖生长期冠层结构及其与冠层辐射关系的研究[J].东北农业大学学报,2004,35(4):412-418.
    [67]Thomson Alan J., Cocksedge Wendy. Salal(Gaultheria shallon)harvest:A plant architecture model [J]. Computers and Electronics in Agriculture 2006,54:84-92.
    [68]Dombusch Tino,Wemecke Peter, Diepenbroek Wulf. A method to extract morphological traits of plant organs from 3D point clouds as a database for an architectural plant model[J].Ecological Modelling,2007,200:119-129.
    [69]李火根,黄敏仁.杨树新无性系冠层特性及叶片的空间分布[J].应用生态报,1998,9(4):345-348.
    [70]张小全.杉木中龄林树冠叶面积密度空间分布及季节变化性[J].林业科学研究,1999,12(6):345-348.
    [71]方升佐,徐锡增.水杉人工林树冠结构及生物生产力的研究[J].应用生态学报,1995,6(3):225-230.
    [72]李火根,黄敏仁.杨树新无性系冠层特性与生长关系研究,林业科学,1999,35(5):34-37.
    [73]李生,陈存及.混交林分中乳源木莲冠层特性与生长的通径分,林业科学研究,2005,18(3):310-314.
    [74]温志宏.美洲黑杨冠层光截获特性的遗传学研究[J].南京林业大学学报,1992,16(3):11-17.
    [75]Patricia SW,Callesen W.Light distribution in apple orchard systems in relation to production and fruit quality[J].J Hort Sci.1995,70(6):935-948.
    [76]梅尼克D.R,高竹林泽译.果树小气候之研究Ⅱ,苹果叶幕与光照的分布模式[J].果树科技通讯,1979,(1):1-8.
    [77]费永俊,王燕,左雪枝,等.南方红豆杉冠层光辐射分布及其对单枝结实量的影响[J].河南科技大学学报(农学版),2004,24(2):18-20
    [78]孙伯筠.干寒地区金红苹果树光能利用的研究[J].内蒙古农业大学学报(自然科学版),2005,26(3):33-35.
    [79]刘业好,魏钦平,高照全,等.“富士”苹果树3种树形光照分布与产品质关系的研究[J].安徽农业大学学报,2004,31(3):353-357.
    [80]张显川,高照全,舒先迂,等.苹果开心形树冠不同部位光合与蒸腾能力的研究[J].园艺学报,2005,32(6):975-979.
    [81]张显川,高照全,付占方,等.苹果树形改造对树冠结构和冠层光合能力的影响[J].园艺学报,2007,34(3):537-542.
    [82]孟陈,徐明策,李俊祥,等.栲树冠层光合生理特性的空间异质性[J].应用生态学报,2007,18(9):1932-1936.
    [83]孔蓓蓓,刘超,尹伟伦,等.沙柳、黄柳和杞柳光合作用的日变化[J].河南科技大学(自然科学版),2009,30(3):79-83.
    [84]黄振英,董学军,蒋高明,等.沙柳光合作用和蒸腾作用日动态变化的初步研究[J].西北植物学报,2002,22(4):817-823.
    [85]张小全,徐德应.2000.杉木中龄林不同部位和叶龄针叶光合特性的日变化和季节变化[J].林业科学,36(3):19-26.
    [86]赵茂盛,陈仲庐.2000.CO2增长对杉木中龄林针叶光合生理生态的影响[J].生态学报,20(3):390-396.
    [87]刘端,白志强.濒危植物新疆野杏光合作用的日变化[J].江苏农业科学,2009,4:171-173
    [88]彭秀,刘春生,谭名照.3种能源树种光合作用比较研究[J].江苏林业科技,2008,35(4):7-12
    [89]李志辉,卢兆银,杨艳,等.松栎混交林中马尾松与白栎光合作用的日变化[J].中南林业科技大学学报(自然科学版),2007,27(1):75-80.
    [90]金则新,柯世省.云锦杜鹃叶片光合作用日变化特征[J].植物研究,2004,24(4):447-450.
    [91]Pierce L L, Running R W.Rapid estimation of coniferous forest leaf area index using a portable integrating radiometer[J].Ecology,1988,69:1762-1767.
    [92]Gholz H L,Vogel SA,Cropper W P,et al.Dynamics Of canopy structure and light interception in Pinus elliottii stands, North Florida[J]. Ecological Monograph, 1991,6:33-51.
    [93]彭少麟,张祝平.鼎湖山森林植被优势种云南银柴和柏拉木的生物量及第一性生产力研究[J].应用生态学报,1992,,3(3):202-206.
    [94]王希群,马履一,贾忠奎,等.叶面积指数的研究和应用进展[J].生态学杂志2005,24(5):537-541.
    [95]吴伟斌,洪添胜,王锡平,等.叶面积指数地面测量方法的研究进展[J].华中农业大学学报(自然科学版),2007,,26(2):270-275.
    [96]Lang ARG,Mcmurtrie RE, Benson M L·Validity of surface area indices ofPinus radiate estimated from transmittance of the sun's beam[J]. Agricultural and Forest Meteorology,1991,57:157-170.
    [97]李轩然,刘琪璟,蔡哲,等.千烟洲针叶林的比叶面积及叶面积指数[J].植物生态学报,2007,31(1):93-101.
    [98]JingMC,Black TA.Defining leaf area index for non-flat leaves[J]. PlantCe-llEnviron,1992,15:421-429
    [99]Gower ST. Kucharik CJ,Norman JM. Direct and indirect estimation of leaf area index, fAPAR and net primary production of terrestrial ecosystems[J].Remote Sensing of Environm-ent,1999,70:29-51.
    [100]骆琴娅,漆龙霖,方晰,等.山茶属植物五个物种光合作用的研究[J].林业科学研究,1993,6(3):311-315.
    [101]田林森.金红苹果树矮冠密植栽培技术[J].山西果树,2011,3:5-6.
    [102]周庆珍,王伟平.小麦垄上行间不同密度对叶面积及产量的影响[J].黑龙江农业科学,2009,(1):25,34.
    [103]杨涛,谭音.石榴开花期叶面积指数与座果率的关系,北方果树,2009,(5):14-15.
    [104]郑维鹏,郑蓉,林海青,等.绿竹叶面积指数与生长因子的关系[J].福建林业科技,2002,29(4):1-4,12.
    [105]蒲金涌,姚晓红,尹东,等.紫花苜蓿及主要粮食作物各生育时段叶面积指数及光能利用率比较[J].中国农业气象,2005,(1):31-33,37.
    [106]王继安,王金阁.大豆叶面积垂直分布对产量及农艺性状的影响,东北农业大学学报,2000,31(1):14-19.
    [107]格屏亚,程延年.不同株型玉米叶面积消长动态的研究[J].北京农业科学,1994,12(6):1-4.
    [108]桔温·中井滋郎,吕均良,译.温州蜜柑产量与叶面积指数的关系[J].浙江柑桔,989,(4):49.
    [109]陈志辉,张良诚.温州蜜桔叶片光合效率的日变化[J].植物生理学报,1994,20(3):263.
    [110]葛没,常杰.青冈净光合作用与环境因子的关系[J].生态学报,1999,19(5):16-21.
    [111]曹军胜.刺槐光合特性的研究[J].西北农业学报,2005,14(3):115-122,136.
    [112]肖爱红,徐宝福.红千层光合特性的研究[J].西南园艺,2006,5(3):19-20.
    [113]Bongi G,Long SP.Light-dependent dam age to photosynthesis in alive leaves during chilling and high temperature stress[J].Plant Cell Environ.1987,10:241-249.
    [114]Nunes MA,Ramalho JDC,Dias MA.Effect of nitrogen supply on the photos-ynthesis performance leaves from coffee plants exposed to bright light[J]. J Exp Bot,1993,44:893-899.
    [115]Pastense C,Horton P.Effect of high temperature on photosynthesis in beans [J].Plant Physical,1996,112:1253-1260.
    [116]Demmi-Adam B, Adams WW.Photoprotection and other responses of plan is to light stress[J].Ann Rev Plant Physical Plant Mol Biol,1992,43:599-626.
    [117]柯娴氡,古丽红,周艳玲.阔叶树叶面积测量方法的比较和评价[J].广东林业科,2006,22(4):96-99.
    [118]周宇宇,唐世浩,朱启疆,等.长白山自然保护区叶面积指数测量及结果[J].资源科学,2003,25(6):38-42.
    [119]颜文洪,胡玉佳.海南石梅湾青皮林LAI的冠层数字成像间接法测算[J].中山大学学报(自然科学版),2004,43(3):71-74.
    [120]骆知萌,田庆久,惠凤鸣.用遥感技术计算森林叶面积指数—以江西省兴国县为例[J].南京大学学报(自然科学),2005,1(3):253-258.
    [121]王永安,黄金玲,付达夫.湖南油茶产量影响因子分析[J].林业调查规划,2003,(3):99-103.
    [122]刘煊章,赵思东,李建安.普通油茶树体结构因子与产量关系的研究经济林研究,1986,4(2):50-55.
    [123]佘祥威,王德斌,汪枚初.油茶叶片光合功能参数的测定,湖南林业科技,1980,(2):17-21.
    [124]傅瑞树,叶青.油茶某些生理活动的昼夜变化[J].林业科技通讯,1984,(8):11-14.
    [125]唐光旭.油茶春梢光合与呼吸强度的初步研究[J].经济林研究,1984,2(1):21-27.
    [126]梁根桃,杨成区,张吉祥,等.油茶叶片某些光合性能的研究[J].浙江林业科技,1988,8(1):8-11.
    [127]梁根桃.硫代硫酸银和各种试剂对油茶光合性能的影响的初步研究[J].经济林研究,1987,5(1):59-63.
    [128]邹天才,张著林,周洪英,等.山茶属五种野生植物叶片解剖特征及光合生理相关性研究[J].西北植物学报,1996,16(1):42-51.
    [129]邹天才,张著林,周洪英,等.贵州山茶属五种野生植物的光合特性研究[J].园艺学报,1994,21(4):366-370.
    [130]胡哲森,时忠杰,许长钦.亚硫酸氢钠对油茶光合机构的生理效应研究[J].林业科学,2001,37,专刊1:68-71.
    [131]黄义松,牛德奎,赵中华,等.13个油茶优良无性系光合作用及生理特性研究[J].江西农业大学学报,2007,29(2):209-214.
    [132]赵中华,郭晓敏,李发凯,等.不同施肥处理对油茶光合生理特性的影响[J].江西农业大学学报,2007,29(4):576-581.
    [133]李铁柱,包梅荣,乌云塔娜.油茶秋水仙素诱导苗光合作用变异研究[J].内蒙古农业大学学报,2008,29(4):155-160.
    [134]何一明,吕芳德.不同密度条件下油茶光合作用的研究[J].现代农业科学,2008,15(3):25-27.
    [135]王瑞,陈永忠,王湘南,等.油茶无性系新梢生长期光合特性的研究[J].林业科学研究,2010,23(3):405-410.
    [136]贺根和,刘强,彭水娥.铝胁迫对野生油茶光合特性的影响[J].湖北农业科学,2010,49(7):1593-1598.
    [137]李建安,何志祥,孙颖,等.油茶林分光合特性研究[J].中南林业科技大学学报,2010,30(10):56-61.
    [138]唐炜,谭晓风,袁德义.山茶属三个物种光合特性日变化[J].北方园艺,2010(9):5-8
    [139]夏尚光,肖正东,丁增发,等.油茶优良无性系光合日进程及其与环境因子关系研究[J].江西农业大学学报,2011,33(5):911-917.
    [140]杨梦秋,丁正亮,徐小牛,等.安徽油茶不同品种光合生理生态特性的研究[J].安徽农业大学学报,2011,38(3):448-452.
    [141]夏尚光,肖正东.大别山油茶4个优良品种光合作用特性[J].林业科技开发,2011,25(4):18-21.
    [142]王雨水.低温锻炼对冷胁迫下油茶幼苗光合速率与抗氧化酶活性的影响[J].福建林业科技,,2011,38(1):41-46.
    [143]胡玉玲,胡冬南,袁生贵,等.不同肥料和芸苔素内酯处理下对5年生油茶光合和品质的影响[J].浙江农林大学学报,2011,,28(2):194-199.
    [144]杨伟波,付登强,李艳,等.不同光强下义安油茶幼苗生长和叶绿素荧光特性分析[J].热带作物学报,2012,33(4):651-654.
    [145]李映志,钟雪花.摘心和短截对龙眼促梢效应的研究[J].广西热带农业,2003,(3):13-14.
    [146]陈素传,肖正东,何定华,等.不同短截强度对节节红板栗生长发育的影响[J].经济林研究,2004,22(2):51-52.
    [147]刘洪宝.夏季短截对杏幼树结果习性的影响[J].山西果树,2004,(3):12-15.
    [148]陈继富.无花果结果母枝短截程度对生长结果的影响[J].中国南方果树,2005,34(6):45-47.
    [149]王强生.红荷包杏夏季短截修剪技术[J].中国果树,2005,(1):43-44.
    [150]龙柳珍,陶进科,韦锋.不同修剪方法对板栗枝梢生长及产量的影响[J].广西园艺,2008,19(3):22-23.
    [151]叶延龄.丁岙杨梅初结果树结果枝短截修剪的保果效应[J].浙江林业科技,2010,30(3):5-8.
    [152]乔进春,朱梅玲.板栗幼树对短截修剪的反应[J].经济林研究,1993,11(2):90-91.
    [153]陈登科,卢美英,唐腾,等.龙眼重回缩修剪树有机营养及枝梢生长特性[J].广西植物,2007,9(5):755-758.
    [154]黄永敬,卢美英,林越平.重回缩修剪对龙眼生长及营养元素的影响[J].广西热带农业,2006,(1):23-26.
    [155]潘学文,李建光,李荣,等.密植龙眼园回缩修剪试验[J].中国南方果树,2009,29(2):51-53.
    [156]刘友接,蒋际谋,张泽煌,等.枇杷树回缩修剪对新梢生长和结果的效应[J].山西农业大学学报,2008,28(4):17-19.
    [157]王令霞,李新国,陈业渊,等.不同回缩部位对芒果枝条生长和开花坐果的影响[J].中国热带农业,2010,(4):57-58.
    [158]王泽槐,李建国,陈松开,等.密蔽荔枝园不同回缩修剪对植株生长及开花结果的影响[J].中国热带农业,2007,(1):33-35.
    [159]朱德炳,许伟东,廖剑秋,等.长红3号枇杷荫蔽树采后全树回缩修剪试验[J].福建果树,2002,(122):11-12.
    [160]周然.更新修剪对衰老椪柑树势及产量的影响[J].云南农业科技.2008,(6):14-19.
    [161]蔡宗启,彭建平,林革.解放钟枇杷衰退树回缩更新对树体生长结果的影响[J].亚热带学,2002,31(4):40-42.
    [162]王立忠,胡雪飞,林美盛.李属不同种对冬剪的反应[J].北方园艺,1999,(1):22-23.
    [163]王周绿,黄亚坤.荔枝矮化回缩与品种改良技术[J].福建热作科技,2002,27(4):27-28.
    [164]吴兴.荔枝树回缩修剪技术探讨[J].福建热作科技,,2002,25(2):33-34.
    [165]房敏乔,栾向东,侯国泽.栗树回缩技术试验总结[J].[山东林业科技,1992,(3):71-74.
    [166]黄树长,苏维佳.龙眼树回缩修剪与成花关系的研究[J].中国热带农业,2006,(4):31-32.
    [167]卢永锋.荔枝、龙眼盛花过后不宜立即回缩修剪[J].广西园艺,2002,(1):5-6.
    [168]彭磊,唐发贵,王信保,等.芒果花枝回缩后剪口芽再花研究[J].中国南方果树,2006,35(3):35-36.
    [169]潘学文,李建光,李荣.密植龙眼园回缩修剪试验[J].中国南方果树,2000,29 (2):23-24.
    [170]刘晓霞,董福香.苹果串花枝回缩修剪技术[J].落叶果树,2010,(2):58.
    [171]房敏乔,陈学贵,毕可阳.衰弱板栗树回缩后的丰产年限及其管理技术试验[J].落叶果树,2008,(6):6-9.
    [172]黄永敬,卢美英,林越平.重回缩修剪对龙眼生长及营养元素的影响[J].广西热带农业,2006,(1):1-3.
    [173]马明,牛军强,李宽莹,等.温室油桃采果后重剪回缩树叶片黄化的补铁矫治试验[J].中国南方果树,2008,37(6):68-70.
    [174]刘春利,袁德水,郭万军,等.华北落叶松不同修剪方式对新生枝条生长及雌花量影响[J].河北林果研究,2008,(4):37-39.
    [175]杜宗绪,李绍华.长枝修剪对桃树营养状况的影响[J].河北果树,2004,(4):83-85.
    [176]E.1ahav.不同疏剪期对猕猴桃果实大小和产量的影响[J].亚热带植物通讯,989,(2):55-57.
    [177]周丕考,吴旺华,陈会杰,等.大枝疏删对东魁杨梅树体高度及果实品质的影响[J].现代园艺,2011,(8):7,38.试
    [178]梁森苗,王勤红,倪国富,等.大枝疏删对杨梅冠高、果实品质及采摘量的影响[J].浙江农业科学,,2012j(8):1127-1129.
    [179]戚行江,梁森苗,郑锡良,等.大枝修剪矮化杨梅树体技术研究[J].浙江农业学报,2006,18,(6):417-420.
    [180]李宪利,高东升,夏宁.苹果休眠期重疏枝的效益[J].落叶果树,1997(增刊):11-12.
    [181]吴光林,查永成,华英.轻剪疏删对生长旺的梨初生树生长结果的影响[J].浙江农业大学学报,1980,6(1):47-56.
    [182]唐江.桃树的疏删修剪及其效应[J].落叶果树,1995,(2):41-42.
    [183]王天飞,黄柏明,孙桐军.杨梅不同时间大枝修剪技术探索[J].浙江农业科学,2006,(5):520-521.
    [184]沈清标,吴绍忠.永定红柿开心矮化矫形修剪技术[J].福建果树,2008,(3):46-47.
    [185]李明霞,耿桂俊,白岗栓.更新修剪对盛果末期苹果光合能力及果实品质的影响[J].西北农林科技大学学报,2011,39(1):179-185.
    [186]董少鹏,曹彩荣,郭创业,等.“增阻降流”苹果修剪理论创建及应用研究[J]. 中国农学通报,2011,27(13):227-231.
    [187]杨青松,蔺经,颜志梅,等.爱甘水等6个梨品种长放与缩剪的生长效应[J].中国南方果树,2008,37(5):65-66.
    [188]范西然,张长俭.巴斗杏树的长留长放修剪技术[J].现代农业科技,2007,,13,58-59.
    [189]冯幸严,李淑珍,沮树英.北斗苹果1年生枝修剪反应规律研究初报[J].落叶树,1994,(1):52.
    [190]于长水.长放修剪早露蟠桃疏花疏果试验[J].中国果树,2005,(3):14-15.
    [191]徐义流,陆丽娟,高正辉.长枝修剪对NJC19黄桃树体生长及果实品质的影响[J].中国农学通报,2009,25(12):185-187.
    [192]师校欣,杜国强,王彦立,等.长枝修剪对密植桃树光照的影响[J].北方果树,2004,(6):43.
    [193]顾红,方金豹,陈锦永,等.长枝修剪对早熟油桃生长及果实品质的影响[J].河南农业科技,2009,(1):85-87.
    [194]康艳青,刘国杰.长枝修剪桃不同方位与长度果枝生长结果观察[J].中国果树,2006,(4):24-26.
    [195]赵建戟.红富士单轴甩放修剪的依据及结果技术探索[J].西北园艺,1999,(6):8.
    [196]王海萍,郭继明.梨树“长放”修剪对枝叶及产量的影响[J].山西果树,2005,(4):38-39.
    [197]曹玉芬,聂继云.梨无公害生产技术[M].北京:中国农业出版社,2003.
    [198]杨和平.李树发育枝缓放效果调查[J].山西果树,2007,(5):42.
    [199]薛志勇.李树缓放技术要点[J].果农之友,2003,(3):22.
    [200]蒋锦标,武景合.李树利用缓放与中短截修剪反应[J].北方园艺,(88):35-36.
    [201]王栋,徐清溪,乔龙,等.连年轻剪缓放苹果树的冬剪技术[J].山东林业科技,1995,(6):48.
    [202]林明.苹果修剪中的缓放与回缩[J].河北农业,999,(3):21.
    [203]李明,李绍华,刘国杰,等.苹果幼树一年生中干枝短截与缓放的发枝特性[J].落叶果树,1999,(3):16-17.
    [204]马文哲,洛周绪,吴春橄.桃树长放高光效修剪技术[J].烟台果树,2003,(1):10-11.
    [205]于长水,宋岐山,马新龙.早露蟠桃日光温室栽培长放修剪试验[J].中国果树,2002,(3):21-23.
    [206]林水兰.油茶树长放修剪试验[J].中国果树,2001,(5):18-19.
    [207]Okamoto QWang Shiping,Ken Hirano.Cold resistance in root and cane of own-root'Kyoho'grapevines[J].Sci Rep Faculty of Agri Okayama Univ, 2000,89:23-29.
    [208]Wang Shiping,Goro Okamoto,Ken Hirano. Vine growth and fruit development of Pione grapes planted in root-restricted buried and raised beds[J].J Japan Soc Hort Sci, 997,66:235-259.
    [209]Dry PR,Loveys BR. Factors influencing grapevine vigour and the potential for control with partial rootzone drying[J].Aust J Grape and Wine Researeh,1998, 4:140-148.
    [210]Tanikuti T. Rooting-zone restriction for Satsuma Mandarin[J]. Agri and Hort, 1993,68:490-496.
    [211]Imai S,Okamoto G,EndoM. Effect of dense planting and root system control on attaining greater early production and fruit stability of telraploid grapes[J].Bullv Hiroshimal Fruit Tree Expt Sta,1987,12:1-9.
    [212]Imai S,Fujiwara T,Tanaka S,et al. Effect of soil moisture on vine growth and fruit production of'Kyoho'grapes growing on restricted rooting volume [J]. Environ Control in Biol,1991,29:133-140.
    [213]Okamoto G,Imai S. Promotion of seeded berry set of'Pione'grape by restricting root zon[J].Rep Agri Okayama Univ,1989,74:125-20.
    [214]Wang Shiping,Okamoto G,Hirano K. Effect ofroot restriction form on soil moisture,vinegrowth and fruit development of Pione grape[J].J Japan Soc Hort Sci,1996,65(suppl.1.):136-137.
    [215]Wang Shiping,Okamoto G,Hirano K Effect of root restriction on vine nutrition of Kyoho grape from dormancy to anthesis[J].J Japan Soc Hort Sci,1997,66 (suppl.1.):86-87.
    [216]Wang Shiping,Okamoto G,Hirano K,et al. Effects of rooting-zone restriction on the change carbohydrates and nitrogenous compounds in Kyoho grapevines during winter dormancy and early shoot growth[J].J Japan Soc Hort Sci,1998, 67:577-582.
    [217]Wang ShiPing,Okamoto QHirano K,et al. Effects of restricted rooting volume on vine growth and berry development of'Kyoho'grapevines[J].American Journal of Enology and Viticulture,2001,52(3):248-253.
    [218]Wang Shiping, Okamoto G, Hirano K, et al. Effects of rooting-zone restriction on 15N uptake, Translocation and nitrogenous component in xylem sap for component ofnitrogenous 'Kyoho' cuttings[J] Journal of the American Society for Horticultural Science,2002,127:(in press).
    [219]Wang Shiping,Okamoto G,Hirano K,et al. Effects of rooting-zone restriction on the change carbohydrate and carbohydrates and nitlogenous compounds in Kyoho grapevines during veraison and harvest[J].J Japan Soc Hort Sci, 2002,71:(in press).
    [220]Wang Shiping,Okamoto G,Hirano K,et al. Effects of over-fertilization on vine growth and component of nitrogenous[J].Ameriean Journal of Enology and Viticulture,2002,53:(in press).
    [221]Swano Y. Planting types and problems in Satsuma Mandarin[J].J Japan Soc Hort Sci,1993,62(suppl.2):13-25.
    [222]Tanikuti T. Rooting-zonerestriction for Satsuma Mandarain[J].Agri and Hort,1993,68:584-586.
    [223]Yoneda T,Oniwa G, Kuwahara M,et al. Effects of rooting-zone restriction on tree growth and quality of fruit in Satsuma Mandarin[J].Research Bulletin of the Fuoka Agriculture Research Station,1993,12:47-52.
    [224]Yoneda T,Oniwa G, Kuwahara M.Effects of rooting-zone restriction on quality of fruit,yield, flower bud differentiation and water stress in Satsuma Mandarin[J].J Japan Soc Hort Sci,1995,63:745-752.
    [225]Yakushiji H,Nonami H,Fukuyama T,et al.Suger accumulation enhanced by osmoregulation in Satsuma Mandarin fruit[J].J Amer Soc Hort Sci,1996, 121:466-472
    [226]Bax-Yosef B,Schwartz S,Markovitch B,et al.Effect of root volume.and nitrate solution coneentration on growth,fruit yield and temporal N and water uptake rates by apple trees [J].Plant and Soil,1998,107:49-56.
    [227]Myers SC.Root restriction of apple and peach with in-ground fabric containers [J].Aeta Hort,1992,322:215-219.
    [228]Costa MG,Vizzotto G,Maroe A. Root restriction and growth manipulation in peach[J].Acta Hort,1992,322:221-230.
    [229]Boland A,Bland M,Michell PD,et al. The effect of soil volume on young peach tree growth and water use[J].J Amer Soc Hort Sci,1994,119:223-228.
    [230]Boland A,Bland M,Mitchell PD,et al.Long-term effects of restricted root volume andregulated decifit irrigation on peach:I. growth and mineral nutrition [J]. J Amer Soc Hort Sci,2000,125:135-142.
    [231]Williamson JG,Coston DC.Planting method and irrigation rate influence vegetative and reproductive growth of peach planted at high density[J].J Amer Soc Hort Sci,1990,115:207-212.
    [232]Hommi Y,Sakakibara M, Kimura T.Capacity of root zone watering and fertilizer application for peach trees in container culture [J].Research Bulletin of the Aiehiken Agriculture Researeh Center,1995,27:251-258.
    [233]Mak R,Marra F.Responses of young peach trees to root confine men [J].J Amer Soc Hort Sci,1994,119:223-228.
    [234]Webster AD,Atkinson JC,Vaughan JS. Controlling the shoot growth and cropping of sweet cherry trees using root pruning or root restriction techniques [J].Acta Hort,1997,451:643-649.
    [235]Ogwa T,Matsumura H,Gotou K. Effects of rooting-zone restriction on 'Tomari'persimmon[J].J Japan Soc Hort Sci,1997,66(suppl.2):8-9.
    [236]Matsuura K,Hamata K,Aragi S. Effects of rooting-zone restriction on growth and fruit quality in fig[J].J Japan Soc Hort Sci,1992,61(suppl.2):170-17.
    [237]Richard D,Rowe RN.Effects of root restriction,root pruning and6- benyzlamin-opurine on the growth of peach seedlings[J].Ann Bot,1977,41:729-740.
    [238]Stoll MB. Loveys B,Dry P. Horonal changes induced by partial rootzone drying of irrgateed grapevine[J].J Exp Bot,2000,51:1627-1634.
    [239]方金豹,顾红,陈锦永,等.根域限制对幼年桃树生长发育的影响[J].中国农业科学2005,39(4):779-785.
    [240]孙守家,丛日晨,张宝鑫,等.断根处理和抑制蒸腾措施对银杏树体水分状况的影响[J].北京林业大学学报.2006,28,增刊2:20-24.
    [241]曹磊,袁玉欣,井学辉,等.断根处理对银杏树体生长、养分吸收及根系再生的影响[J].河北农业大学学报,2005,28(2):23-28.
    [242]石磊,孙澜,谢强,等.根域限制对桃幼树生长和果实品质的影响[J].中国南方果树,2007,36(5):57-58.
    [243]聂俊峰,邹养军,贾志宽.根域限制栽培在果树上的应用研究进展[J].陕西农业科学,2005,(3):114-116.
    [244]高清华,章镇,叶正文,等.设施栽培中限根对油桃幼树生长和结果的影响[J].上海农业学报,2004,20(3):37-41.
    [245]史军毕,齐改霞.苹果限根控冠丰产优质栽培技术[J].落叶果树,2010,(2):46-48.
    [246]马慧丽,吕德国,秦嗣军,等.寒富苹果不同限根栽培植株的光合特性比较[J].沈阳农业大学学报,2007,38(6):792-795.
    [247]王灿磊,孙亮,冷平,等.无纺布限根栽培对西瓜根域温度、植株生长和果实品质的影响[J].中国农业大学学报,2011,16(3):81-86.
    [248]吕德国.限根对果树生长发育的影响[J].沈阳农业大学学报,2000-08,31(4):361-364.
    [249]陈巍,郭秀珠,黄品湖,等.限根对油桃幼树生长和果实品质的影响[J].浙江农业科学,2012,(7):969-971.
    [250]高清华,叶正文,章镇,等.限根对不同品种油桃幼树光截获能力和一些生理特性的影响[J].西北植物学报,2006,26(3):467-472.
    [251]唐旭日.限根对油桃幼树生长和结果的研究[J].北方园艺2007,(7):27-29.
    [252]高清华,叶正文,李世诚,等.限根结合地膜覆盖对设施果树根际温度变化的影响[J].上海农业学报,2005,21(3):80-82.
    [253]杜国栋,吕德国,李学强,等.限根条件下混配基质对甜樱桃生长发育的影响[J].沈阳农业大学学报,2007,38(1):40-43.
    [254]秦嗣军,吕德国,张玉龙,等.砖槽限根对寒富苹果幼树养分分配及枝类构成的影响[J].北方园艺,2010,(1):1-4.
    [255]杨霁虹,井忠建,周武.信阳艾思油栗幼树的限根栽培试验[J].东北林业大学学报2007,35(7):16-17.
    [256]胡艳丽,毛志泉,沈向,等.限根栽培中根系垂直深度和土壤质地对苹果树体发育的影响[J].山东农业科学,2009,(8):37-40.
    [257]王振平,王世平,单守明,等.限根栽培对宁夏赤霞珠葡萄生长发育和果实品质的影响[J].中外葡萄与葡萄酒,2010,(1):11-14.
    [258]吕志明,吕德国.限根栽培对果树生长发育的影响及应用[J].北方果树,2004(增刊):59-60.
    [259]郭利红.限根栽培对柑桔树体发育的影响[J].石河子科技,2005,(5):7-9.
    [260]徐贵轩,李宏建,宋哲,等.不同拉枝角度对“望山红”苹果果实品质和枝类特性的影响[J].北方园艺,2011,(20):24-26.
    [261]杜荣,范崇辉.不同拉枝角度对嘎拉苹果果实品质的影响研究[J].价值工程,2011,(23):326-327.
    [262]郑后斌,龚增秀.成龄郁闭板栗园落头拉枝修剪技术[J].中国果树,2005,(1):59.
    [263]李永武,韩明玉,范崇辉.不同拉枝角度对苹果果实品质的影响[J].西北农林科技大学学报,2006,34(11):157-159.
    [264]廖立安,李志光,曹建明.翠冠梨引种试验及整形拉枝对其经济性状的影响[J].中南林学院学报,2003,23(2):79-81.
    [265]赵雨明.旱坡地枣园以3年生枝为单位拉枝修剪试验[J].东北林业大学学报,2001,29(4):113-119.
    [266]杨克强,孙彩玲.拉杖伎花在扛星苹果幼树上的表现[J].北方果树,1999,(1):34.
    [267]文解华.黑宝石李不同时间拉枝促花试验[J].广西园艺,2005,16(5):36-37.
    [268]王磊,姜远茂,彭福田.开张角度对苹果植株体内源激素含量及平衡的影响[J].中国农业科学,2010,43(22):4761-4764.
    [269]李帼英,丁智红.拉枝对扁桃成花的影响试验[J].中国园艺文摘,2011,(9):36-37.
    [270]吴鲜亮,何志爱,杨勇.拉枝对苹果梨幼树生长发育的影响[J].内蒙古农业科技,2008,(1):54-55.
    [271]许家辉,张泽煌,陈长忠.拉枝对枇杷枝梢生长与成花的影响[J].中国南方果树,2004,33(1):34-35.
    [272]戴文圣,王白坡,钱银才.拉枝对不同品种幼龄梨树生长结果的影响[J].浙江林学院学报,1996,13(2):123-129.
    [273]谭星林.拉枝对哈姆林甜橙早结丰产的效应[J].中国柑桔,1993,22(4):41.
    [274]徐绍清,吕建森,徐永江.拉枝对海涂黄花梨早期丰产的效应试验[J].浙江林业科技,2000,20(4):84-85.
    [275]赖坚定.拉枝对西子绿梨幼龄树生长结果的影响[J].福建果树,2004,(4):27.
    [276]王广鹏,孔德军,刘庆香.拉枝称术在板平上的应用[J].烟台果树,2004,32.
    [277]罗年军.拉枝技术在早酥梨树上的应用效果[J].山西果树,2005,(4):3.
    [278]李战平.拉枝开角对仁用杏生长结果的影响[J].西北园艺,1999,(1):6-7.
    [279]秦立者,吴颖欣,石海强.拉枝时期和角度对矮化中间砧苹果枝条生长的影响 [J].河北农业科学,2011,15(4):13-15.
    [280]倪勇.苹果密植园幼树拉枝效果好[J].中国果树,1992,(1):49
    [281]朴松树.扭拉枝整形使小苹果幼树早产早丰[J].北方园艺,1900,(10):33-35.
    [282]蔡兆翔.强拉枝、大改形对改善红富士苹果生长结果的技术研究[J].北方园艺,2007,(3):29-30
    [283]戴文圣,王白坡,钱银才,等.拉枝对不同品种幼龄梨树生长结果的影响[J].浙江林学院学报,1996,13(2):123-129.
    [284]杨勇,韩明玉,张满让,等.拉枝角度对富士芽和叶碳氮含量的影响[J].西北农业学报,2011,20(7):123-126.
    [285]许家辉,张泽煌,陈长忠,等.拉枝对枇杷枝梢生长与成花的影响[J].中国南方果树,2004,33(1):56-59.
    [286]李永武,韩明玉,范崇辉,等.不同拉枝角度对苹果果实品质的影响[J].西北农林科技大学学报(自然科学版),2006,34(11):12-17.
    [287]李国庆,付晓刚.库尔勒香梨幼树环剥技术探讨[J].新疆农垦科技,2009(2):78-81
    [288]卢立华,武泽民,宋海森,等.苹果梨树环剥效应试验[J].北方园艺,2009(8):171-172.
    [289]杨绍良.荔枝丰产栽培中不同环剥(割)技术的应用研究[J].现代农业科学,2008,15(3):6-11
    [290]贾晓梅,宋仁平,温陟良.环剥宽度对冬枣果实发育及品质的影响[J].北方园艺,2009,(10):82-83.
    [291]董汉伟,柳桂林,杨志杰,等.不同环剥方式对冬枣产量及果实品质的影响[J].烟台果树,2007,(3):42-44.
    [292]刘岩岩,赵德英,刘国成,等.环剥对无核白鸡心葡萄品质和产量的影响[J].中国果树,2009,(3):5-8.
    [293]周咏梅,姜建初,陈建红,等.环剥对杧果幼树光合作用及根韧皮部糖含量和成花的影响[J].广西农业生物科学,2008,27(1):89-92.
    [294]戴宏芬,邱燕萍,袁沛元,等.螺旋环剥对幼龄’桂味’荔枝果期光合和蒸腾作用的影响[J].园艺学报,2010,37(8):1241-1246.
    [295]邓旭,莫亿伟,田华,等.环剥对毛叶枣叶片氮同化能力和糖积累的影响[J].热带作物学报,2008,29(5):32-34.
    [296]郭明军,项殿芳,张培玉,等.山楂缓放旺枝不同部位环剥试验[J].河北果 树.1998,(1):10-1.
    [297]孙喜臣,佟海恩,吕铁男.刻芽和环割在寒富苹果上的应用效果[J].安徽农学通报,2009,15(11):41-43.
    [298]甘霖,陈梦龙,李顺望,等.环割促进柑桔花芽分化的生理机制研究[J].中国柑桔,1990,19(3):12-14
    [299]刘炳辉.环割及扭梢对红富士苹果幼树成花结果的影响[J].北方果树,1992(2):45-47.
    [300]隋洪涛,伊凯,李俊才,等.环割及扭梢对帕岩大尖把梨幼树成花的影响[J].北方果树,1995,(4):21-14.
    [301]侯义龙,张育明.山碴树夏季剪梢与扭梢的研究[J].北方果树,1992,(2):7-10
    [302]魏书.苹果幼树扭梢的促花效应及扭梢枝在营养和酶学方面的变化[J].园艺学报,1987,14(3):25-28.
    [303]陶俊.赤霉素、链霉素促进巨峰葡萄无核早熟技术的研究[J].落叶果树,1998,30(4):6-7.
    [304]蔡礼鸿,胡春根,罗正荣.几种植物生长调节剂对葡萄果实大小和品质的效应[J].中国南方果树,1996,25(2):45-47
    [305]王东昌,赵长星.化学调控对梨优质高产的作用[J].北京农业科学,2000,18(6):26-27.
    [306]陈世平,陈光铭,陈昌铭.系统化学调控对柑橘产量和品质的影响[J].广西园艺,2003,(4):36-38.
    [307]彭坚,李永红,席嘉宾,等.化学调控四季花龙眼成花座果的初步研究[J].西北植物学报,2005,25(7):1440-1445.
    [308]周兆禧,陈业渊,赵家桔.化学调控技术在荔枝生产中的应用[J].广西热带农业,2008,(2):1-4.
    [309]吴国欣,檀东飞,林跃鑫,等.新型速冻荔枝果皮抗褐变剂(KH-1)的作用机理[J].福建师范大学学报(自然科学版),1994,10(3):72-76.
    [310]林子腾.荔枝裂果原因的探讨及对策[J].云南热作科技,2002,25(3):43-44.
    [311]李洲,姚勇.刻芽和涂抽枝宝在苹果幼树上的应用效果研究[J].中国南方果树,2004,33(3):54-55.
    [312]王东昌,赵长星.化学调控对梨优质高产的作用[J].北京农业科学,2000,18(6):26-27.
    [313]刘志,高爱农,张敏.发枝素在苹果树上的应用效果[J].北方果树,1999,(2): 11-19.
    [314]康志雄,高志攀,陈顺伟,等.多效唑对桃形李幼树化学调控试验[J].林业科技通讯,1995,(8):20-21.
    [315]刘广勤,常有宏,蔺经.点枝灵对幼龄梨树发枝成形影响[J].北方园艺,1998-5:32-33.
    [316]刘吉祥,刘照亭.夏季修剪与化学控制对梨树新梢生长及成花的影响[J].现代农业科技,2011,(24):136,143.
    [317]邱春莲,齐国辉.植物生长调节剂在果树生产中[J].河北果树,2004,(4):1-4.
    [318]昝燕,徐金涛,韩明玉.普洛马林和不同短截处理对2年生苹果苗木分枝特性的影响[J].西北农林科技大学学报,2011,39(6):185-190.
    [319]苏明华,刘志成.龙眼化学调控技术研究[J].亚热带植物通讯.1997,26(2):7-11.
    [320]顾文锋.幼龄桂味荔枝短截疏梢疏花配套技术[J].广西农业科学,2003,(4):26-27.
    [321]宋润松,马玉坤,张宝香,等.山葡萄结果枝不同时期摘心对坐果率和产量影响[J].北方园艺,2011,(11):44-45
    [322]谢计跃.对龙眼结果母枝顶芽摘心调节开花期试验[J].中国南方果树,1999,28(4):28
    [323]阳明宇,刘斌.东魁杨梅春梢摘心对促进春叶转绿老熟枝梢增粗的效果[J].柑桔与亚热带果树信息,2004,20(11):38-39.
    [324]任宗春,魏宁,张艳红,等.大豆苗期摘心对产量及相关性状的影响[J].湖北农业科学,2011,50(6):1108-1100.
    [325]王洪善,李景刚.刺槐苗木摘心对地径生长无显著影响[J].林业科技开发,1993,(4):5.
    [326]瞿敏,徐迎春,董凤祥.赤霉素多效唑对薄壳山核桃容器苗生长的影响[J].林业实用技术,,2010,(7):11-12.
    [327]陈继富.不同摘心据度对巨峰葡萄生长与结果的影响[J].中外葡萄与葡萄酒,2000,(2):47-48.
    [328]席万鹏,王泽浩.不同摘心处理对密植蟠桃生长和结果的影响[J].石河子大学学报,2007,25(4):432-434.
    [329]刘鹏,赵宝龙,赵瑞丽,等.不同留枝数与摘心强度对寒地栽培枣树产量和品质的影响,河南农业科学,2101,41(2):118-121.
    [330]宋润刚,张国华,路文鹏,等.不同留叶数摘心对山葡萄主栽品种果实品质和产量的影响[J].中外葡萄与葡萄酒,2006,(6):15-17.
    [331]万成功,周义奎,谢同建.不同剪梢程度对桑叶产质量的影响试验[J].蚕桑茶叶通讯,2008,(1):7-9.
    [332]王泽林,朱军,李永健.不同剪梢程度对春叶产量的影响[J].蚕桑通报,2002,33(3):24-26.
    [333]刘会宁.不同程度短截和摘心对“青峰冬桃”幼树成枝的影响[J].农业与技术,2002,22(2):37-41.
    [334]华敦谅,潘江炎,吴友军,等.板栗新梢摘心、摘叶对促发分枝的效果[J].浙江柑橘,2007,24(1)40-42.
    [335]胡乃成,董存田,项殿芳.安梨果台副梢摘心对座果率的影响[J].河北农业技术师范学院学报,1989,3(4):73-76.
    [336]李玉鼎,张军翔.花前摘心对酿酒葡萄坐果率的影响[J].中外葡萄与葡萄酒,2002,(4):27-29.
    [337]杨恩聪,景德华,李进学,等.留桩摘心对柠檬幼树成枝与挂果的效应[J].西南农业学报,2009,22(4):1053-1056.
    [338]韩红发,陈树启,王玉霞.晋桑一号剪稍程度与春季产叶量的关系[J].北方蚕业,1996,(4):9-10.
    [339]王多东,邵金红,王小兵.灰枣直播建园嫁接当年摘心对生长结果的影响[J].山西果树,2012,(3):9-10.
    [340]赵雨明.旱坡地密植枣园新生枣头夏季摘心试验[J].东北林业大学报,2001,29(4):111-112.
    [341]张凤敏,宫美英,丁海宏.海棠幼苗摘心对加粗生长影响的试验[J].北方果树,1990,(3):28-29.
    [342]李开林,杨胜,胡仕叶.隔年伐条桑园冬季不同剪梢程度与春产叶量的关系[J].蚕学通讯,2009,29(4):13-15.
    [343]苏月珍,张桂芳,黄文珍.冻害后在不同时间剪梢对桑树产叶量的影响[J].上海农业科技,2008,(6):128-129.
    [344]张治安,杨福,陈展宇,等.菰叶片净光合速率日变化及其与环境因子的相互关系[J].中国农业科学,2006,39(3):502-509.
    [345]李东方,张胜利,胡宁,等.金银花叶片Pn日变化影响因子间的相关性研究[J].湖北农业科学,2010,49(3):628-629,631.
    [346]陈振文.祁阳县油茶林分结构和质量状况的研究[D].湖南农业大学硕士论文,2009:12.
    [347]Asada T, ArakawaO. The analysisof light interception and leafarea index (LAI) in central leader'Fuji/M26'and Jonagold/26 apple or- chards producing high yields and quality fruit. Acta. Hort.,2000.525:421-423.
    [348]Cohen S, FuchsM. The distribution of leaf area, radiation, photosynthesis and transpiration in a shamouti orange hedgerow orchard:Part I. Leaf area radiation. Agr.i For. Meteo.,1987.40:123-144.
    [349]Cohen S, MosoiM, MeronMM. Canopy cumpiness and radiation penetration in a young hedgerow apple orchard. Agr.i For. Meteo.,1995.76:185-200.
    [350]Francisco C, FetcherN.1998. Three dimensionalmodel of the interception of lightby a canopy. Agr.i For. Meteo.,90:215-233.
    [351]Green S R, GreerD H, Wunsche JN, CaspariH, Palmer JW, Wunsche JN. Measurements of light interception and utilization in apple orchard. Acta. Hort., 2001.557:369-376.