考虑界面非连续变形的钢—混凝土组合梁桥数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢-混凝土组合结构是由剪力钉等剪力连接件将钢和混凝土两种材料部件连接,通过粘着、摩擦以及机械作用结合成一体后共同工作的结构体系。钢与混凝土之间界面的力学行为极为复杂,且对组合结构桥梁的准确分析评估具有重要影响。本文依托浙江省自然科学基金“组合结构桥梁界面行为多尺度分析方法研究”,围绕钢-混组合梁桥界面非连续变形的关键问题,对考虑非连续变形的钢-混凝土组合结构数值模拟进行了深入研究。主要成果如下:
     (1)采用多折线模型来描述界面正应力-张开位移关系和界面剪切应力-滑移关系,基于通用有限元软件ABAQUS的UEL接口编译了多折线模式无厚度粘聚力界面单元,用一数值算例验证其对结构连接缝起裂扩展该非线性、非连续变形的过程模拟分析的可行性,从解决了钢混组合组合结构结合界面非连续变形模拟的问题。
     (2)采用多折线粘聚区域模型模拟钢与混凝土之间界面的滑移与张开脱离,建立了组合结构的推出试验三维数值分析模型,对界面间剪切滑移及沿界面法向张开位移分布进行分析,讨论了底部边界对计算结果的影响,得到了剪力连接件的抗剪承载力和抗剪刚度;采用能量原理推导了抗剪连接件的理论刚度并与数值模拟结果和文献中的试验结果进行了对比验证。由此得到了钢混组合结构剪力连接件抗剪刚度的确定方法。
     (3)针对组合结构使用过程中剪切连接件存在的拉拔状态及剪力连接件的拔出过程混凝土的拉裂与扩展的数值模拟难点,提出了采用基于强化有限元的无厚度CZM单元,以粘聚区域模型描述剪力连接件拔出过程裂纹的开裂与扩展,并建立了钢-混凝土剪力连接件拔出有限元分析模型,分析了拔出过程荷载-位移曲线,并得到了剪力连接件的抗拔承载力和拔出过程的破坏形态。从而实现了对剪力连接键拔出过程中混凝土的拉裂与裂缝扩展等非连续变形的分析模拟。
     (4)考虑到实际桥梁所受车辆荷载作用一般垂直于混凝土板与钢梁连接界面,为准确分析组合结构桥梁受力性能,特别是弹性工作阶段剪力钉的受力状态,建立了考虑界面间粘聚力和摩擦力的影响组合结构桥梁受力性能分析模型。构建了连续组合箱梁数值分析模型,并分析了剪力钉的受力状态、钢与混凝土界面间滑移量及界面间应力分布。从而提出了考虑材料界面粘结特性对组合梁受力性能影响的分析方法。
     (5)采用物理区域与单元网格相独立的策略,并引入无厚度界面单元模拟钢与混凝土之间界面的非连续变形,提出了考虑界面滑移的三维强化有限元分析方法。采用该方法对考虑界面非连续变形的组合梁的挠度、界面滑移和截面上下缘纵向应力等进行了分析。算例结果表明本文数值解可以与解析解吻合,从而验证了所编译有限元程序的准确性。所采用的物理区域与单元网格相独立的强化有限元,可以根据物理单元力学描述的需要选择数学单元的大小和形状,一个单元内可以分成多个具有不同材料及不同受力特点的区域,可以大大减少复杂结构的网格数量,提高计算效率。由此建立了适用于考虑界面滑移的组合梁分析的高效计算方法。
     (6)以港珠澳大桥实际工程为背景,建立有限元分析模型,对大跨度复杂变截面的组合梁桥结构进行分析,实现了考虑界面滑移的三维强化有限元在规模庞大、受力分析繁琐的实际桥梁工程结构中的应用,从而验证了该方法的有效性。
Steel-concerte composite structures consist of steel and concrete parts which are connected by shear connector such as the widely-used headed stud. Through the chemistry bonding, interface friction and mechanical action the two different materials parts are combined as a composite structure system. The mechanical behavior of interface between steel and concrete is complex, and it has important effects on the accurate assessment of steel-concerte composite bridge structures. Base the support from Zhejiang Provincial Natural Science Foundation of "Study on multi-scale analysis method for interface behavior of composite bridge structure", this paper focuses on the key problem of discontinuous deformation of the interface between concrete and steel, and numerical simulation analysis of steel-concrete composite structures considering discontinuous deformation was carried out. The main research contents are as follows:
     (1) Multiple broken lines mode conesive zone model theory was used to analyze the interface problems in bridge structures, and a zero thickness cohesive element was implemented via the user-defined element subroutine UEL in ABAQUS. Then through a numerical example, discontinuous deformation of the interface, the ultimate load-bearing capacity and the corresponding failure mode were obtained. The feasibility of the proposed method in steel-concerte composite structure simulation analysis is verified.
     (2) Multiple broken lines mode cohesive zone model was used to simulate the tangential sliding and normal separation of the interfaces. Then a three-dimensional numerical analysis model was established for push-out testing to analyze the load-displacement curves of the push-out test process, interface relative displacement, and interface stress distribution. And the shear capacity and shear stiffness of shear connectors were accurately calculated. The influences of the constraints of the concrete slab base were discussed. Then theoretical derivation was carried out upon the shear stiffness of shear connectors.Thus method to calculate the shear stiffness of shear connectors was determined.
     (3) The shear connectors are not only subjected to shear forces, but may also subject to tensile force in the loading process. The oncrete crack initiation and propagation of the pull-out process is one of the numerical analysis difficulties. A zero-thickness cohesive interface element based on the enhanced finite element method was introduced. And cohesive zone model was used to describe the crack initiation and propagation of the pull-out process. Then numerical simulation analysis of a pull-out test model was carried out. Results showed load-displacement curves of the structure, pull-out capacity, and crack propagation patterns of the concrete slab. Discontinuous deformation numerical simulation has been realized. Results of this study can be used for the pull-out capacity analysis and the size design of shear connectors of composite structures.
     (4) On bridge structures, vehicle load is generally perpendicular to the interface of concrete slab and steel girder, and the effect of the interface bond and friction can be more apparent during traffic loading. Thus consideration of bond and friction is needed, especially to accurately calculate the stress state of shear studs during the elastic stage. Mechanical analysis model considering interface bonding and friction was developed for steel-concrete composite bridge structures. A finite element model of a two span composite continuous box-girder was established. Internal force of shear studs, slip distribution and stress distribution of the interface were analyzed. It can carry out the analysis of composite structure without the need to rely on the constitutive laws of shear connectors obtained from push-out tests.
     (5) Strategy with separated mathematical and physical mesh was adopted, and zero thickness interface element was introduced to simulate the discontinuous deformation of the interface. A three dimensional enhance finite element model considering interface slip was developed. Then finite element models with different boundary conditions considering interface slips were established. Deflections, interface slips and the stresses of control sections were analyzed. Numerical results can agree well with theoretical solutions, and accuracy of the program was verified. With separated mathematical and physical mesh, the size and shape of mathematical elements can be chosen according to the needs of mechanical description of physical elements.In one mathematical element, the physical area can be divided into multiple sub-domains. Each sub-domain can have different materials and different mechanical characteristics. Thus it can greatly reduce the number of mesh elements. The proposed method can obtain high computation efficiency, and can be used for the large scale bridge structures with complicated mechanical behaviors.
     (6) Taking the Hong Kong-Zhuhai-Macao Bridge as the engineering background, three dimensional finite element model was established, and analysis of large span bridge structures with variable cross-sections was carried out. The three dimensional enhance finite element model considering interface slip was successfully applied to the analysis of actual large scale bridge structures with complicated mechanical behaviors. Thus the feasibility of the proposed method was verified.
引文
[1-1]刘玉擎.组合结构桥梁[M].北京:人民交通出版社,2005.
    [1-2]邵长宇.大跨度钢—混凝土连续组合箱梁桥关键技术研究[D].同济大学,2007.
    [1-3]邵长宇.组合结构桥梁—国际发展与国内展望[C].中国天津:2008.
    [1-4]聂建国,余志武.钢-混凝土组合梁在我国的研究及应用[J].土木工程学报.1999(2):3-8.
    [1-5]Chapman J C, Balakrishnan S. Experiments on composite beams[J]. Structural Engineer.1964, 42(11):369-383.
    [1-6]Si Larbi A, Ferrier E, Jurkiewiez B, et al. Static behaviour of steel concrete beam connected by bonding[J]. Engineering Structures.2007,29(6):1034-1042.
    [1-7]Bouazaoui L, Perrenot G, Delmas Y, et al. Experimental study of bonded steel concrete composite structures[J]. Journal of Constructional Steel Research.2007,63(9):1268-1278.
    [1-8]Berthet J F, Yurtdas I, Delmas Y, et al. Evaluation of the adhesion resistance between steel and concrete by push out test[J]. International Journal of Adhesion and Adhesives.2011,31(2):75-83.
    [1-9]钢结构设计规范(GB J17-88)[S].北京:中国计划出版社,1989.
    [1-10]公路桥涵钢结构及木结构设计规范(JTJ025-86)[S].北京:人民交通出版社.,1987.
    [1-11]钢结构设计规范(GB 50017-2003)[S].北京:中国计划出版社.,2003.
    [1-12]聂建国,沈聚敏,余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J].土木工程学报.1995,28(6):11-17.
    [1-13]聂建国,沈聚敏,袁彦声.钢-混凝土简支组合梁变形计算的一般公式[J].工程力学.1994,11(1):21-27.
    [1-14]童根树,夏骏.考虑滑移影响的钢-混凝土组合梁的刚度[J].建筑钢结构进展.2008,10(06):1-8.
    [1-15]夏骏.钢-混凝土组合梁挠度计算简化方法和负弯矩区的畸变屈曲分析[D].浙江大学,2006.
    [1-16]付果,薛建阳,葛鸿鹏,等.钢-混凝土组合梁界面滑移及变形性能的试验研究[J].建筑结构.2007,37(10):69-71.
    [1-17]付果.考虑界面滑移及掀起影响的钢—混凝土组合梁试验与理论研究[D].西安建筑科技大学,2008.
    [1-18]徐荣桥,陈德权.组合梁挠度计算的改进折减刚度法[J].工程力学.2013,30(02):285-291.
    [1-19]Ansourian P. Experiments on continuous composite beams.[C]. Thomas Telford,1982.
    [1-20]蒋丽忠,余志武,李佳.均布荷载作用下钢-混凝土组合梁滑移及变形的理论计算[J].工程力学.2003,20(02):133-137.
    [1-21]聂建国,王洪全.钢-混凝土组合梁纵向抗剪的试验研究[J].建筑结构学报.1997(02):13-19.
    [1-22]聂建国,崔玉萍.钢-混凝土组合梁在单调荷载下的变形及延性[J].建筑结构学报.1998(02):30-36.
    [1-23]苏庆田,杨国涛,吴冲.预制预应力混凝土板组合梁受力性能试验[J].同济大学学报(自然科学版).2012(07):996-1002.
    [1-24]薛文,陈驹,吴麟,等.栓钉锈蚀钢-混凝土组合梁试验研究[J].建筑结构学报.2013(S1):222-226.
    [1-25]熊虎铖.钢—混凝土组合梁掀起效应的试验与理论研究[D].西安建筑科技大学,2009.
    [1-26]Keilers C H, Chang F. Identifying delamination in composite beams using built-in piezoelectrics: part Ⅰ-experiments and analysis[J]. Journal of Intelligent Material Systems and Structures.1995, 6(5):649-663.
    [1-27]孙曼,植涌,刘浩吾.基于光纤光栅的组合结构界面脱空变形检测[J].传感器技术.2005(12):77-79.
    [1-28]Pallars L, Hajjar J F. Headed steel stud anchors in composite structures, Part Ⅰ:Shear[J]. Journal of Constructional Steel Research.2010,66(2):198-212.
    [1-29]Ollgaard J G, Slutter R G, Fisher J W. Shear strength of stud connectors in lightweight and normal-weight concrete[J]. Engineering Journal-American Institute of Steel Construction INC. 1971,8(2):55.
    [1-30]Menzies J B. CP 117 and shear connectors in steel-concrete composite beams made with normal-density or lightweight concrete[J]. Structural Engineer.1971.
    [1-31]Jayas B S, Hosain M U. Behaviour of headed studs in composite beams:push-out tests[J]. Canadian journal of civil engineering.1988,15(2):240-253.
    [1-32]周惟德,王晓毅.T型连接件的格构式推出试验研究——关于钢-砼组合桁架系列研究之一[J].合肥工业大学学报(自然科学版).1993(03):79-85.
    [1-33]周惟德,王晓毅.拴钉连接件的格构式推出试验研究——关于钢-砼组合桁架系列研究之二[J].合肥工业大学学报(自然科学版).1993(04):81-86.
    [1-34]周惟德,白家楠,雷源铁,等.角钢连接件的格构式推出试验研究——关于钢—砼组合桁架系列研究之四[J].合肥工业大学学报(自然科学版).1994(02):126-130.
    [1-35]周惟德,白凤,郑德尧,等.反放弯筋连接件的格构式推出试验研究—关于钢—砼组合桁架系列研究之三[J].合肥工业大学学报(自然科学版).1994(01):81-86.
    [1-36]李现辉,李国强.腹板嵌入式组合梁中抗剪连接件推出试验[J].建筑结构学报.2009(04):78-84.
    [1-37]石宵爽,王清远,欧阳雯欣,等.PBL剪力连接件粘结滑移性能的静载推出试验研究[J].工程力学.2012(01):168-175.
    [1-38]周安,戴航,刘其伟,等.栓钉在混凝土受拉状态中的抗剪试验研究[J].公路交通科技.2007(12):89-92.
    [1-39]杨岳华,刘永健.群钉连接件推出试验及塑性分析[J].桥梁建设.2013(04):80-86.
    [1-40} Xu C, Sugiura K, Wu C, et al. Parametrical static analysis on group studs with typical push-out tests[J]. Journal of Constructional Steel Research.2012,72(0):84-96.
    [1-41]荣学亮,黄侨,任远.栓钉连接件锈蚀后静力性能和抗疲劳性能的试验研究[J].土木工程学报.2013(02):10-18.
    [1-42]傅中秋,吉伯海,陈晶晶,等.钢管轻集料混凝土组合界面黏结滑移性能[J].河海大学学报(自然科学版).2009(03):317-322.
    [1-43]李红,马洪宝,潘皓.T型钢与混凝土粘结强度的试验研究[J].西安建筑科技大学学报(自 然科学版).2008(03):307-311.
    [1-44]徐金俊,陈宗平,薛建阳,等.圆钢管再生混凝土界面黏结失效的推出试验研究[J].建筑结构学报.2013(07):148-157.
    [1-45]薛建阳,赵鸿铁,杨勇,等.型钢混凝土粘结滑移性能的推出试验及其分析(英文)[J].西安建筑科技大学学报(自然科学版).2007(03):320-326.
    [1-46]张建文,曹双寅,刘煜.型钢轻骨料混凝土黏结滑移性能试验研究[J].东南大学学报(自然科学版).2009(03):541-545.
    [1-47]Pallars L, Hajjar J F. Headed steel stud anchors in composite structures, Part Ⅱ:Tension and interaction[J]. Journal of Constructional Steel Research.2010,66(2):213-228.
    [1-48]Zhao G, Li A. Numerical study of a bonded steel and concrete composite beam[J]. Computers & Structures.2008,86(19-20):1830-1838.
    [1-49]Luo Y, Li A, Kang Z. Parametric study of bonded steel-concrete composite beams by using finite element analysis[J]. Engineering Structures.2012,34(0):40-51.
    [1-50]Newmark N M, Siess C P, Viest I. Tests and analysis of composite beams with incomplete interaction[J]. Proc Soc Exp Stress Anal.1951,9(1):75-92.
    [1-51]Goodman J R P E P. Layered beam systems with interlayer slip[J]. Journalof Structural Division ASCE.1968,94(11):2535-2547.
    [1-52]Girhammar U A, Gopu V K. Composite beam-columns with interlayer slip-exact analysis[J]. Journal of Structural Engineering.1993,119(4):1265-1282.
    [1-53]Wang Y C. Deflection of steel-concrete composite beams with partial shear interaction[J]. Journal of Structural Engineering.1998,124(10):1159-1165.
    [1-54]余志武,蒋丽忠,李佳.集中荷载作用下钢-混凝土组合梁界面滑移及变形[J].土木工程学报.2003,36(08):1-6.
    [1-55]Murakami H. A laminated beam theory with interlayer slip[J]. Journal of Applied Mechanics. 1984,51:551.
    [1-56]Xu R, Wu Y. Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory[J]. International Journal of Mechanical Sciences.2007,49(10): 1139-1155.
    [1-57]Xu R, Wu Y. Two-dimensional analytical solutions of simply supported composite beams with interlayer slips[J]. International Journal of Solids and Structures.2007,44(1):165-175.
    [1-58]Chen W Q, Wu Y F, Xu R Q. State space formulation for composite beam-columns with partial interaction[J]. Composites Science and Technology.2007,67(11-12):2500-2512.
    [1-59]Shen X, Chen W, Wu Y, et al. Dynamic analysis of partial-interaction composite beams[J]. Composites Science and Technology.2011,71(10):1286-1294.
    [1-60]沈旭栋,陈伟球,徐荣桥.有轴力的部分作用组合梁的动力分析[J].振动工程学报.2012,25(5):514-521.
    [1-61]沈旭栋.部分粘结组合梁的若干动静力问题[D].浙江大学,2012.
    [1-62]戚菁菁,蒋丽忠,张传增,等.界面滑移、竖向掀起及剪切变形对钢-混凝土组合连续梁动力性能的影响[J].中南大学学报(自然科学版).2010(06):2334-2343.
    [1-63]Girhammar U A, Pan D H. Exact static analysis of partially composite beams and beam-columns[J]. International Journal of Mechanical Sciences.2007,49(2):239-255.
    [1-64]Girhammar U A, Pan D H, Gustafsson A. Exact dynamic analysis of composite beams with partial interaction[J], International Journal of Mechanical Sciences.2009,51(8):565-582.
    [1-65]Wheat D L, Calixto J M. Nonlinear analysis of two-layered wood members with interlayer slip[J]. Journal of Structural Engineering.1994,120(6):1909-1929.
    [1-66]Ayoub A. A two-field mixed variational principle for partially connected composite beams[J]. Finite Elements in Analysis and Design.2001,37(11):929-959.
    [1-67]Xu R, Chen D. Variational principles of partial-interaction composite beams[J]. Journal of Engineering Mechanics.2011,138(5):542-551.
    [1-68]Xu R, Wang G. Variational principle of partial-interaction composite beams using Timoshenko's beam theory[J]. International Journal of Mechanical Sciences.2012,60(1):72-83.
    [1-69]Oguejiofor E C, Hosain M U. Numerical analysis of push-out specimens with perfobond rib connectors[J]. Computers & Structures.1997,62(4):617-624.
    [1-70]Al-Darzi S, Chen A R, Liu Y Q. Parametric studies of push-out test with perfobond rib connector[C].2007.
    [1-71]Mirza 0, Uy B. Effects of the combination of axial and shear loading on the behaviour of headed stud steel anchors[J], Engineering Structures.2010,32(1):93-105.
    [1-72]Johnson R P, Oehlers D J. Analysis and design for longitudinal shear in composite T-beams[C]. 1981.
    [1-73]Kim B, Wright H D, Cairns R. The behaviour of through-deck welded shear connectors:an experimental and numerical study[J]. Journal of Constructional Steel Research.2001,57(12): 1359-1380.
    [1-74]Kalfas C, Pavlidis P. Load-slip curve of shear connectors evaluated by FEM analysis[C].1997.
    [1-75]Lam D, El-Lobody E. Behavior of headed stud shear connectors in composite beam[J]. Journal of Structural Engineering-ASCE.2005,131(1):96-107.
    [1-76]Ellobody E, Young B. Performance of shear connection in composite beams with profiled steel sheeting[J]. Journal of Constructional Steel Research.2006,62(7):682-694.
    [1-77]Guezouli S, Lachal A. Numerical analysis of frictional contact effects in push-out tests[J]. Engineering Structures.2012,40:39-50.
    [1-78]Okada J, Yoda T, Lebet J. A study of the grouped arrangements of stud connectors on shear strength behavior[J], Structural Engineering/Earthquake Engineering.2006,23(1):75s-89s.
    [1-79]Needleman A. A continuum model for void nucleation by inclusion debonding[J]. Journal of
    Applied Mechanics-Transactions of the ASME.1987,54(3):525-531.
    [1-80]Needleman A. Numerical modeling of crack growth under dynamic loading conditions[J].
    Computational Mechanics.1997,19(6):463-469.
    [1-81]Nguyen H T, Kim S E. Finite element modeling of push-out tests for large stud shear connectors[J]. Journal of Constructional Steel Research.2009,65(10-11):1909-1920.
    [1-82]Ozbolt J, Eligehausen R, Reinhardt H W. Size effect on the concrete cone pull-out load[J]. International Journal of Fracture.1999,95(1-4):391-404.
    [1-83]Ozbolt J, Rah K K, Mestrovic D. Influence of loading rate on concrete cone failure[J]. International Journal of Fracture.2006,139(2):239-252.
    [1-84]Qian S Z, Li V C. Headed Anchor/Engineered Cementitious Composites (ECC) Pullout Behavior[J]. Journal of Advanced Concrete Technology.2011,9(3):339-351.
    [1-85]Chahrour A H, Ohtsu M. Analysis of anchor bolt pull-out tests by a 2-domain boundary-element method[J]. Materials and Structures.1995,28(178):201-209.
    [1-86]Cusatis G, Di Luzio G, Rota M. Simulation of headed anchor failure[M]. Computational modelling of concrete structures, leiden:a a balkema publishers,2003,683-688.
    [1-87]Soparat P, Nanakorn P. Analysis of anchor bolt pullout in concrete by the element-free Galerkin method[J]. Engineering Structures.2008,30(12):3574-3586.
    [1-88]凌道盛,徐小敏,陈云敏.数学网格和物理网格分离的有限单元法(Ⅰ):基本理论[J].计算力学学报.2009,26(3):401-407.
    [1-89]Ling D S, Yang Q D, Cox B. An augmented finite element method for modeling arbitrary discontinuities in composite materials[J]. International Journal of Fracture.2009,156(1):53-73.
    [1-90]凌道盛,韩超,陈云敏.数学网格和物理网格分离的有限单元法(Ⅱ):粘聚裂纹扩展问题中的应用[J].计算力学学报.2009,26(3):408-414.
    [1-91]Fang X J, Yang Q D, Cox B N, et al. An augmented cohesive zone element for arbitrary crack coalescence and bifurcation in heterogeneous materials[J]. International Journal for Numerical Methods in Engineering.2011,88(9):841-861.
    [1-92]Williamson E B, Kim J, Frank K H. Redundancy evaluation of twin steel box-girder bridges using finite element analyses[C]. Orlando, Florida, United States:ASCE,2010.
    [1-93]Wang A J, Chung K F. Advanced finite element modelling of perforated composite beams with flexible shear connectors[J]. Engineering Structures.2008,30(10):2724-2738.
    [1-94]Salari M R, Spacone E. Finite element formulations of one-dimensional elements with bond-slip[J]. Engineering Structures.2001,23(7):815-826.
    [1-95]Shim C S, Lee P G, Chang S P. Design of shear connection in composite steel and concrete bridges with precast decks[J]. Journal of Constructional Steel Research.2001,57(3):203-219.
    [1-96]Gattesco N. Analytical modeling of nonlinear behavior of composite beams with deformable connection[J]. Journal of Constructional Steel Research.1999,52(2):195-218.
    [1-97]Baskar K, Shamnugam N E, Thevendran V. Finite-element analysis of steel-concrete composite plate girder[J]. Journal of Structural Engineering-ASCE.2002,128(9):1158-1168.
    [1-98]Jeong Y, Kim H, Koo H, et al. Steel-concrete interface behavior and analysis for push-out[J]. KSCE Journal of Civil Engineering.2005,9(2):119-124.
    [1-99]Jeong Y, Kim H, Kim S. Partial-interaction analysis with push-out tests[J]. Journal of Constructional Steel Research.2005,61(9):1318-1331.
    [1-100]Jeong Y. Simplified model to predict partial-interactive structural performance of steel-concrete composite slabs[J]. Journal of Constructional Steel Research.2008,64(2):238-246.
    [1-101]Tahmasebinia F, Ranzi G, Zona A. Beam Tests of Composite Steel-concrete Members:A Three-dimensional Finite Element Model[J]. International Journal of Steel Structures.2012,12(1): 37-45.
    [2-1]张军.界面应力及内聚力模型在界面力学的应用[M].郑州:郑州大学出版社,2011.
    [2-2]许金泉.界面力学[M].北京:科学出版社,2006.
    [2-3]Yang Q D, Thouless M D. Mixed-mode fracture analyses of plastically-deforming adhesive joints[J]. International Journal of Fracture.2001,110(2):175-187.
    [2-4]Ling D S, Yang Q D, Cox B. An augmented finite element method for modeling arbitrary discontinuities in composite materials[J]. International Journal of Fracture.2009,156(1):53-73.
    [2-5]凌道盛,涂福彬,卜令方.基于粘聚区域模型的边坡渐进破坏过程强化有限元分析[J].岩土工程学报.2012,34(8):1387-1393.
    [2-6]Moes N, Belytschko T. Extended finite element method for cohesive crack growth[J]. Engineering Fracture Mechanics.2002,69(7):813-833.
    [2-7]Dugdale D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids. 1960,8(2):100-104.
    [2-8]Yang Q D, Thouless M D, Ward S M. Numerical simulations of adhesively-bonded beams failing with extensive plastic deformation[J]. Journal of the Mechanics and Physics of Solids.1999,47(6): 1337-1353.
    [2-9]Yang Q, Cox B. Cohesive models for damage evolution in laminated composites[J]. International Journal of Fracture.2005,133(2):107-137.
    [2-10]Belytschko T, Chen H, Xu J, et al. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment[J]. International Journal for Numerical Methods in Engineering.2003,58(12):1873-1905.
    [2-11]Song S H, Paulino G H, Buttlar W G. A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material[J]. Engineering Fracture Mechanics.2006, 73(18):2829-2848.
    [2-12]Kim H, Buttlar W G. Multi-scale fracture modeling of asphalt composite structures[J]. Composites Science and Technology.2009,69(15):2716-2723.
    [2-13]Park K, Paulino G H, Roesler J R. A unified potential-based cohesive model of mixed-mode fracture[J]. Journal of the Mechanics and Physics of Solids.2009,57(6):891-908.
    [2-14]Zhang Z J, Paulino G H. Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials[J]. International Journal of Plasticity.2005,21(6):1195-1254.
    [2-15]吴业飞,陈伟球.基于内聚力模型的FRP-混凝土粘结强度分析[J].工程力学.2010(7):113-119.
    [2-16]Wang J. Cohesive-bridging zone model of FRP-concrete interface debonding[J]. Engineering Fracture Mechanics.2007,74(17):2643-2658.
    [2-17]凌道盛,韩超,陈云敏,等.土结接触面粘聚区域模型及渐进累积破坏分析[J].岩土工程学报.2011(9):1405-1411.
    [2-18]凌道盛,韩超,陈云敏.数学网格和物理网格分离的有限单元法(Ⅱ):粘聚裂纹扩展问题中的应用[J].计算力学学报.2009,26(3):408-414.
    [2-19]周储伟,杨卫,方岱宁.内聚力界面单元与复合材料的界面损伤分析[J].力学学报.1999,31(3):372-377.
    [2-20]Feih S. Development of a user element in ABAQUS for modelling of cohesive laws[M]. Denmark:Pitney Bowes Management Services Denmark A/S,2005.
    [2-21]De-Andres A, Perez J L, Ortiz M. Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading[J]. International Journal of Solids and Structures.1999,36(15):2231-2258.
    [2-22]虞青俊.内聚单元模型在混凝土断裂数值模拟中的应用[D].西北工业大学,2003.
    [2-23]魏召兰,蒲黔辉,施洲.基于有限元分析的实腹式石拱桥合理计算模式研究[J].铁道建筑.2010(9):9-12.
    [2-241聂建国,樊健生.700年石拱桥的静力加载试验与结构分析[J].清华大学学报(自然科学版).2003,43(6):840-843.
    [2-25]项贻强,李秋萍,罗关洲.绍兴古石拱桥结构的系列及保护对策[J].江南大学学报(自然科学版).2010(5):563-567.
    [2-26]项贻强,高群,王素琴,等.三跨连续石拱古桥承载能力的分析研究[J].浙江建筑.2011(4):25-30.
    [2-27]钱令希.赵州桥的承载能力分析[J].土木工程学报.1987(4):39-48.
    [2-28]Gianmarco D F. Assessment of the load-carrying capacity of multi-span masonry arch bridges using fibre beam elements[J]. Engineering Structures.2009,31(8):1634-1647.
    [2-29]Toth A R, Orban Z, Bagi K. Discrete element analysis of a stone masonry arch[J]. Mechanics Research Communications.2009,36(4):469-480.
    [2-30]Fanning P J, Boothby T E. Three-dimensional modelling and full-scale testing of stone arch bridges[J]. Computers & amp; Structures.2001,79(29-30):2645-2662.
    [2-31]李秋萍.古桥结构体系及石拱桥的分析、监测评估与保护[D].浙江大学,2011.
    [2-32]中华人民共和国交通部.JTG D61-2005.公路圬工桥涵设计规范[S].北京,2005.
    [2-33]徐世娘.混凝土断裂力学[M].北京:科学出版社,2011.
    [2-34]周志强.粘结构件粘结性能的内聚力模型分析[D].浙江大学,2006.
    [3-1]An L, Cederwall K. Push-out tests on studs in high strength and normal strength concrete[J]. Journal of Constructional Steel Research.1996,36(1):15-29.
    [3-2]Chapman J C, Balakrishnan S. Experiments on composite beams[J]. Structural Engineer.1964, 42(11):369-383.
    [3-3]Jayas B S, Hosain M U. Behaviour of headed studs in composite beams:push-out tests[J]. Canadian journal of civil engineering.1988,15(2):240-253.
    [3-4]Johnson R P, Oehlers D J. Analysis and design for longitudinal shear in composite T-beams[C]. 1981.
    [3-5]Ollgaard J G, Slutter R G, Fisher J W. Shear strength of stud connectors in lightweight and normal-weight concrete[J]. Engineering Journal-American Institute of Steel Construction INC. 1971,8(2):55.
    [3-6]Pallars L, Hajjar J F. Headed steel stud anchors in composite structures, Part Ⅰ:Shear[J]. Journal of Constructional Steel Research.2010,66(2):198-212.
    [3-7]Xue D, Liu Y, Yu Z, et al. Static behavior of multi-stud shear connectors for steel-concrete composite bridge[J]. Journal of Constructional Steel Research.2012,74:1-7.
    [3-8]Oguejiofor E C, Hosain M U. Numerical analysis of push-out specimens with perfobond rib connectors[J]. Computers & Structures.1997,62(4):617-624.
    [3-9]Al-Darzi S, Chen A R, Liu Y Q. Parametric studies of push-out test with perfobond rib connector[C].2007.
    [3-10]Mirza O, Uy B. Effects of the combination of axial and shear loading on the behaviour of headed stud steel anchors[J]. Engineering Structures.2010,32(1):93-105.
    [3-11]Kim B, Wright H D, Cairns R. The behaviour of through-deck welded shear connectors:an experimental and numerical study[J]. Journal of Constructional Steel Research.2001,57(12): 1359-1380.
    [3-12]Kalfas C, Pavlidis P. Load-slip curve of shear connectors evaluated by FEM analysis[C].1997.
    [3-13]Lam D, E1-Lobody E. Behavior of headed stud shear connectors in composite beam[J]. Journal of Structural Engineering-ASCE.2005,131(1):96-107.
    [3-14]Ellobody E, Young B. Performance of shear connection in composite beams with profiled steel sheeting[J]. Journal of Constructional Steel Research.2006,62(7):682-694.
    [3-15]Guezouli S, Lachal A. Numerical analysis of frictional contact effects in push-out tests[J]. Engineering Structures.2012,40:39-50.
    [3-16]Okada J, Yoda T, Lebet J. A study of the grouped arrangements of stud connectors on shear strength behavior[J]. Structural Engineering/Earthquake Engineering.2006,23(1):75s-89s.
    [3-17]Nguyen H T, Kim S E. Finite element modeling of push-out tests for large stud shear connectors[J]. Journal of Constructional Steel Research.2009,65(10-11); 1909-1920.
    [3-18]Burns N H, Siess C P. Load-deformation characteristics of beam-column connections in reinforced concrete[R]. Urbana:University of Illinois,1962.
    [3-19]Rabbat B G, Russell H G. Friction coefficient of steel on concrete or grout[J]. Journal of Structural Engineering.1985,111(3):505-515.
    [3-20]Lee Y, Joo Y T, Lee T, et al. Mechanical properties of constitutive parameters in steel-concrete interface[J]. Engineering Structures.2011,33(4):1277-1290.
    [3-21]Gattesco N. Analytical modeling of nonlinear behavior of composite beams with deformable connection[J]. Journal of Constructional Steel Research.1999,52(2):195-218.
    [3-22]ENV 1994-2. Eurocode-4:Design of composite steel and concrete structures, Part 2:General rules and rules for bridges[S]. CEN; 2005.
    [3-23]AASHTO LRFD. Bridge design specifications.4th ed[S]. American Association of State Highway and Transportation Officials; 2007.
    [3-24]刘玉擎.组合结构桥梁[M].北京:人民交通出版社,2005.
    [3-25]姬同庚.栓钉连接件剪切刚度试验研究[J].世界桥梁.2013(06):62-66.
    [3-26]钢结构设计规范(GB 50017-2003)[S].北京:中国计划出版社.,2003.
    [3-27]Wang Y C. Deflection of steel-concrete composite beams with partial shear interaction[J]. JOURNAL OF STRUCTURAL ENGINEERING-ASCE.1998,124(10):1159-1165.
    [3-28]童智洋,郑舟军,彭旭民.推出试件中剪力钉剪切刚度实测与计算方法[J].钢结构.2011(01):27-30.
    [3-29]Shim C, Lee P, Yoon T. Static behavior of large stud shear connectors[J]. Engineering Structures.2004,26(12):1853-1860.
    [3-30]Xu C, Sugiura K, Wu C, et al. Parametrical static analysis on group studs with typical push-out tests[J]. Journal of Constructional Steel Research.2012,72(0):84-96.
    [4-1]Samaras V A, Sutton J P, Williamson E B, et al. Simplified Method for Evaluating the Redundancy of Twin Steel Box-Girder Bridges[J]. Journal of Bridge Engineering.2012,17(3): 470-480.
    [4-2]Williamson E B, Kim J, Frank K H. Redundancy evaluation of twin steel box-girder bridges using finite element analyses[C]. Orlando, Florida, United States:ASCE,2010.
    [4-3]邵长宇.大跨度钢—混凝土连续组合箱梁桥关键技术研究[D].同济大学,2007.
    [4-4]Chapman J C, Balakrishnan S. Experiments on composite beams[J]. Structural Engineer.1964, 42(11):369-383.
    [4-5]李现辉,李国强.腹板嵌入式组合梁抗剪连接件拔出试验[J].建筑科学与工程学报.2009,26(1):43-48.
    [4-6]Pallars L, Hajjar J F. Headed steel stud anchors in composite structures, Part II:Tension and interaction[J]. Journal of Constructional Steel Research.2010,66(2):213-228.
    [4-7]Ozbolt J, Eligehausen R, Reinhardt H W. Size effect on the concrete cone pull-out load[J]. International Journal of Fracture.1999,95(1-4):391-404.
    [4-8]Ozbolt J, Rah K K, Mestrovic D. Influence of loading rate on concrete cone failure[J]. International Journal of Fracture.2006,139(2):239-252.
    [4-9]Qian S Z, Li V C. Headed Anchor/Engineered Cementitious Composites (ECC) Pullout Behavior[J]. JOURNAL OF ADVANCED CONCRETE TECHNOLOGY.2011,9(3):339-351.
    [4-10]Chahrour A H, Ohtsu M. Analysis of anchor bolt pull-out tests by a 2-domain boundary-element method[J]. Materials and Structures.1995,28(178):201-209.
    [4-11]Cusatis G, Di Luzio G, Rota M. Simulation of headed anchor feilure[M]. COMPUTATIONAL MODELLING OF CONCRETE STRUCTURES, LEIDEN:A A BALKEMA PUBLISHERS, 2003,683-688.
    [4-12]Soparat P, Nanakorn P. Analysis of anchor bolt pullout in concrete by the element-free Galerkin method[J]. Engineering Structures.2008,30(12):3574-3586.
    [4-13]凌道盛,徐小敏,陈云敏.数学网格和物理网格分离的有限单元法(Ⅰ):基本理论[J].计算力学学报.2009,26(3):401-407.
    [4-14]Ling D S, Yang Q D, Cox B. An augmented finite element method for modeling arbitrary discontinuities in composite materials[J]. International Journal of Fracture.2009,156(1):53-73.
    [4-15]凌道盛,韩超,陈云敏.数学网格和物理网格分离的有限单元法(Ⅱ):粘聚裂纹扩展问题中的应用[J].计算力学学报.2009,26(3):408-414.
    [4-16]Fang X J, Yang Q D, Cox B N, et al. An augmented cohesive zone element for arbitrary crack coalescence and bifurcation in heterogeneous materials[J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING.2011,88(9):841-861.
    [4-17]凌道盛,涂福彬,卜令方.基于黏聚区域模型的边坡渐进破坏过程强化有限元分析[J].岩土工程学报.2012,34(8):1387-1393.
    [4-18]Moes N, Belytschko T. Extended finite element method for cohesive crack growth[J]. Engineering Fracture Mechanics.2002,69(7):813-833.
    [4-19]Wang J S, Suo Z. Experimental determination of interfacial toughness curves using Brazil-nut-sandwiches[J]. Acta Metallurgica et Materialia.1990,38(7):1279-1290.
    [5-l]刘玉擎.组合结构桥梁[M].北京:人民交通出版社.2005.
    [5-2]Williamson E B, Kim J, Frank K H. Redundancy evaluation of twin steel box-girder bridges using finite element analyses[C]. Orlando, Florida, United States:ASCE,2010.
    [5-3]Wang A J, Chung K F. Advanced finite element modelling of perforated composite beams with flexible shear connectors[J]. Engineering Structures.2008,30(10):2724-2738.
    [5-4]Queiroz F D, Vellasco P C G S, Nethercot D A. Finite element modelling of composite beams with full and partial shear connection[J]. Journal of Constructional Steel Research.2007,63(4): 505-521.
    [5-5]Salari M R, Spacone E. Finite element formulations of one-dimensional elements with bond-slip[J]. Engineering Structures.2001,23(7):815-826.
    [5-6]Shim C S, Lee P G, Chang S P. Design of shear connection in composite steel and concrete bridges with precast decks[J]. Journal of Constructional Steel Research.2001,57(3):203-219.
    [5-7]Gattesco N. Analytical modeling of nonlinear behavior of composite beams with deformable connection[J]. Journal of Constructional Steel Research.1999,52(2):195-218.
    [5-8]Chapman J C, Balakrishnan S. Experiments on composite beams[J]. Structural Engineer.1964, 42(11):369-383.
    [5-9]Baskar K, Shanmugam N E, Thevendran V. Finite-element analysis of steel-concrete composite plate girder[J]. Journal of Structural Engineering-ASCE.2002,128(9):1158-1168.
    [5-10]Jeong Y, Kim H, Koo H, et al. Steel-concrete interface behavior and analysis for push-out[J]. KSCE Journal of Civil Engineering.2005,9(2):119-124.
    [5-11]Jeong Y, Kim H, Kim S. Partial-interaction analysis with push-out tests[J]. Journal of Constructional Steel Research.2005,61(9):1318-1331.
    [5-12]Jeong Y. Simplified model to predict partial-interactive structural performance of steel-concrete composite slabs[J]. Journal of Constructional Steel Research.2008,64(2):238-246.
    [5-13]Tahmasebinia F, Ranzi G, Zona A. Beam Tests of Composite Steel-concrete Members:A Three-dimensional Finite Element Model[J]. International Journal of Steel Structures.2012,12(1): 37-45.
    [5-14]Si Larbi A, Ferrier E, Jurkiewiez B, et al. Static behaviour of steel concrete beam connected by bonding[J]. Engineering Structures.2007,29(6):1034-1042.
    [5-15]Bouazaoui L, Perrenot G, Delmas Y, et al. Experimental study of bonded steel concrete composite structures[J]. Journal of Constructional Steel Research.2007,63(9):1268-1278.
    [5-16]Berthet J F, Yurtdas I, Delmas Y, et al. Evaluation of the adhesion resistance between steel and concrete by push out test[J]. International Journal of Adhesion and Adhesives.2011,31(2):75-83.
    [5-17]Zhao G, Li A. Numerical study of a bonded steel and concrete composite beam[J]. Computers & Structures.2008,86(19-20):1830-1838.
    [5-18]Luo Y, Li A, Kang Z. Parametric study of bonded steel-concrete composite beams by using finite element analysis[J]. Engineering Structures.2012,34(0):40-51.
    [5-19]Rabbat B G, Russell H G. Friction coefficient of steel on concrete or grout[J]. Journal of Structural Engineering.1985,111(3):505-515.
    [5-20]Oehlers D J, Seracino R, Yeo M F. Effect of friction on shear connection in Composite Bridge Beams[J]. Journalof Bridge Engineering.2000, Vol.5(No.2):91-98.
    [5-21]Seracino R, Oehlers D J. Composite action in non-composite beams[Z]. Hong Kong, China: 2002471-478.
    [5-22]Xu C, Su Q, Wu C, et al. Experimental study on double composite action in the negative flexural region of two-span continuous composite box girder[J]. Journal of Constructional Steel Research.2011,67(10):1636-1648.
    [5-23]Lee Y, Joo Y T, Lee T, et al. Mechanical properties of constitutive parameters in steel-concrete interface[J]. Engineering Structures.2011,33(4):1277-1290.
    [6-1]钢结构设计规范(GB J17-88)[S].北京:中国计划出版社,1989.
    [6-2]聂建国,沈聚敏,余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J].土木工程学报.1995,28(6):11-17.
    [6-3]钢结构设计规范(GB 50017-2003)[S].北京:中国计划出版社.,2003.
    [6-4]童根树,夏骏.考虑滑移影响的钢-混凝土组合梁的刚度[J].建筑钢结构进展.2008,10(06):1-8.
    [6-5]夏骏.钢-混凝土组合梁挠度计算简化方法和负弯矩区的畸变屈曲分析[D].浙江大学,2006.
    [6-6]付果,薛建阳,葛鸿鹏,等.钢-混凝土组合梁界面滑移及变形性能的试验研究[J].建筑结构.2007,37(10):69-71.
    [6-7]付果.考虑界面滑移及掀起影响的钢—混凝土组合梁试验与理论研究[D].西安建筑科技大学,2008.
    [6-8]徐荣桥,陈德权.组合梁挠度计算的改进折减刚度法[J].工程力学.2013,30(02):285-291.
    [6-9]胡夏闽,薛伟,曹雪娇.钢-混凝土组合梁挠度计算的附加曲率法[J].建筑结构学报.2010(S1):385-389.
    [6-10]邵永健,朱聘儒,陈忠汉,等.钢-混凝土组合梁挠度计算的修正换算截面法[J].建筑结构学报.2008,29(02):99-103.
    [6-11]蒋丽忠,余志武,李佳.均布荷载作用下钢-混凝土组合梁滑移及变形的理论计算[J].工程力学.2003,20(02):133-137.
    [6-12]余志武,蒋丽忠,李佳.集中荷载作用下钢-混凝土组合梁界面滑移及变形[J].土木工程学报.2003,36(08):1-6.
    [6-13]Girhammar U A, Gopu V K. Composite beam-columns with interlayer slip-exact analysis[J]. Journal of Structural Engineering.1993,119(4):1265-1282.
    [6-14]Wang Y C. Deflection of steel-concrete composite beams with partial shear interaction[J]. Journal of Structural Engineering.1998,124(10):1159-1165.
    [6-15]Xu R, Wu Y. Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory [J]. International Journal of Mechanical Sciences.2007,49(10): 1139-1155.
    [6-16]Xu R, Wu Y. Two-dimensional analytical solutions of simply supported composite beams with interlayer slips[J]. International Journal of Solids and Structures.2007,44(1):165-175.
    [6-17]曾兴贵,局东华,李龙起,等.组合梁界面滑移的计算分析[J].工程力学.2013,30(06):162-167.
    [6-18]Gattesco N. Analytical modeling of nonlinear behavior of composite beams with deformable connection[J]. Journal of Constructional Steel Research.1999,52(2):195-218.
    [6-19]刘玉擎.组合结构桥梁[M].北京:人民交通出版社,2005.
    [6-20]Williamson E B, Kim J, Frank K H. Redundancy evaluation of twin steel box-girder bridges using finite element analyses[C]. Orlando, Florida, United States:ASCE,2010.
    [6-21]Wang A J, Chung K F. Advanced finite element modelling of perforated composite beams with flexible shear connectors[J]. Engineering Structures.2008,30(10):2724-2738.
    [6-22]凌道盛,徐小敏,陈云敏.数学网格和物理网格分离的有限单元法(Ⅰ):基本理论[J].计算力学学报,2009,26(3):401-407.
    [6-23]Ling D S, Yang Q D, Cox B. An augmented finite element method for modeling arbitrary discontinuities in composite materials[J]. International Journal of Fracture.2009,156(1):53-73.
    [6-24]凌道盛,卜令方,黄根清,等.平面强化有限单元法的h型网格自适应[J].浙江大学学报(工学版).2011,45(12):2150-2158.
    [6-25]陈德权.组合梁的变分原理及其挠度计算的改进折减刚度法研究[D].浙江大学,2012.
    [6-26]王冠楠.部分作用Timoshenko组合梁的受力特性研究[D].浙江大学,2012.
    [6-27]Chapman J C, Balakrishnan S. Experiments on composite beams[J]. Structural Engineer.1964, 42(11):369-383.
    [6-28]Girhammar U A, Pan D H. Exact static analysis of partially composite beams and beam-columns[J]. International Journal of Mechanical Sciences.2007,49(2):239-255.