关于高密度脂蛋白和甘油三脂的分子遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类正致力于对各种疾病致病基因的研究,试图找到各种疾病的致病基因,研究其发病机理的分子机制,从而达到对疾病的预防和控制。迄今为止,已有大部分疾病的致病基因被报道,甚至在心血管疾病领域,已有超过30种疾病的致病基因通过分子克隆方式被发现。但是,危险人类生命的众多疾病通常是复杂性疾病,例如糖尿病、冠心病等,通常与复杂性疾病有关的,还有许多数量性的生理、生化指标。这类疾病或者指标,通常并非由单一基因所调控,而是由多个基因所调控。因此,这种多基因调控的复杂性疾病和相关指标的研究对方,通常是以下两种:1,由核心家系组成的人群;2,散发人群。两种人群各具优势:核心家信组成的人群,更强调遗传背景,但取样较难;散发人群却取样较为简单,通常容易获得大样本量。复杂性多基因疾病的现代分子医学遗传学方法主要也由两种:1,连锁分析;2,关联分析。连锁分析通常选用微卫星标记,具有多种等位基因,但密度小;相对来说,关联分析使用的是单核苷酸多态性分子标记(SNP),一个SNP只带有两个等位基因,但SNP密度大,能对SNP进行分型的技术手段多。
     本文主要研究了冠心病的两个主要影响因子——HDL-C和甘油三脂的数量性状位点,用到了上文所述的两种人群和两种分析方法,发现了迄今为止最为显著的影响HDL-C水平的新位点,有利于今后对影响HDL-C水平的多态和基因的发现,希望对冠心病的预防和治疗,起到积极功效。
     在第一部分中,本研究首先对一个388个早发冠心病核心家系(共714个个体)进行了连锁分析,通过全基因组连锁分析,找到了两个同HDL-c显著相关的数量性状位点(QTL):7p22以及15q25,最高多点LOD值分别为3.76和6.69。之后我们使用微卫星标记和单核苷酸多态标记对以上两个位点进行了精细定位,结果显示,7p22位点的最高多点LOD值降到了3.09,达不到显著标准,因此不是一个与HDL-C显著相关的QTL;15q25位点经过精细定位之后,被分割成了两个相连QTLs——15q22(LOD值2.73)和15q25(LOD值5.63)。其中,15q22QTL下有LIPC基因,基因启动子区SNP rs1800588通过QTDT计算被证明在我们的人群中与HDL-C水平显著相关(P=0.0067),表明15q22 QTL可能是由rs1800588所导致的。15q25位点则是迄今为止被发现的最为显著的影响HDL-C水平的QTL,这个位点的发现,也为今后对HDL-C调节机制的研究提供了新的线索。
     文章第二部分,新近被报道的3个与HDL-C相关的SNPs和6个与甘油三酯相关的SNPs (rs1323432、rs2338104、rs4846914、rs16996148、rsl7321515、rs17145738、rsl748195、rs12130333),亟待在其他人群中得以验证。本研究采用1231个心肌梗塞病人和560个正常对照,对以上8个SNPs进行了基因分型,对于所得结果,运用General linear model进行统计学计算,以期在我们的1231心梗病人和560正常人中验证以上SNPs。结果显示,3个在全基因组关联分析中与HDL-C显著相关SNPs:rs1323432、rs2338104和rs4846914,无论是在1231心梗病人群体中,还是560正常人群中,亦或是合并人群中,均与HDL-C的水平不相关;6个在全基因组关联分析中与HDL-C显著相关SNPs:rs4846914、rs16996148、rs17321515、rs17145738、rs1748195、rs12130333也显示了类似的结果,在我们的1231心梗病人群体、560正常对照群体以及合并群体中,均与甘油三酯水平不相关。之后,我们开展了这8个SNPs与心肌梗死的关联分析,结果显示,rs12130333 SNP有可能与心肌梗塞有关(P=0.007,OR=0.773),但仍然达不到显著标准。
Today, molecular genetic technology can identify disease-causing genes for essentially all types of human diseases, which immediately provide the molecular mechanisms underlying the pathogenesis of the disease, and lead to development of new methods for diagnosis and treatment. Positional cloning based on genome-wide linkage analysis is the most efficient method for identifying genes for single gene disorders or monogenic diseases, and has led to identification of many human disease genes, for example, long QT syndrome, atrial fibrillation, retinitis pigmentosa, and many others.
     However, the most common diseases that threaten human health and burden the society are the complex diseases caused by multiple genes (not a single gene) and environment factors. The examples are coronary artery disease and myocardial infarction, diabetes, and hypertension. Complex diseases are different from monogenic disorders in that the pattern of the disease can not be simply determined to be either dominant or recessive. As a result, genome-wide linkage analysis of common complex diseases or traits usually requires hundreds of small families. After linkage is found, candidate genes within the linked chromosomal region can be analyzed for association with the trait. Alternatively, a candidate association study can be used to identify risk factors or genes for a complex disease or trait. In this case, a candidate variant or gene is selected and its frequency is compared between a group of patients (or people with a trait under study) and a group of controls without the disease or trait. A significant difference suggests that a specific variant is associated with the disease or trait.
     In our study, using differents populations, we applied linkage anaylsis and association astudy on the two important traits of CAD:HDL and triglyceride, and finally found the most significant QTL of HDL:15q25. The result may help researcher to find the real variant or gene affecting HDL levels in this locus.
     In the first part, We have completed a genome-wide linkage scan for HDL-C in a U.S. cohort consisting 388 multiplex families with premature CAD (GeneQuest). The heritability of HDL-C in GeneQuest was 0.37 with gender and age as covariates (P=5.1×10-4). Two major quantitative trait loci (QTLs) for log-transformed HDL-C adjusted for age and gender were identified onto chromosomes 7p22 and 15q25 with maximum multi-point LOD scores of 3.76 and 6.69 respectively. Fine mapping decreased the 7p22 LOD score to a non-significant level of 3.09 and split the 15q25 QTL into two loci, one minor QTL on 15q22 (LOD=2.73) and spanning the LIPC gene, and the other QTL remained at 15q25 (LOD=5.63). A family-based QTDT revealed significant association between variant rs1800588 in LIPC and HDL-C in the GeneQuest population (P=0.0067), which may account for the minor QTL on 15q22. The 15q25 QTL is the most significant locus identified for HDL-C to date, and these results provide a framework for the ultimate identification of the underlying HDL-C variant and gene on chromosomes 15q25, which will provide insights into novel regulatory mechanisms of HDL-C metabolism.
     In the second part, recent genome wide association studies (GWAS) identified significant associations between single nucleotide polymorphisms (SNPs) rs1323432, rs2338104, and rs4846914 and HDL-C, and between SNPs rs4846914, rs16996148, rs17321515, rs17145738, rsl748195, and rs12130333 and triglyceride, But those results need to be replicated in other populations. In our study, the newly discovered HDL-C and triglyceride SNPs by GWAS were genotyped for 1,231 MI cases and 560 controls from the Cleveland GeneBank by TaqMan SNP genotyping assays. In the result, All eight SNPs, including rsl323432, rs2338104, rs4846914, rsl6996148, rs17321515, rs17145738, rs1748195, and rs12130333, showed a P value of>0.05 for plasma HDL-C and triglyceride concentrations in 1,231 cases,560 controls and a combined 1,791 study subjects. A P value of 0.007 was obtained for association between SNP rs12130333 and MI (odds ratio of 0.773). As a conclution, no significant association could be found between the eight newly-identified HDL-C and triglyceride SNPs by GWAS and HDL-C and triglyceride, at lease in a Cleveland Caucasian population.
引文
[1]杜传书,刘.,医学遗传学.第二版.北京:人民卫生出版社,1983
    [2]贺林.解码生命.第一版.北京:科学出版社,2000
    [3]Amberger, J., C. A. Bocchini, A. F. Scott, et al. McKusick's Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res,2009.37:D793-6
    [4]况少青,张.,陈竺,基因组扫描一遗传病相关基因定位的有力工具.中华医学遗传学,1997.14:99-103
    [5]Abecasis, G. R., L. R. Cardon, and W. O. Cookson. A general test of association for quantitative traits in nuclear families. Am J Hum Genet,2000.66:279-92
    [6]Havill, L. M., T. D. Dyer, D. K. Richardson, et al. The quantitative trait linkage disequilibrium test:a more powerful alternative to the quantitative transmission disequilibrium test for use in the absence of population stratification. BMC Genet, 2005.6 Suppl 1:S91
    [7]Almasy, L. and D. M. Warren. Software for quantitative trait analysis. Hum Genomics,2005.2:191-5
    [8]Koch, G. G., I. A. Amara, G. W. Davis, et al. A review of some statistical methods for covariance analysis of categorical data. Biometrics,1982,38:563-95
    [9]Kruglyak, L., M. J. Daly, M. P. Reeve-Daly, et al. Parametric and nonparametric linkage analysis:a unified multipoint approach. Am J Hum Genet,1996,58: 1347-63
    [10]Tvorogova, M. G. and N. V. Perova. Basic lipoprotein metabolism reactions in the plasma. Kardiologiia,1986,26:119-25
    [11]Jacobson, T. A., M. Miller, and E. J. Schaefer. Hypertriglyceridemia and cardiovascular risk reduction. Clin Ther,2007,29:763-77
    [12]Frick, M. H., O. Elo, K. Haapa, et al. Helsinki Heart Study:primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med, 1987,317:1237-45
    [13]Davis, D. A., P. E. Mazmanian, M. Fordis, et al. Accuracy of physician self-assessment compared with observed measures of competence:a systematic review. JAMA,2006,296:1094-102
    [14]叶任高,陆再英.内科学.北京:人民卫生出版社,2004
    [15]Espenshade, P. J. and A. L. Hughes. Regulation of sterol synthesis in eukaryotes. Annu Rev Genet,2007.41:401-27
    [16]Brown, M. S. and J. L. Goldstein. The SREBP pathway:regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell,1997, 89:331-40
    [17]Javitt, N. B. Bile acid synthesis from cholesterol:regulatory and auxiliary pathways. FASEB J,1994,8:1308-11
    [18]Ascherio, A. and W. C. Willett. Health effects of trans fatty acids. Am J Clin Nutr, 1997,66:1006S-1010S
    [19]Lakatos, J. and A. Harsagyi. Serum total, HDL, LDL cholesterol, and triglyceride levels in patients with rheumatoid arthritis. Clin Biochem,1988,21:93-6
    [20]Mata, P., J. Lopez-Miranda, M. Pocovi, et al. Human apolipoprotein A-I gene promoter mutation influences plasma low density lipoprotein cholesterol response to dietary fat saturation. Atherosclerosis,1998,137:367-76
    [21]Liscum, L. and N. J. Munn. Intracellular cholesterol transport. Biochim Biophys Acta,1999,1438:19-37
    [22]Sozmen, E. Y., B. Mackness, B. Sozmen, et al. Effect of organophosphate intoxication on human serum paraoxonase. Hum Exp Toxicol,2002,21:247-52
    [23]Stein, O. and Y. Stein. Atheroprotective mechanisms of HDL. Atherosclerosis, 1999,144:285-301
    [24]Chang, T. Y., C. C. Chang, and D. Cheng. Acyl-coenzyme A:cholesterol acyltransferase. Annu Rev Biochem,1997,66:613-38
    [25]von Eckardstein, A., Cholesterol efflux from macrophages and other cells. Curr Opin Lipidol,1996,7:308-19
    [26]Rothblat, G. H., M. de la Llera-Moya, V. Atger, et al. Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res,1999, 40:781-96
    [27]Genest, J., Jr., M. Marcil, M. Denis, et al. High density lipoproteins in health and in disease. J Investig Med,1999,47:31-42
    [28]Von Eckardstein, A. and G. Assmann. Prevention of coronary heart disease by raising high-density lipoprotein cholesterol? Curr Opin Lipidol,2000,11:627-37
    [29]Deniz, O., S. Gumus, H. Yaman, et al. Serum total cholesterol, HDL-C and LDL-C concentrations significantly correlate with the radiological extent of disease and the degree of smear positivity in patients with pulmonary tuberculosis. Clin Biochem,2007,40:162-6
    [30]Baba, S., M. Natsume, A. Yasuda, et al. Plasma LDL and HDL cholesterol and oxidized LDL concentrations are altered in normo- and hypercholesterolemic humans after intake of different levels of cocoa powder. J Nutr,2007,137:1436-41
    [31]Nasri, H. and M. Yazdani. The relationship between serum LDL-cholesterol, HDL-cholesterol and systolic blood pressure in patients with type 2 diabetes. Kardiol Pol,2006.64:1364-8; discussion 1369-71
    [32]Chapman, M. J. The potential role of HDL- and LDL-cholesterol modulation in atheromatous plaque development. Curr Med Res Opin,2005.21 Suppl 6:S17-22
    [33]Spate-Douglas, T. and R. E. Keyser. Exercise intensity:its effect on the high-density lipoprotein profile. Arch Phys Med Rehabil,1999,80:691-5
    [34]Leung, A. M., W. K. Cheung, and W. K. Ho. Activation of low density lipoprotein receptor synthesis by treatment with partially delipidated low density lipoprotein. Int J Biochem,1983,15:929-34
    [35]James, M. J., D. van Reyk, K. A. Rye, et al. Low density lipoprotein of synovial fluid in inflammatory joint disease is mildly oxidized. Lipids,1998,33:1115-21
    [36]Liu, S. X., Y. Chen, M. Zhou, et al. Oxidized cholesterol in oxidized low density lipoprotein may be responsible for the inhibition of LPS-induced nitric oxide production in macrophages. Atherosclerosis,1998,136:43-9
    [37]Tarlow, D. M., P. A. Watkins, R. E. Reed, et al. Lipogenesis and the synthesis and secretion of very low density lipoprotein by avian liver cells in nonproliferating monolayer culture. Hormonal effects. J Cell Biol,1977,73:332-53
    [38]Glickman, R. M. and K. Kirsch. Lymph chylomicron formation during the inhibition of protein synthesis. Studies of chylomicron apoproteins. J Clin Invest, 1973,52:2910-20
    [39]Masamune, H., S. Siozima, and A. Masukawa. Chemistry and biology of lipids. VII. Do the blood group lipoids of animal organs belong to parenchyma or connective tissue? (A supplementary note to our cancer studies). Tohoku J Exp Med,1951,54:327-31
    [40]Stehbens, W. E. Science, atherosclerosis and the "age of unreason":a review. Integr Physiol Behav Sci,1993,28:388-95
    [41]Ross, R. Mechanisms of atherosclerosis--a review. Adv Nephrol Necker Hosp, 1990,19:79-86
    [42]Blann, A. D. and G. Y. Lip. Coronary risk factors, endothelial function, and atherosclerosis:a review. Clin Cardiol,1997,20:822,824
    [43]Kher, N. and J. D. Marsh. Pathobiology of atherosclerosis--a brief review. Semin Thromb Hemost,2004,30:665-72
    [44]Haller, H., F. Cosentino, and T. F. Luscher. Endothelial dysfunction, hypertension and atherosclerosis. A review of the effects of lacidipine. Drugs R D,2002,3: 311-23
    [45]Soboleva, G. N., O. V. Ivanova, and A. Karpov Iu. Endothelial function in arterial hypertension and other risk factors for the development of atherosclerosis (a review of the literature-2). Ter Arkh,1997.69:80-3
    [46]Federici, M. and R. Lauro. Review article:diabetes and atherosclerosis--running on a common road. Aliment Pharmacol Ther,2005,22 Suppl 2:11-5
    [47]Tomkin, G. H. Robert Graves Memorial Lecture. Diabetes and atherosclerosis--a gut review. Ir J Med Sci,2002,171:105-9
    [48]Manabe, I. Obesity and atherosclerosis-two faces of chronic inflammation. Nippon Rinsho,2009,67:417-25
    [49]Shimano, H. Obesity and atherosclerosis. Nippon Rinsho,2009,67:333-7
    [50]Auer, J., T. Weber, R. Berent, et al. Obesity, body fat and coronary atherosclerosis. Int J Cardiol,2005,98:227-35
    [51]Montenegro, M. R. and L. A. Solberg. Obesity, body weight, body length, and atherosclerosis. Lab Invest,1968,18:594-603
    [52]Moiseev, V. S., A. Ivleva, and D. Kobalava Zh. Hypertension, diabetes mellitus, atherosclerosis:clinical manifestations of metabolic syndrome Ⅹ. Prospects of pharmacological treatment. Vestn Ross Akad Med Nauk,1995:15-8
    [53]oArabidze, G. G. and E. O. Skriabina. Role of lipoprotein (a) as a risk factor for coronary atherosclerosis and coronary heart disease (a review of literature). Klin Lab Diagn,2006:3-6
    [54]McMillan, G. C. Historical review of research on atherosclerosis. Adv Exp Med Biol,1995,369:1-6
    [55]Kilaru, S., S. G. Frangos, A. H. Chen, et al. Nicotine:a review of its role in atherosclerosis. J Am Coll Surg,2001,193:538-46
    [56]Boyer, B., C. Balleyguier, O. Granat, et al. CAD in questions/answers Review of the literature. Eur J Radiol,2009,69:24-33
    [57]Lu, X., H. Duan, and W. Lu. Dynamic ECG Review & Analysis Workstation. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2001,18:33-7
    [58]Todd, K. H., J. R. Hoffman, and M. T. Morgan. Effect of cardiologist ECG review on emergency department practice. Ann Emerg Med,1996,27:16-21
    [59]Eiberg, J. P., E. Lundorf, C. Thomsen, et al. Peripheral vascular surgery and magnetic resonance arteriography--a review. Eur J Vasc Endovasc Surg,2001,22: 396-402
    [60]Morris, T. W. A review of coronary arteriography- and contrast media-induced ventricular fibrillation. Acta Radiol Suppl,1995,399:100-4
    [61]Bleeker, H., K. Shung, and J. Barnhart. On the application of ultrasonic contrast agents for blood flowmetry and assessment of cardiac perfusion. J Ultrasound Med, 1990,9:461-71
    [62]Valdes-Cruz, L. M. and D. J. Sahn. Ultrasonic contrast studies for the detection of cardiac shunts. J Am Coll Cardiol,1984,3:978-85
    [63]Zambon, A., P. Pauletto, and G. Crepaldi. Review article:the metabolic syndrome--a chronic cardiovascular inflammatory condition. Aliment Pharmacol Ther,2005,22 Suppl 2:20-3
    [64]Roberts, A. W., A. L. Clark, and K. K. Witte. Review article:Left ventricular dysfunction and heart failure in metabolic syndrome and diabetes without overt coronary artery disease--do we need to screen our patients? Diab Vasc Dis Res, 2009,6:153-63
    [65]Gami, A. S., B. J. Witt, D. E. Howard, et al. Metabolic syndrome and risk of incident cardiovascular events and death:a systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol,2007,49:403-14
    [66]Starkova, N. T. and I. V. Dvoriashina. Metabolic syndrome of insulin resistance: basic conception and consequences (a review). Ter Arkh,2004,76:54-8
    [67]Ura, N., S. Saitoh, and K. Shimamoto. Clinical diagnosis of metabolic syndrome 1. Metabolic syndrome and insulin resistance. Intern Med,2007,46:1283-4
    [68]Germaniuk la, L.. Structure of the gene and molecular defects of insulin in diabetes mellitus (a review of the literature). Vrach Delo,1984:9-14
    [69]Copertaro, A., M. Bracci, M. Barbaresi, et al. Role of waist circumference in the diagnosis of metabolic syndrome and assessment of cardiovascular risk in shift workers. Med Lav,2008,99:444-53
    [70]Esteghamati, A., H. Ashraf, A. Rashidi, et al. Waist circumference cut-off points for the diagnosis of metabolic syndrome in Iranian adults. Diabetes Res Clin Pract, 2008,82:104-7
    [71]Nakamura, T., Y. Okauchi, M. Ryo, et al. Clinical diagnosis of metabolic syndrome 3. Diagnostic criteria for metabolic syndrome in Japan and its clinical significance. Intern Med,2007,46:1287
    [72]Macfarlane, D. P., S. Forbes, and B. R. Walker. Glucocorticoids and fatty acid metabolism in humans:fuelling fat redistribution in the metabolic syndrome. J Endocrinol,2008,197:189-204
    [73]Osborn, D. P., C. A. Wright, G Levy, et al. Relative risk of diabetes, dyslipidaemia, hypertension and the metabolic syndrome in people with severe mental illnesses: systematic review and metaanalysis. BMC Psychiatry,2008,8:84
    [74]Xue, F. and K. B. Michels, Diabetes, metabolic syndrome, and breast cancer:a review of the current evidence. Am J Clin Nutr,2007,86:s823-35
    [75]Ishizaka, N., Y. Ishizaka, M. Yamakado, et al. Association between metabolic syndrome and carotid atherosclerosis in individuals without diabetes based on the oral glucose tolerance test. Atherosclerosis,2009,204:619-23
    [76]Misra, A. Overnutrition and nutritional deficiency contribute to metabolic syndrome and atherosclerosis in Asian Indians. Nutrition,2002,18:702-3
    [77]Grundy, S. M. Obesity, metabolic syndrome, and coronary atherosclerosis. Circulation,2002,105:2696-8
    [78]Node, K. Clinical diagnosis of metabolic syndrome 4. Therapy for metabolic syndrome. Intern Med,2007,46:1289
    [79]Lloyd-Jones, D., R. Adams, M. Carnethon, et al. Heart disease and stroke statistics--2009 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation,2009,119:e21-181
    [80]Boden, W. E. High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease:assessing the data from Framingham to the Veterans Affairs High--Density Lipoprotein Intervention Trial. Am J Cardiol,2000,86:19L-22L
    [81]Wilson, P. W., R. D. Abbott, and W. P. Castelli. High density lipoprotein cholesterol and mortality. The Framingham Heart Study. Arteriosclerosis,1988,8: 737-41
    [82]Genest, J. J., J. R. McNamara, D. N. Salem, et al. Prevalence of risk factors in men with premature coronary artery disease. Am J Cardiol,1991,67:1185-9
    [83]Gordon, D. J., J. L. Probstfield, R. J. Garrison, et al. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation,1989,79:8-15
    [84]Despres, J. P., I. Lemieux, G. R. Dagenais, et al. HDL-cholesterol as a marker of coronary heart disease risk:the Quebec cardiovascular study. Atherosclerosis,2000, 153:263-72
    [85]Ford, E. S., W. H. Giles, and W. H. Dietz, Prevalence of the metabolic syndrome among US adults:findings from the third National Health and Nutrition Examination Survey. JAMA,2002,287:356-9
    [86]Wang, X. and B. Paigen, Quantitative trait loci and candidate genes regulating HDL cholesterol:a murine chromosome map. Arterioscler Thromb Vase Biol,2002, 22:1390-401
    [87]Ishimori, N., R. Li, P. M. Kelmenson, et al. Quantitative trait loci analysis for plasma HDL-cholesterol concentrations and atherosclerosis susceptibility between inbred mouse strains C57BL/6J and 129S1/SvImJ. Arterioscler Thromb Vasc Biol, 2004,24:161-6
    [88]Cohen, J. C., R. S. Kiss, A. Pertsemlidis, et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science,2004,305:869-72
    [89]Frikke-Schmidt, R., B. G. Nordestgaard, G B. Jensen, et al. Genetic variation in ABC transporter Al contributes to HDL cholesterol in the general population. J Clin Invest,2004,114:1343-53
    [90]Qasim, A. and D. J. Rader, Human genetics of variation in high-density lipoprotein cholesterol. Curr Atheroscler Rep,2006,8:198-205
    [91]Kathiresan, S., A. K. Manning, S. Demissie, et al. A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study. BMC Med Genet, 2007,8 Suppl 1:S17
    [92]Kathiresan, S., O. Melander, C. Guiducci, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet,2008,40:189-97
    [93]Kathiresan, S., C. J. Willer, G. M. Peloso, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet,2009,41:56-65
    [94]Kathiresan, S., B. F. Voight, S. Purcell, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet,2009,41:334-41
    [95]Kooner, J. S., J. C. Chambers, C. A. Aguilar-Salinas, et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat Genet, 2008,40:149-51
    [96]Willer, C. J., S. Sanna, A. U. Jackson, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet,2008,40: 161-9
    [97]Arya, R., D. Lehman, K. J. Hunt, et al. Evidence for bivariate linkage of obesity and HDL-C levels in the Framingham Heart Study. BMC Genet,2003,4 Suppl 1: S52
    [98]Dastani, Z., L. Quiogue, C. Plaisier, et al. Evidence for a gene influencing high-density lipoprotein cholesterol on chromosome 4q31.21. Arterioscler Thromb Vasc Biol,2006,26:392-7
    [99]Peacock, J. M., D. K. Arnett, L. D. Atwood, et al. Genome scan for quantitative trait loci linked to high-density lipoprotein cholesterol:The NHLBI Family Heart Study. Arterioscler Thromb Vasc Biol,2001,21:1823-8
    [100]Yang, Q., C. Q. Lai, L. Parnell, et al. Genome-wide linkage analyses and candidate gene fine mapping for HDL3 cholesterol:the Framingham Study. J Lipid Res, 2005,46:1416-25
    [101]Adeyemo, A. A., T. Johnson, J. Acheampong, et al. A genome wide quantitative trait linkage analysis for serum lipids in type 2 diabetes in an African population. Atherosclerosis,2005,181:389-97
    [102]Soro, A., P. Pajukanta, H. E. Lilja, et al. Genome scans provide evidence for low-HDL-C loci on chromosomes 8q23,16q24.1-24.2, and 20ql3.11 in Finnish families. Am J Hum Genet,2002,70:1333-40
    [103]Almasy, L., J. E. Hixson, D. L. Rainwater, et al. Human pedigree-based quantitative-trait-locus mapping:localization of two genes influencing HDL-cholesterol metabolism. Am J Hum Genet,1999,64:1686-93
    [104]Arya, R., R. Duggirala, L. Almasy, et al. Linkage of high-density lipoprotein-cholesterol concentrations to a locus on chromosome 9p in Mexican Americans. Nat Genet,2002,30:102-5
    [105]Kort, E. N., D. G Ballinger, W. Ding, et al. Evidence of linkage of familial hypoalphalipoproteinemia to a novel locus on chromosome 11q23. Am J Hum Genet,2000,66:1845-56
    [106]Bosse, Y., Y. C. Chagnon, J. P. Despres, et al. Genome-wide linkage scan reveals multiple susceptibility loci influencing lipid and lipoprotein levels in the Quebec Family Study. J Lipid Res,2004,45:419-26
    [107]Mahaney, M. C., L. Almasy, D. L. Rainwater, et al. A quantitative trait locus on chromosome 16q influences variation in plasma HDL-C levels in Mexican Americans. Arterioscler Thromb Vasc Biol,2003,23:339-45
    [108]Pajukanta, P., H. Allayee, K. L. Krass, et al. Combined analysis of genome scans of dutch and finnish families reveals a susceptibility locus for high-density lipoprotein cholesterol on chromosome 16q. Am J Hum Genet,2003,72:903-17
    [109]Wang, Q., S. Rao, G Q. Shen, et al. Premature myocardial infarction novel susceptibility locus on chromosome 1P34-36 identified by genomewide linkage analysis. Am J Hum Genet,2004,74:262-71
    [110]Zhang, X., S. Chen, S. Yoo, et al. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell,2008,135:1017-27
    [111]Abdullah, K. G., L. Li, G. Q. Shen, et al. Four SNPS on chromosome 9p21 confer risk to premature, familial CAD and MI in an American Caucasian population (GeneQuest). Ann Hum Genet,2008,72:654-7
    [112]Shen, G Q., L. Li, D. Girelli, et al. An LRP8 variant is associated with familial and premature coronary artery disease and myocardial infarction. Am J Hum Genet, 2007,81:780-91
    [113]S. A. G E. Statistical Analysis for Genetic Epidemiology 5.3, ed. Cork.2006
    [114]Olson, J. M. Relationship estimation by Markov-process models in a sib-pair linkage study. Am J Hum Genet,1999,64:1464-72
    [115]Lander, E. and L. Kruglyak. Genetic dissection of complex traits:guidelines for interpreting and reporting linkage results. Nat Genet,1995,11:241-7
    [116]Hodoglugil, U., D. W. Williamson, and R. W. Mahley, Polymorphisms in the hepatic lipase gene affect plasma HDL-cholesterol levels in a Turkish population. J Lipid Res,2010,51:422-30
    [117]Yu, Y., D. F. Wyszynski, D. M. Waterworth, et al. Multiple QTLs influencing triglyceride and HDL and total cholesterol levels identified in families with atherogenic dyslipidemia. J Lipid Res,2005,46:2202-13
    [118]Alpy, F. and C. Tomasetto. Give lipids a START:the StAR-related lipid transfer (START) domain in mammals. J Cell Sci,2005,118:2791-801
    [119]Qi, L., H. Shen, I. Larson, et al. Gender-specific association of a perilipin gene haplotype with obesity risk in a white population. Obes Res,2004,12:1758-65
    [120]Hall, N. G., P. Klenotic, B. Anand-Apte, et al. ADAMTSL-3/punctin-2, a novel glycoprotein in extracellular matrix related to the ADAMTS family of metalloproteases. Matrix Biol,2003,22:501-10
    [121]Vartanian, V., B. Lowell, I. G. Minko, et al. The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase. Proc Natl Acad Sci U S A,2006,103: 1864-9
    [122]Gagnon, F., G. P. Jarvik, M. D. Badzioch, et al. Genome scan for quantitative trait loci influencing HDL levels:evidence for multilocus inheritance in familial combined hyperlipidemia. Hum Genet,2005,117:494-505
    [123]Al-Kateb, H., S. Bahring, K. Hoffmann, et al. Mutation in the ARH gene and a chromosome 13q locus influence cholesterol levels in a new form of digenic-recessive familial hypercholesterolemia. Circ Res,2002,90:951-8
    [124]Kocher, O., A. Yesilaltay, C. Cirovic, et al. Targeted disruption of the PDZK1 gene in mice causes tissue-specific depletion of the high density lipoprotein receptor scavenger receptor class B type I and altered lipoprotein metabolism. J Biol Chem, 2003,278:52820-5
    [125]Lusis, A. J., A. M. Fogelman, and G. C. Fonarow, Genetic basis of atherosclerosis: part Ⅱ:clinical implications. Circulation,2004,110:2066-71
    [126]Lusis, A. J., A. M. Fogelman, and G C. Fonarow, Genetic basis of atherosclerosis: part I:new genes and pathways. Circulation,2004,110:1868-73
    [127]Turner, S. T., P. A. Peyser, S. L. Kardia, et al. Genomic loci with pleiotropic effects on coronary artery calcification. Atherosclerosis,2006,185:340-6
    [128]Thom, T., N. Haase, W. Rosamond, et al. Heart disease and stroke statistics-2006 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation,2006,113:e85-151
    [129]Rosamond, W., K. Flegal, G. Friday, et al. Heart disease and stroke statistics-2007 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation,2007,115:e69-171
    [130]Grundy, S. M., J. I. Cleeman, C. N. Merz, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel Ⅲ guidelines. Circulation,2004,110:227-39
    [131]Bansal, S., J. E. Buring, N. Rifai, et al. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA,2007,298: 309-16
    [132]Pennacchio, L. A. and E. M. Rubin. Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levels in humans and mice. Arterioscler Thromb Vasc Biol,2003,23:529-34
    [133]Aouizerat, B. E., H. Allayee, R. M. Cantor, et al. A genome scan for familial combined hyperlipidemia reveals evidence of linkage with a locus on chromosome 11.Am J Hum Genet,1999,65:397-412
    [134]Imperatore, G, W. C. Knowler, D. J. Pettitt, et al. A locus influencing total serum cholesterol on chromosome 19p:results from an autosomal genomic scan of serum lipid concentrations in Pima Indians. Arterioscler Thromb Vasc Biol,2000,20: 2651-6
    [135]Coon, H., J. H. Eckfeldt, M. F. Leppert, et al. A genome-wide screen reveals evidence for a locus on chromosome 11 influencing variation in LDL cholesterol in the NHLBI Family Heart Study. Hum Genet,2002,111:263-9
    [136]Pollex, R. L. and R. A. Hegele. Genetic determinants of plasma lipoproteins. Nat Clin Pract Cardiovasc Med,2007,4:600-9
    [137]Wang, X. and B. Paigen. Genetics of variation in HDL cholesterol in humans and mice. Circ Res,2005,96:27-42
    [138]Shearman, A. M., J. M. Ordovas, L. A. Cupples, et al. Evidence for a gene influencing the TG/HDL-C ratio on chromosome 7q32.3-qter:a genome-wide scan in the Framingham study. Hum Mol Genet,2000,9:1315-20
    [139]Isaacs, A., F. A. Sayed-Tabatabaei, O. T. Njajou, et al. The -514 C->T hepatic lipase promoter region polymorphism and plasma lipids:a meta-analysis. J Clin Endocrinol Metab,2004,89:3858-63
    [140]Boekholdt, S. M. and J. F. Thompson. Natural genetic variation as a tool in understanding the role of CETP in lipid levels and disease. J Lipid Res,2003,44: 1080-93
    [141]Wittrup, H. H., A. Tybjaerg-Hansen, and B. G. Nordestgaard, Lipoprotein lipase mutations, plasma lipids and lipoproteins, and risk of ischemic heart disease. A meta-analysis. Circulation,1999,99:2901-7
    [142]Dallongeville, J., S. Lussier-Cacan, and J. Davignon. Modulation of plasma triglyceride levels by apoE phenotype:a meta-analysis. J Lipid Res,1992,33: 447-54
    [143]Pennacchio, L. A., M. Olivier, J. A. Hubacek, et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science, 2001,294:169-73
    [144]Groenendijk, M., R. M. Cantor, T. W. de Bruin, et al. The apoAI-CIII-AIV gene cluster. Atherosclerosis,2001,157:1-11
    [145]Tai, E. S., X. L. Sim, T. H. Ong, et al. Polymorphisms at newly identified lipid-associated loci are associated with blood lipids and cardiovascular disease in an Asian Malay population. J Lipid Res,2009,50:514-20
    [146]Bland, J. M. and D. G. Altman. Multiple significance tests:the Bonferroni method. BMJ,1995,310:170
    [147]Houten, S. M., M. S. Schneiders, R. J. Wanders, et al. Regulation of isoprenoid/cholesterol biosynthesis in cells from mevalonate kinase-deficient patients. J Biol Chem,2003,278:5736-43
    [148]Vrablik, M., R. Ceska, V. Adamkova, et al. MLXIPL variant in individuals with low and high triglyceridemia in white population in Central Europe. Hum Genet, 2008,124:553-5