牙胚成纤维细胞生长因子18基因克隆、表达及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
FGF18是一个新近克隆的FGF家族成员,1998年首次应用PCR方法从鼠胚(E14.5)中分离出来,与FGF8和FGF17属于同一亚家族。研究证实FGF18是一种发育组织重要的分泌性信号分子,在骨骼和软骨的发育中发挥着重要的作用,单纯FGF18的缺失就会严重影响成骨和软骨的形成,那么作为同样具有矿化能力的牙齿,FGF18是否也参与调控其发育和损伤修复的过程呢?本研究带着这个疑问对FGF18在牙胚发育和牙髓组织中的作用进行探索性研究,为今后的研究奠定理论基础和实验依据,具体内容包括:
     一、小鼠牙胚FGF18的基因克隆和序列分析
     采用异硫氰酸胍一步法从新生小鼠牙胚组织中抽提总RNA,用Oligo(dt)作引物逆转录合成牙胚cDNA,然后利用巢式PCR技术,根据已公布的FGF18序列,设计一对引物从cDNA中扩增出约621bp的特异片段,将扩增的基因片段插入pGEM-T克隆载体,转化大肠杆菌DH5α,挑选阳性克隆,提取质粒DNA,通过限制性酶切进行鉴定并进行核苷酸序列测定。结果表明:成功克隆到小鼠牙胚FGF18全编码区基因片段,序列与GenBank中收录的FGF18cDNA序列一致,初步说明FGF18参与牙胚的发育。
     二、FGF18在牙胚发育和牙髓组织中的作用
     首先设计一对去除FGF18信号肽基因序列的引物,然后利用PCR技术从
    
     第四军医大学博士学位论文
    小鼠牙肛 CDNA中克隆约 524hp的编码区片段,并连人表达载体 pRSETB中,
    转化大肠杆菌BLZI(DE3)plySS* IPTG诱导表达后,12%SDS-PAGE凝
    胶电泳鉴定,发现在相对分子量为 22KD处出现预计的 FGF融合蛋白表达
    条带,经大量诱导表达和 Ni-NTA柱亲和层析纯化,获得了高纯度的 FGF
    原核表达产物。以 FGF原核表达产物为抗原,混入完全弗氏佐剂,免疫新
    西兰大白兔,将获得的多克隆抗血清经硫酸胺初步纯化后,ELISA实验检测
    抗体效价,Western Blot检测抗体的特异性,结果表明成功制备兔抗鼠 FGF
    多克隆抗体。
     然后采用自行制备的抗体对牙胚发育和牙髓组织中 FGF的时空表达形
    式进行免疫组化研究。
     l、在牙胚发育中:蕾状期FGF18在成釉器和口腔粘膜上皮细胞表达阳
    性,而在周围密集的间充质细胞表达阴性;帽状期在内釉上皮、外釉上皮、
    牙胚间充质和牙囊未见阳性表达;钟状早期牙胚,FGF在内釉上皮细胞和
    外釉上皮细胞阳性表达,牙乳头细胞弱阳性表达,星网状层和中间层细胞阴
    性,牙囊细胞表达阳性,在牙槽骨和软骨中呈阳性表达;钟状晚期,内釉上
    皮和外釉上皮分化为成釉细胞和成牙本质细胞,并分泌釉质和牙本质基质,
    此时 FGF在具有分泌功能的成牙本质细胞和成釉细胞表达强阳性,牙乳头
    细胞和牙囊细胞阳性,星网状层阴性。提示FGF18可能参与牙胚的发生、细
    胞分化和基质矿化,但对牙胚的形态发生可能作用较小。
     2、在牙髓组织中:正常牙髓成牙本质细胞、牙髓细胞以及血管内皮细胞
    中未见有 FGF阳性表达,但在炎症组 FGF在成牙本质细胞和血管内皮细
    胞阳性表达,牙髓细胞弱阳性,表明 FGF可能参与牙髓炎症和损伤修复
    三、FGF18对牙乳头细胞作用机制的研究
     首先设计一对引物,用于构建 FGFIS真核表达载体,利用 PCR技术从新
    生小鼠CDNA中克隆540hp的FGF18基因片段,然后将片段连入真核表达载
    体psecTagZB 中,构建psecTagZB-FGF18重组质粒,在LipofectAMINEm 2000
     4
    
     第四军医大学博士学位论文
    脂质体介导下将psecTagZBF 重组质粒转染进哺乳动物细胞COS刁,通
    过ELISA方法鉴定COS-7上清中的FGF18真核表达产物。采用MTT法、酶
    动力法以及免疫组化方法检测COS-7上清中FGF18对牙乳头细胞增殖、
    ALPase以及 1型胶原合成的影响,结果发现 FGF显著促进人牙乳头间充质
    细胞的增殖能力(P<0刀5),并增加 ALPase的分泌(P<0刀5,这种作用呈一定
    的时间、剂量依赖性,此外F*F18可明显增加细胞1型胶原的合成(P<0刀1),
    提示 FGF在人牙乳头间充质细胞的分化和矿化过程中可能起着重要的调节
    作用,但它的确切调控机制仍需一些更能模拟体内牙乳头细胞分化过程的实
    验加以验证。
     综上所述,FGF参与了牙胚的发育,并在牙胚的发生、成牙本质细胞
    分化和基质矿化中发挥着一定的调控作用,此外 FGF还参与牙髓炎症和损
    伤修复。今后的工作应针对其调控作用的分子机制进行更深入的研究,以全
    面揭示 FGFIS的功能作用。
Fibroblast growth factor 18(FGF18) was recently found as a member of FGF family,belonging to the subfamily of FGF8 and FGF 17.It was first cloned from mouse embryo (El4.5) by PCR method in 1998 and was proved to be an important signal molecule during development,expecially bone and cartilage development.we know ,tooth is a mineralized organ,shares many similar things with bone and cartilage during development.Thus,the aim of this research was to investigate whether FGF 18 ws involved in tooth development and how.
    1. Cloning and sequencing of mouse FGF18 from tooth germ
    In this study, total RNA was extracted from the mouse tooth germ by acid guandinium thiocyanata-phenol-chloroform method, the desired cDNA products were obtained from the total RNA by RT-PCR with the primers including Olido(dt) and two gene specific primers respectively. The segment (about 621bp) was inserted into pGEM-T vector and the recombinant plasmid was transformed into E. coli DH5 a . The positive clones were analyzed with restriction endonuclease mapping and DNA sequencing. The results showed that the nucleotide sequence we cloned were consistent with the GenBank record. These suggested that FGF 18 had effects on tooth development.
    2. Effects of FGF18 on tooth germ development and dental pulp
    
    
    
    The open reading frame of FGF18 cDNA was inserted into prokaryotic expression vector pRSET-B. The recombinant plasmids were then transformed into E. coli BL21 (DE3) plysS and induced by 1M IPTGAfter inductions, new protein bands appeared on SDS-PAGE gel near 22kDa. The expressed product from induced cells was purified and used to immune New Zealand White rabbits together with Freund's complete adjuvant to produce antibody. The results of ELISA test and Western blot confirmed that we had successfully made FGF18 polyclonal antibody.
    After that,we studied the expression of FGF18 in mouse developing tooth germ and human healthy or inflamed dental pulp tissues by immunohistochemistry method. (1) Tooth germ development:
    In bud stage FGF18 was expressed in dental epithelium and enamel organ. No Positive expression was found.in cap stage.In early bell stage, FGF18 was found in both inner/outer enamel epithelial cells and dental sac cells,as well as in osteoblast and chondrocyte,and weak staining in dental papilla cells, negative staining in stratum intermedium and stellate reticulum cells. In late bell stage strong positive expression was found in ameloblast and odontoblasto The results suggested that FGF18 had effects on cell differentiation and matrix mineralization besides tooth initiation (2)Dental pulp:
    No expression of FGF18 was found in healthy dental pulp, but positive expression was seen in odontoblast and endotheliocyte of blood vessels in inflamed pulp. Weak positive expression was seen in dental pulp cells.These suggested that FGF18 played a part in dental pulp inflammation and reparation after tissues injury. 3. Effects of FGF18 on dental pailla cells in vitro
    We constructed eukaryotic expression plasmids by inserting FGF18 cDNA into pSecTag2B vector and transfected the plasmids into COS-7 cells. ELISA test
    
    
    
    showed that FGF18 was synthesized and secreted by the cells.
    Then MTT method and enzyme dynamics method were used to study the effects of FGF18 on dental papilla cells.The results revealed that FGF18 could stimulate dental papilla cells proliferation (PO.05), and increased the alkaline phosphatase (ALP) activity in time and dose-dependent manner(P<0.05). FGF18 could also promoted the expression of type I collagen(P<0.01).These suggested that FGF18 played a role during odontoblast differentiation.
引文
1. Ruch JV. ooOdontoblast commitment and differenitiation. Biochem Cell Biol, 1998;76(6):923
    2. Keranen SVE,Kettunen P, Aberg T, et al.Gene expression patterns associated with suppression of odontogenesis in mouse and xole diastema regions. Dev Genes Evol, 1999;209:495
    3. David MO,Nobuyuki IO.Fibroblast growth factor. Genoma Bio2001;2(3):3005
    4. Cytokine Factor cDNA Database. http://www.cytokine.medickumatomo-u.ac.j p
    5. Locuslink.http://ncbi.nlmnih.gov/locuslink
    6. Kelley MJ,Pech M,Seuanez HN et al. Emergence of keratinocyte growth factor mulitigene family during great ape radication.Pron notl acad sci USA 1992;(24):9287
    7. Omitz DM.FGFs heperan sulfate and FGFRs:complex interaction essential for development. Bio Essays,2000;22(2):108
    8. Ploknitov AN,Hubband SR, Schlesssinger J et al.Crystal structure of two FGF-FGFR complex reveal detetermniants of ligands specificity. Cell,2001; 101:413
    9. Kiefer P, Acland P, Pappin D.Competetion between nuclear localization and secetory singals determines the subceculla fate of single CUG-intiated form of FGF3.EMBO J,1994;34(13):4126
    10. Miyomoto M,Naruo K,Seko C et al.molecular cloning of a cytokine cDNA encoding the ninth number of fibroblast growth factor family:which has a unique secretion property. Mol Cell Boil,1993;13:4251
    11. Mignatti P, Moromoto P, Rifkin DB.Basic fibroblast growth factor:a peotein devoid secretory singal sequence,is released by cells via a pathway indenpendent of endoplasmic reticulum-Glogi complex. J cell psysiol, 1992; 151:81
    12. Moon AM,Capecchi MR.FGF8 is required for outgrowth pattering of limb.Nat Genet,2000;46:265.
    13.范进宽,周慧,李唯.成纤维细胞生长因子与其受体相互作用以及抑制剂的研究进展.生物化学和生物物理学进展,2001:28(3):333
    14. Kan M, Wang F, To B et al. Divalent cations and heparin/heparan sulfate cooperate to control assembly and activity of the fibroblast growth factor receptor complex. J Biol Chem, 1996;18;271(42):26143
    15. Moy FJ, Safran M, Seddon AP, et al. Properly oriented heparin-decasaccharide-induced dimers are the biologically active form of basic fibroblast growth factor. Biochemistry, 1997; 36(16):4782
    16. Spivak T, Lemmon MA, Dikic I, Ladbury JE,et al. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell, 1994; 79(6):1015
    17. Herr AB,Ornitz DM,Sasisekharan R,et al.Heparin-induced self-association of fibroblast growth factor-2. Evidence for two oligomerization processes.J Biol Chem, 1997;272(26):16382
    18. 18.McKeehan WL, Kan M. Heparan sulfate fibroblast growth factor receptor complex: structure-function relationships. Mol Reprod Dev, 1994;39(1):69
    19. Kim HJ, Kim JH, Bae SC,et al. The protein kinase C pathway plays a central role in the fibroblast growth factor-stimulated expression and transactivation activity of Runx2.J Biol Chem,2003;278(1):319
    20. Ochi H, Ogino H, Kageyama Y, The stability of the lens-specific Maf protein is regulated by fibroblast growth factor (FGF)/ERK signaling in lens fiber differentiation.
    
    J Biol Chem,2003;278(l):537
    21. Tessner TG, Muhale F, Schloemann S,et al. Basic fibroblast growth factor upregulates cyclooxygenase-2 in 1407 cells through p38 MAPkinase.Am J Physiol Gastrointest Liver Physiol, 2003; 284(6): 457
    22. Theodosiou A, Ashworth A. MAP kinase phosphatases. Genome Biol.2002;3(7):REVIEWS3009
    23. Cheng-Ming Chuong. Molecular basis of epithelial appendage morphogenesis. R. G. Landes Company. 1998; Chapter 9:157
    24. Thesleff I. and Aberg T. Molecular regulation of tooth development. Bone. 1999; 25(1):123
    25. Thesleff I. and Nieminen P. Tooth morphogenesis and cell differentiation. Curr. Opin. Cell Biol. 1996; 8:844-850
    26. Amend TR,RA J,Zhang Y, et al.Cloning and expression pattern of chicken Pix2:a new component in the SHH signaling pathway controlling embryonic heart looping. Biochen Biophys Res Commun, 1998;247:100
    27. Jemvall J,Aberg T, Kettunen P, et al.The life history of an embryonic singaling center:BMP-4 induce p21 and is associated with apotosis in the mouse tooth enamel knot. Development, 1998; 125:161
    28. Tziafas D,Alvanou A,Papadimitriou S,et al. Effects of recombiant basic fibroblast growth factor, insulin-like growth factor-Ⅱ and transforming growth factor-beta-lon dog dental pulp cells in vivo. Arch Oral Biol,1998;43(6):431
    29.陈智,樊明文,边专等.修复性牙本质形成的大鼠模型。牙体牙髓牙周病学杂志,2000:10(3):139
    30. Zhang Y, Chang C,Gehiling DJ,et al.regulation of smad degradation and activity by smurf2,an E3 ubiquitin ligase.Proc Natl Acad Sci USA,2001 ;98(3):974
    31. Maas R,Bei M.The genetic control of tooth development. Crit Rev Oral Biol Med, 1997;8(1):4
    32. Sloan AJ,Matthews JB,Smith AJ.TGF-beta receptor expression in human odontoblast and pilpal cells. Histochem J, 1999;31(8):565
    33. Begue C,Ruch JV, Ridall AL,et al.Comparative analysis of mouse and DPP expression in odontoblasts,preameloblast and eaperimentally induced odontoblast-like cells. Eur J Oral Sci,1998;106:254
    34. Peterkova R, Peterka M, Viriot L, Lesot H. Dentition development and budding morphogenesis. J Craniofac Genet Dev Biol 2000 Oct-Dec;20(4):158-72
    35. Thesleff I, Mikkola M. The role of growth factors in tooth development. Int Rev Cytol 2002;217:93-135
    36. Jernvall J, Thesleff 1. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 2000 Mar 15;92(1):19-29
    37. Thesleff I, Keranen S, Jernvall J. Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 2001 Aug;15:14-8
    38. Tanikawa Y, Bawden JW. The immunohistochemical localization of phospholipase Cgamma and the epidermal growth-factor, platelet-derived growth-factor and fibroblast growth-factor receptors in the cells of the rat molar enamel organ during early amelogenesis. Arch Oral Biol 1999 Sep;44(9):771-80
    39. Cam Y, Neumann MR, Oliver L, et al. Immunolocalization of acidic and basic fibroblast growth factors during mouse odontogenesis, Int J Dev Biol 1992 Sep;36(3):381-9
    40. Russo LG, Maharajan P, Maharajan V. Basic fibroblast growth factor (FGF-2) in mouse tooth morphogenesis. Growth Factors 1998;15(2):125-33
    41. Unda FJ, Martin A, Hilario E, et al. Dissection of the odontoblast differentiation process in vitro by a combination of FGF1, FGF2, and TGFbetal. Der Dyn 2000
    
    Jul;218(3):480-9
    42. Mandler M, Neubuser A. FGF signaling is necessary for the specification of the odontogenic mesenchyme. Der Biol 2001 Dec 15;240(2):548-59
    43. Jaskoll T, Zhou YM, Chai Y, et al.Embryonic submandibular gland morphogenesis: stage-specific protein localization of FGFs, BMPs, Pax6 and Pax9 in normal mice and abnormal SMG phenotypes in FgfR2-IIIc(+/Delta), BMP7(-/-) and Pax6(-/-) mice Cells Tissues Organs 2002;170(2-3):83-98
    44. St Amand TR, Zhang Y, Semina EV, et al. Antagonistic signals between BMP4 and FGF8 define the expression of Pitx1 and Pitx2 in mouse tooth-forming anlage. Dev Biol 2000 Jan 15;217(2):323-32
    45. Thomas BL, Liu JK, Rubenstein JL, et al. Independent regulation of Dlx2 expression in the epithelium and mesenchyme of the first branchial arch. Development 2000 Jan;127(2):217-24
    46. Neubuser A, Peters H, Bailing R, et al Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell 1997 Jul 25;90(2):247-5
    47. Colvin JS, Feldman B, Nadeau JH, et al. Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene Dev Dyn 1999 Sep;216(1):72-88
    48. Kettunen P, Thesleff I. Expression and function of FGFs-4, -8, and -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn 1998 Mar;211(3):256-68
    49. Kratochwil K, Galceran J, Tontsch S, et al. FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(-/-) mice. Genes Der 2002 Dec 15;16(24):3173-85
    50. Mustonen T, Tummers M, Mikarni T, et al. Lunatic fringe, FGF, and BMP regulate the Notch pathway during epithelial morphogenesis of teeth. Der Biol 2002 Aug 15;248(2):281-93
    51. Pispa J, Jung HS, Jemvall J, et al. Cusp patterning defect in Tabby mouse teeth and its partial rescue by FGF. Dev Biol 1999 Dec 15;216(2):521-34
    52. Kettunen P, Laurikkala J, Itaranta P, et al. Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Dev Dyn 2000 Nov;219(3):322-32
    53. Harada H, Kettunen P, Jung HS, et al. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol 1999 Oct 4;147(1):105-20
    54. Harada H, Toyono T, Toyoshima K, et al. FGF10 maintains stem cell population during mouse incisor development. Connect Tissue Res 2002;43(2-3):201-4
    55. Harada H, Toyono T, Toyoshima K, et aI.FGF10 maintains stem cell compartment in developing mouse incisors. Development 2002 Mar; 129(6): 1533-41
    56. Dichmann DS, Miller CP, Jensen J, et al. Expression and misexpression of members of the FGF and TGFbeta families of growth factors in the developing mouse pancreas. Dev Dyn 2003 Apr;226(4):663-74
    57. Kettunen P, Karavanova I, Thesleff I.Responsiveness of developing dental tissues to fibroblast growth factors: expression of splicing alternatives of FGFR1, -2, -3, and of FGFR4; and stimulation of cell proliferation by FGF-2, -4, -8, and -9.Der Genet 1998;22(4):374-85
    58.魏征人,于永利FGF18-FGF家族新成员。中国生物制品杂志,2001:14(1):35
    59. Norihiko OH,Masatimitsu HO,Sachie KI,et al. Structure and expression of the mRNA encoding a novel fibroblast growth factor, FGF18.J Biol Chem, 1998;273(29):18161
    60. Whitmore TE, Maurer MF, Sexson S, et al. Assignment of fibroblast growth factor 18
    
    (FGF18) to human chromosome 5q34 by use of radiation hybrid mapping and fluorescence in situ hybridization. Cytogenet Cell Genet 2000;90(3-4):231-3
    61. Moka Y, Ohbayashi N, Hoshikawa M, et al.Comparison of the expression of three highly related genes, Fgf8, Fgf17 and Fgf18, in the mouse embryo. Mech Dev 1998 Jun;74(1-2):175-7
    62.Muller WA著,黄秀英,劳为德,郑瑞珍等译。发育生物学。高等教育出版社。1998。
    63. levin M,Johnson RL,Stern CD,et al.A molecular pathway determining left-right asymmetry inchick embryogenesis. Cell 1995(82):803-814
    64. Ohuchi H, Kimura S, Watamoto M, et al. Involvement of fibroblast growth factor (FGF)18-FGF8 signaling in specification of left-right asymmetry and brain and limb development of the chick embryo. Mech Dev 2000 Jul;95(1-2):55-66
    65. Xu J, Liu Z, Ornitz DM. Temporal and spatial gradients of Fgf8 and Fgf18 regulate proliferation and differentiation of midline cerebellar structures. Development 2000 May;127(9): 1833-43
    66. Martin GR.The roles of FGFs in the early development of vertebrate limbs.ne Dev. 1998(12):1571-1586
    67. Ellsworth JL, Berry J, Bukowski T, Fibroblast growth factor-18 is atrophic factor for mature chondrocytes and their progenitors. Osteoarthritis Cartilage 2002 Apr;10(4):308-20
    68. Ohbayashi N, Shibayama M, Kurotaki Y, FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Der 2002 Apr 1;16(7):870-9
    69. Liu Z, Xu J, Colvin JS, et al. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev 2002 Apr 1;16(7):859-69
    70. Eswarakumar VP, Monsonego-Oman E, Pines M. The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development 2002 Aug; 129(16):3783-93
    71. Peters H, Balling R.Teeth. Where and how to make them Trends Genet 1999 Feb;15(2):59-65
    72. Thesleff I, Sharpe P. Signalling networks regulating dental development. Mech Dev 1997 Oct;67(2):111-23
    73.金冬雁,王海林译。分子克隆实验指南。第二版。科学出版社。1996。
    74.颜子颖,王海林译。精编分子生物学实验指南。科学出版社。1998。
    75.田宇。人成釉蛋白的重组表达和相关功能研究。第四军医大学博士学位论文。2002。西安。
    76.徐明波,马贤凯。基因工程产物纯化工艺的设计。生物工程进展。1995:15(4):52。
    77.余擎。核心结合因子1在牙齿发育矿化中作用机制的研究。第四军医大学博士学位论文。2002。西安。
    78.余擎,肖明振,吴补领。牙胚发生和形成的分子机制。牙体牙髓牙周病学杂志,2001;5:341。
    79.吴奇光主编。口腔组织病理学。第三版。北京人民卫生出版社,1992。
    80.文玲英,吴海珍。现代牙髓免疫学。安徽科学技术出版社,1998。
    81.王泊云,李玉松,黄高异等主编。病理学技术。人民卫生出版社。2000。
    82.甲状旁腺激素对牙乳头间充质细胞、牙胚组织影响的实验研究。第四军医大学博士学位论文。1997。西安。
    83.郝建军。激素和生长因子与牙乳头细胞、牙髓细胞、牙胚分化和矿化关系的体外实验研究。第四军医大学博士学位论文。1996。西安。
    84.何文喜。人牙乳头细胞内Smad1在BMP2信号转导中的作用。第四军医大学硕士
    
    学位论文。2000。西安。
    85.Smad5,6在牙胚发育过程的表达及在BMP2信号转导中的作用研究。第四军医大学硕士学位论文。2001。西安。
    86. Martin A,Unda FJ, Begue-Kim C,et al. Effects of aFGF, bFGF, TGFbetal and IGF-I on odontoblast differentiation in vitro. Eur Joral Sci, 1998,106(suppl 1):117~121
    87. Smith AJ,Tobias RS,Cassidy N,et al. Odontoblast stimulation in ferrets by dentine matrix components. Arch Oral Biol, 1994,39(1): 13~223
    88. Maglorire H, Joffre A, Bleicher F. An in vitro model of human dental pulp repair. J Dent Res:1996,75(12)1971~1978
    89. Tziafas D. Mechanisms controlling secondary initiation of dentinogenesis. Int Endod J, 1994.27(1):61-74
    90. William TB. Conn Tissue Res,,1995,(33),Nos. 1~3,PP.59~65[381~387]
    91. Tziafas D,Alvanou A,Kaidoglou. Dentinogenic activity of allogenic plasma fibronectin on dog dental pulp. J Dent Res, 1992,71(5):1189~1195
    92. Fitzgerald M; Chiego DJ; Heys DR.. Autoradiographic analysis of oclontoblast replacement following pulp exposure in primate teeth. Arch Oral Biol (Archives of oral biology.) 1990; 35(9): 707-15
    93. Nakasshima M. 24. Induction of dentine in amputated pulp of dogs by recombinant human bone morphogenetic proteins-2 and -4 with collagen matrix. Arch Oral Biol,1994,39(12): 1085~1989
    94. Tziafas D, Panagiotakopoulos NK. Immunolocalization of fibronectin during the early response of dog dental pulp to demineralized dentine or calcium hydroxide-containing cement. Arch Oral Biol, 1995,40(1):23~31
    95. Tziafas D, Papadimitriou S. Role of exogenous TGF-beta in induction of reparative dentinogenesis in vivo. Eur J Pral Sci, 1998,106(suppl 1): 192~196
    96. Cassidy N, Fahey M, prime SS,et al. Comparative analysis of transforming growth factor-beta isoforms 1-3 in human and rabbit dentine matrices. Arch Oral Biol,1997,42(3):219~223
    97.王忠东,文玲英,金岩等。牙髓组织中骨形成蛋白-3 基因表达的原位杂交研究。实用口腔医学杂志。2000;26(4):275
    98.王捍国,肖明振,刘军等神经生长因子在大鼠牙髓炎症中的作用的实验研究。临床口腔医学杂志。2001,17(3):165
    99.张莹,王美霞,张郁。碱性成纤维细胞生长因子及其受体在人牙髓中的表达。华西口腔医学杂志,2002,20(2):110
    100. Smith AJ, Matthews JB, Hall RC. 9. Comparative analysis of transforming growth factor-beta isoforms 1-3 in human and rabbit dentine matrices. Eur J Oral Sci, 1998 Jan;106 Suppl 1:179-184
    101. Toyono T, Nakashima M, Kuhara S,et al. Temporal changes in expression of transforming growth factor-beta superfamily members and their receptors during bovine preodontoblast differentiation in vitro. Arch Oral Biol,1997,42(7):481~488
    102.果树林,文玲英,李玉松炎症牙髓中转化生长因子-β分布特征的实验研究。牙体牙髓牙周病学杂志,1997;7(2):94
    103.转化生长因子-beta 受体在人牙髓组织的表达和意义。实用口腔医学杂志。1999:15(5):361
    104.包柳郁。人牙髓细胞内Smad2、3在TGFbetal信号转导中的作用研究。第四军医人学硕士学位论文。2001。西安
    105.汪平。几种生长因子与牙髓组织细胞分化和功能调节。牙体牙髓牙周病学杂志。1997:7(2):138。
    
    
    106. Baum BJ.Demonstration of fibronectin as a major extracellular protein of human gingival fibroblasts.J Dent Res, 1980;59:631
    107.徐劲军。雷芳,何红英。碱性成纤维细胞生长因子在正常和炎症牙髓中的免疫组化研究。广东牙病防治杂志,1999;7(3):179
    108. Kaufman RJ. Overview of Vectors used for expression in mammalian cells. Methods enzymol. 1990; 185:487-527
    109. Sampath TK, Maliakal JC, Hauschka PV et al. Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J Biol Chem 1992; 267(28):20352-62
    110.司徒镇强,吴军正。细胞培养。世界图书出版社。1996
    111.杨抚华主编.医学细胞生物学概论.四川科学技术出版社.1995
    112. Ruch JV, Lesot H,Begue-Kirn C.Odontoblast differentiation.Int J Dev Biol. 1995 39(1):51
    113.第四军医大学生物学教研室,医学细胞生物学基础。P88-101
    114. Quarles LD, Yohay DA, Lever LW, et al. Distinct proliferative and differentiated stages of murine MC3T3-El cells in culture: an in vitro model of osteoblast development. J Bone Miner Res. 1992; 7(6): 683-87
    115. Larmas M,Thesleff I. Biochemical study of changes in non-specific alkaline phosphomonoesterase activity during mouse tooth ontogeny. Arch Oral Biol, 1980;25:791~7
    116.刘晓勇,张海燕,吕婴,等碱性成纤维细胞生长因子对人牙周膜细胞增殖与ALP活性表达的影响。北京口腔医学。2001(2):132
    117. Liang RF, Nishimura S,Sato S.Effects of epidermal growth factor and transforming growth factor-beta on insulin-induced differentiation in rat dental pulp cells. Arch Oral Biol,1992;37(4):789
    118. 111. BronckersAL, LyraruuDM,WolfgensJHM,Immunohistochemistry of extracellular matrix proteins duringvarious stages of dentinogenesis, Connect Tissure Res. 1998; 22(1): 65
    119. Takita K,Ohsaki Y, Naketa M,et al.immunofluorescence localization of type Ⅰ and type Ⅲ collagen and fibronectin in mouse dentaltissure in late development and during molar eruption. Arch Oral Biol,1987;32(3):237
    120. Pavlin D, Dove SB, Zadro R, et al. Mechanical loading stimulates differentiation of periodontal osteoblasts in a mouse osteoinduction model: effect on type Ⅰ collagen and alkaline phosphatase genes. Calcif Tissue Int. 2000; 67(2):163-72.
    121.郝建军,汪平,史俊南。碱性成纤维细胞生长因子的人牙髓细胞增殖和分化的影响。中华口腔医学杂志,1999 Jul;34(4):239-41
    122.周廷中。多肽生长因子(基础与临床)。中国科学技术出版社。1992