多数牙先天缺失致病相关基因PAX9、MSX1的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先天缺牙是比较常见的牙齿发育异常疾病。除了智齿以外,其他牙齿的先天缺失率从1.6%到9.6%不等。先天缺牙又称牙齿数目不足,是在牙胚形成过程中或牙胚发育的早期,即牙蕾形成期的异常。先天缺牙可分为个别牙先天缺失(hypodontia)、多数牙先天缺失(oligodontia)和先天无牙症(anodontia)三种类型。多数牙先天缺失是指缺牙数目在6个和6个以上的牙齿(不包括第三磨牙),通常有综合征并发型和非综合征并发型等两种类型,可以表现为常染色体的显性或隐性遗传、X-连锁遗传特性,有的是散发的,有的则是具有家族遗传史的。
     人体任何组织、器官的发育都受到基因的调控,而任何组织、器官的发育异常都与基因突变有关。在牙齿的发育形成过程中有多达200多个基因参与调控,它们决定各个牙齿的位置、数目、大小和形状等。在牙胚发育的各个时期,上皮细胞和间充质细胞之间形成复杂的分子网络,这些网络中的信号分子单独或协同作用,负责牙齿各个性状的发育。但这些信号分子和转录因子与疾病的关系的研究却进展缓慢,例如多数牙先天缺失的分子机制究竟是什么?至今还不甚明确。
     研究表明多数牙先天缺失与PAX9密切相关,而少数牙先天缺失主要与MSX1基因突变或缺失有关。PAX9为Pax家族新发现成
    
    第四军医大学博士学位论文
    员,存在所有脊椎动物中,是牙齿发育过程中起关键调控作用的
    转录因子。同源异型盒基因MSxl在牙齿发育各个时期的许多组织
    中表达,是FGFS、BMpS信号传导网络中的重要调控分子。
     尽管多数学者认为PAXg是引起多数牙先天缺失的主要致病
    基因,但对其突变的方式和位点仍有争议,不尽相同,这主要与
    缺牙的数目、位置及患者的遗传背景(种族、国籍等)有关。为
    此,本课题目的是对多数牙先天缺失相关致病基因进行研究,通
    过对4例不同类型的多数牙先天缺失病例和1例少数牙先天缺失
    并有唇愕裂患者的临床资料分析,且在此基础上,采用基因组DNA
    提取、PCR扩增、纯化、测序、结果分析以及TaqMan一MGB探针进
    行SNP分析等方法分别进行以下几部分研究:
     多数牙先天缺失的临床研究
     从常规口腔检查、全口曲面断层X线片、实验室检查和系谱
    分析等四个方面,对临床就诊的4例不同类型的多数牙先天缺失
    和1例少数牙先天缺失并有唇愕裂的病例进行临床研究。其中,1
    例为少汗型外胚叶发育不全综合征并发的多数牙先天缺失,无家
    族遗传史,且其孪生姐姐全口牙列完好;2例为非综合征性的多
    数牙先天缺失,但有家族遗传史;1例也为非综合征性的多数牙
    先天缺失,却是散发的,无家族遗传史。
     结果表明:(l)多数牙先天缺失患者缺牙的数目、位置等临床
    表现不同,遗传方式也多种多样,但临床实验室检查均未见明显
    异常。(2)处在环境完全相同的二卵双生胚胎,一个表现出外胚叶
    发育不全的特征,另一个却毫无类似异常,说明本病例的遗传物
    质起着相当重要的作用。(3)病例2中只有父亲和儿子为多数牙先
    天缺失患者,家系中的女性无此现象,说明多数牙先天缺失可能
    为Y连锁遗传病。(4)病例3母女二人临床表现的不尽相同,说明在
    
    第四军医大学博士学位论文
    遗传背景相同条件下环境因素可能是疾病表型多样性的决定因
    素。(5)病例5母亲妊娠期间吸食毒品可能影响牙胚发育而造成多
    数牙先天缺失,说明该环境因素也许是引起先天缺牙的因素之一。
    总之,遗传物质和环境因素是导致牙齿先天缺失疾病表型多样性
    的决定因素。
    2.多数牙先天缺失患者PAXg基因突变的检测
     为了探讨PAXg基因是否是引起多数牙先天缺失的致病基因
    及其突变的位点和方式。本部分从上述5个病例及其父母和1例
    牙列完整儿童共14人的静脉血中提取DNA,在PAxg基因内设计4
    对引物,采用PCR方法扩增PAXg基因的外显子2、3、4的编码区,
    而后通过对分段PCR纯化产物的测序,并结合系谱进行序列比对
    分析,结果发现:(l) PAXg基因外显子3的第88、89位核昔酸是2
    个不相关联的SNPs,它们出现了杂合或纯合突变。其中,88位
    点是C一T的同义突变,密码子由CAC一CAT,但仍编码组胺酸。
    89位点是G~C的错义突变,对应的密码子由GCG一CCG,氨基酸
    则由丙氨酸(Ala)变为脯氨酸(Pro)。(2)多数牙先天缺失可能与
    PAXg基因外显子3的第89位核昔酸上出现的由G~C的错义突变
    有关,而与PAxg基因外显子3的第88位核普酸出现的同义突变
    无关。(3)多数牙先天缺失可能是由PAXg基因突变引起的不完全外
    显遗传病,且男性杂合可发病,女性杂合不发病,不管男女性纯
    合均发病。有的病例符合半显性遗传的特征。
    3.多数牙先天缺失患者MSxl基因突变的检测
     为了对多数牙先天缺失的致病相关基因MSxl及其突变的位
    点和方式进行探讨,本部分又从上述14人的静脉血中提取DNA,
    
    第四军医大学博七学位论文
    而后在MSxl基因内设计引物,采用PCR方法扩增MSXI基因外显
    子1、2的编码区,通过对外显子l、2的PCR纯化产物测序,与
    野生型基因序列比对后,结果发现:(l)3位多数牙先天缺失患者
    在MSXI基因的内含子2个位点上和外显子1的3个位点上同时出
    现了杂合突变,它们是5个可能的单核昔酸多态性位点。(2) MSxl
    外显子1的311位点由G变A
Tooth agenesis is a common tooth dysplasia. Except for wisdom tooth, the congenital deficiency rate is about 1.6%-9.6%. Tooth agenesis also named teeth number deficiency. It happens in tooth forming process or earlier period of tooth germ development. Congenital missing tooth can be divided into hypodontia, oligodontia and anodontia. Oligodontia is defined as absence of six or more teeth. It has two types: syndromic oligodontia and non-syndromic oligodontia. The condition can be inherited as an autosome-dominant , autosome-recessive, or X-linked trait, some of which happens individually, some has familial heredity background.
    Any tissue or organ's development is controlled by genes, and any tissue or organ's displasia is related to
    
    
    gene' s mutation as well. There are more than 200 genes controlling and adjusting teeth development. They decide tooth position, number, size and shape, etc. In the period of tooth germ development, complicated molecule networks are established between epithelial cells and mesenchymal cells. The signal molecules of the networks are responsible for the tooth development alone or coordinated with other molecules. However, the research about the relationship between these signal molecules and transcription factors with diseases got few achievement. For example, what is the molecule mechanism of oligodontia? No scientific
    answerers are got up to now.
    The research found that oligodontia is intimately related to PAX9, and hypodontia is mainly related to MSX1. PAX9 is a newly discovered member of Pax family, existing in all vertebrates, which is a transcription factor that takes a key responsibility in tooth development. MSX1 expressed in many tissues of teeth in each period of tooth growth, and is an important controlling molecule in FGFs> BMPs signal networks.
    Most of researchers suggested that PAX9 is a chief pathogenic gene that causes oligodontia, but the ways and positions of mutation are disputable , that is related to the number, position of missing tooth and patient's genetic background(races, nationalities, et al). To study the pathogenic genes of oligodontia further, this article select PAX9 and MSX1 as candidate pathogenic genes of oligodontia for further study by PCR, sequencing and SNP
    
    
    detection using TaqMan-MGB probe, based on analyzing the clinical data of 4 different cases of oligodontia and 1 case of hypodontia accompanied with lip cleft palate. As follows:
    1 The clinical study on oligodontia
    We studyed the clinical character of 4 different types of cases on. oligodontia and one case on hypodontia accompanied with lip cleft palate by common oral examination, pantomoagram radiographs of dentition, laboratory examination and pedigree analysis. The results were as following: (1) The number and positions of missing teeth are different, and oligodontia patients have varieties heredity styles, but clinical laboratory examinations have no obvious abnormorlity. (2)In the same environmental condition, One of twins manifests Ectodermal dysplasia syndrome, another don't have the similar abnormality, so genetic materials are important factors in case 1. (3)In case 2 the proband and his father have oligodontia, and the female of the family are normal, it suggest that oligodontia may be Y-linked hereditary disease. (4)In case 3 the patient and his mother have different clinical situations, and it suggest that environmental factors may determine the phenotype diversity of oligodontia. (5) In case 5 drug taking of the patient's mother in gestational period resulted in children's oligodontia, suggest that drug taking may be a factor causing oligodontia. All of above results suggest that Environmental factors and genetic
    
    
    materials are determinative factors, which result in phenotype diversity of congenital missing tooth.
    2 The detection of PAX9 gene mutation in patients of oligodontia
    To study whether PAX9 is the pathogenic gene causing oligodontia, as well as mutation sites and styles, we got out DNA from the venous blood of 14 persons composed of all 5 patients above, as well
引文
1 石四箴主编.儿童口腔医学.北京:人民卫生出版社,2004.
    2 George K. B. Robert P. Carmichael, et al. Genetic Muta-tions in Certain Head and Neck Conditions of Interest to the Dentist.J Can Dent Assoc,2001, 67(10):594.
    3 Sinikka Pirinen, Anu Kentala, Pekka Nieminen, et al. Recessively inherited lower incisor hypodontia. J Med Genet 2001;38:551-556
    4 Arte S, Nieminen P, Apajalahti S, et al. Characte-ristics of incisor-premolar hypodontia in families. Journal of Dental Research, 2001,80(5): 1445
    5 Line SR. Molecular morphogenetic fields in the development of human dentition. J Theor Biol,2001,211(1):67-75
    6 Satokaka I, Maas R. MSX1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat genet, 1994,6:348-356.
    7 Thesleff I.Genetic basis of tooth development and dental defects. Acta Odontol Scand, 2000,58(5):191-194
    8 Vastardis H, Karimbux N, Guthua SW, et al. A human MSX1.homeodomain missense mutation causes selectivetooth agenesis. Nat Genet, 1996,13: 417-421.
    9 Van den Boogard MJ, Dorland M, Beemer FA, et al. MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nat Genet, 2000,24:324-343.
    10 Lidral A C and Reising B C. The role of MSX1 in human tooth agenesis.J Dent Res, 2002,81(4):274-278.
    11 Thesleff I. Genetic basis of tooth development and
    
    dental defects. Acta Odontol Scand, 2000,58:191-194.
    12 Bei M, ratochwil K, Maas R. BMP4 rescues a non-cell-autonomous function of MSX1 in tooth development. Development, 2000,127:4711-4718
    13 Chen Y, Bei M, Woo I, et al. MSXl controls inductive signaling in mammalian tooth morphogenesis.Development, 1996,122(10):3035-3044
    14 Zhang Z, Song Y, Zhao X, et al. Rescue of cleft palate in MSXl-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regula-tion of mammalian palatogenesis. Development, 2002,129(17): 4135-46
    15 Hah J, Ito Y, Yeo J Y, et al. Cranial neural crest-derived mesenchymal proliferation is regulated by MSX1-mediated p19(INK4d) expression during odonto- genesis. Dev-Biol,2003 ,261(1): 183-96
    16 Jezewski PA, Vieira AR, Nishimura C, et al. Complete sequencing shows a role for MSX1 in non-syndromic cleft lip and palate. J Med Genet, 2003,40(6):399-407
    17 Dahl E, Koseki H, Bailing R. Pax genes and organogen-esis. Bioessays, 1997,19:755-765
    18 Peters H and Balling R. Teeth where and how to make them.Thends Genet, 1999,15:59-65
    19 Peters H, Neubuser A, Krotochwil K, Bailing R.PAX9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit cramiofacial and limb abnormalities. Genes Dev, 1998,12:2735-2747
    20 Sharpe PT. Homeobox genes and orofacial development.
    
    Connect Tisue Res, 1995,32:17-25
    21 Stockton DW, Das P, Goldenberg M, et al. Mutation of PAX9 is associated with oligodontia. Nat Genet 2000,24:18-19
    22 Frazier-Bowers SA, Guo DC, Cavender A, et al.A novel mutation in human PAX9 causes molar oligodontia. J Dent Res, 2002,81(2):129-33
    23 Das P, Stockton DW, Bauer C, et al. Haploinsufficiency of PAX9 is associated with autosomal dominant hypod-ontia.Hum Genet 2002 Apr;IlO(4):371-6
    24 Das P, Hai M, Elcock C, et al. Novel missensemuta- tions and a 288-bp exonic insertion in PAX9 in families with autosomal dominant hypodontia. Am-J-Med-Genet, 2003,118A(1):35-42
    25 Mostowska A, Kobielak A, Biedziak B, et al. Novel mutation in the paired box sequence of PAX9 gene in a sporadic form of oligodontia. Eur-J-Oral-Sci,2003,111(3):272-6
    26 Jumlongras D, Lin JY, Chapra A, et al. A novel missense mutation in the paired domain of PAX9 causes non-syndromicoligodontia. Hum Genet, 2004,114(3):242-9
    27 Vieira A R. Oral clefts and syndromic forms of tooth agenesis as models for genetics of isolated tooth agenesis. Journal of Dental Research, 2003, 82(3):162-166
    28 Liu W, Wang H,Zhao S, et al. The novel gene locus for agenesis of permanent teeth (He-Zhao deficiency) maps to chromosome 10q11.2. Journal of Dental Res-earch, 2001
    
    ,80(8):1716
    29 Gao Y, Kobayashi H, Ganss B, et al. The human KROX-26/ZNF22 gene is expressed at sites of tooth formation and maps to the locus for permanent tooth agenesis (He-Zhao deficiency). Journal of Dental Research, 2003, 82 (12):1002
    30 Van Genderen C, Okamura RM, Forinas I, et al. Devel-pment of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-eficient mice. Genes Dev, 1994,8:2691-2703
    31 Thomas BL, Tucker AS, Qiu M, et al. Role of Dlxl and Ulx2 genes in patterning of the murine dentition. Development,1997,124:4811-4818
    32 Hardcastle Z, Mo R, Hui CC, et al. The Shh signaling pathway in tooth development:defects in Gli2 and Gli3 mutants. Development, 1998, 125:2803-2811
    33 Lin CR,Kioussi C, O' Connell S, et al. Pitx2 regulateslung asymmetry, cardic positioning and pituitary and tooth morphogenesis.Nature, 1999,401:279-282
    34 Matzuk MM, Lu N, Vogel H, et al. Multiple defects and perinatal death in mice deficient in follistatin.Nature, 1995, 374:360-363
    35 Ferguson CA, Tucker AS, Christensen L, et al.Activinis an essential early messenchymal signal in tooth development that is required for patterning of murine dentition. Genes Dev,1998,12:2636-2649
    36 Ferguson CA, Tucker AS, Sharpe PT. Temporospatial cell
    
    interactions regulating mandibular and maxill-ary arch patterning. Development 127:403-412
    37 Trumpp A, Depew MJ, Rubenstein JL, et al. Cre-medi-ated gene inactivation demonstrates that FGFS is required for cell survival and patterning of the first branchial arch. Genes Dev 13:3136-3148
    38 Tucker A S, Sharpe P T. Molecular genetics of tooth morphogenesis and patterning: The right shape in the right place. Journal of Dental Research, 1999,78(4): 826-835
    39 Mitsiadis T A, Angeli I, James C, et al. Role of Isletl in the patterning of murine dentition. Deve-lopment,2003 130(18): 4451-60
    40 Shibaguchi T, Kato J, Abe M, et al. Expression and role of Lhx8 in murine tooth development. Arch-Histol-Cytol,2003, 66(1):95-108
    41 Sirpa Arte. Phenotypic and genotypic features of familial hypodontia.Academic Dissertation, 2001,10:12-30
    42 Kere J, Strivastava AK, Montonen O, et al. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat Genet, 1996,13:409-416.
    43 Onreal AW, Zonana J, Ferguson B, et al. Identifica-tion of a new splice form of EDA1 gene permits detection of nearly all X-linked hypohidrotic ecto-dermal dysplasia mutations. Am J Hum Genet,1998,63:380-389.
    
    
    44 Ikkola ML, Pispa J, Pekkanen M, et al. Ectodysplasin,a protein required for epidermal morphogenesis, is a novel TNF homologue and promoters cell-matrix adhesion. Meeh Dev, 1999,88:133-146.
    45 Onreal AW, Ferguson BM, Headon DJ, et al. Mutations in the human homologue of mouse d1 cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia. Nat Genet, 1999,22:366-369.
    46 Headon, D.J., Emmal,S.A., Ferguson, B.M., et al. Gene defect in ectodermal dysplasia implicates a death domain adapter in development. Nature, 2001, 414(6866),913-916
    47 Roelfsema NM, Cobben JM. The EEC syndrome:a liter-ature study. Clin Dysmorphol, 1996,5:115-127.
    48 Qumsiyeh MB. EEC syndrome is on 7p11. 2-q21.3. Clin Genet, 1992,42:101.
    49 O' Quinn JR, Hennekam RCM, Jorde, et al. Syndromie ectodactyly with severe limb, ectodermal, urogenital, and palate defects maps to chomosome 19. Am J Hum Genet, 1998,62,130-135.
    50 Propping P, Friedl W, Wienker TF, et al. ADULT syn- drome allelie to limb mammmry syndrome(LMS).Am J Med Genet, 2000,90:179-182.
    51 Suzuki K, Hu D, Bustos T, et al. Mutations of PVRL1,encoding a cell-cell adhesion molecule/herpesvirus recepter, in cleft lip/palate-ectodermal dysplasia.Nat Genet, 2000,25:427-430.
    52 Bustos T, Simosa V, Pinto-Cisternas J, et al. Autosomal
    
    recessive ectodermal dysplasia I. An undescri-bed dysplasia/malformation syndrome. Am J Med Genet, 1991,41:389-404.
    53 Aradhya S, Woffendin H, Jakins T, et al. A recurrent deletion in the ubiquitously expressed NEMO (IKK-gamma) gene accounts for the vast majority of inco-ntinentiapigmenti mutations. Hum Mol Genet, 2001,10(19):2171-9
    54 Smahi A, Courtois G, Vabres P, et al. Genomic rearrangement in Nemo impairs NF-kappaB activiation and is a cause of incontinentia pigmenti:The Iternational Incontinentia Pigmenti(IP)Consortum.Nature, 2000, 405: 466-472.
    55 Kumar A, Eby MT, Sinha S, et al. The ectodermal dyp-lasia receptor activates the nuclear factor-kappa b, jnk, and cell death pathways and binds to ectodysp-lasin. J Biol Chem ,2001,276:2668-2677
    56 Ferrante MI, Giorgio G, Feather SA, et al. Indenti-fication of the gene for oral-facia-digita] typel syndrom. Am J Hum Genet, 2001, 68:569-576.
    57 Jumlongras D, Bei M, Stimson JM, et al.A nonsense mutation in MSX1 causes Witkop sydrom. Am J Hum Ge-net, 2001,69:67-74.
    58 John A, Pascal H G, Volker D, et al. Hay-Wells syn-drome is caused by heterozygous missense mutations in the SAM domain of p63. HumanMolecular Genetics, 2001,10(3):221
    59 Semina EV, Reiter R, Leysens NJ, et al. Cloning and charaterization of a novel bicoid-related homeobox
    
    transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet, 1996,14:392-399
    60 Phillips JC, del Bono EA,Hains JL, et al. A second locus for Rieger syndrome maps to chromosome 13q14. Am J Hum Genet, 1996,59:613-619.
    61 Wallis D, Muenke M. Mutations in holoprosencephaly. Hum Mutat, 2000, 16:99-108.
    62 Wright TJ, Ricke DO, Denison K, et al.A transcript map of the newly defined 165kb Wolf-Hirschhorn syn-drome critical region. Hum Mol Genet, 1997,6:317-324
    63 Nieminen P, Kotilainen J, Aalto Y, et al. MSX1 gene is deleted in Wolf-Hirschhorn syndrome patients with oligodontia. Journal of Dental Research. Hous- ton: Dec 2003. Vol. 82(12): 1013
    64 Karlstedt E, Kaitila I, Pirinen S. Phenotypic features of dentition in diastrophic dysplasia. J Graniofac Enet Der Boil,1996,16:164-173.
    65 Nomura R, Shimizu C, Asada Y, et al. Genetic mapping of the absence of third molars in EL mice to chro-mosome 3. Journal of Dental Research, 2003, 82 (10):786
    66 Albert B, et al. Molecular Biology of the Cell. New and London: Garland Publishing, 1994
    67 Gritli-Linde A, Bei M, Maas R, et al. Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development, 2002,129(23):5323-37
    68 Jernvall, Thesleff. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Der, 2000
    
    ,92 (1): 19-29
    69 Shimo T, Wu C, Billings, et al. Expression, gene regulation, and roles of Fisp12/CT6F in developing tooth germs. Dev Dyn, 2002,224(3):267-78
    70 haurikkala J, Mikkola M, Mustonen T, et al. TNF signaling via the ligand-receptor pair ectodysplasin and edar controls the function of epithelial signaling centers and is regulated by Wnt and activin during tooth organogenesis. Der Biol, 2001 ,229 (2):443-55
    71 Lucchini M, Mikkola M, Mustonen T, et al. TGF beta 1 signaling and stimulation of osteoadherin in human odontoblasts in vitro. Connect Tissue Res, 2002,43(2-3):345-53
    72 D'Souza RN, Aberg T, Gaikwad J, et al. Cbfal is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development,1999,126(13):2911-20
    73 Jervall J, Aberg T, Kettunen S, et al. The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mousetooth enamel knot. Development, 1998,125(2):161-9
    74 Sarkar L, Cobourne M, Naylor S, et al. Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. Proc Natl Acad Sci U S A, 2000,97(9):4520-4
    75 Sarkar L, Sharpe PT. Inhibition of Wnt signaling by exogenous Mfrzbl protein affects molar tooth size. J Dent Res, 2000,79(4):920-5
    
    
    76 Kratochwil K, Galceran J, Tontsch S, et al. FGF4, adirect target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(-/-) mice.Genes Der, 2002, 16(24):3173-85
    77 Veis A. Amelogenin gene splice products:potential signaling molecules. Cell Mol Life Sci, 2003,60(1):38-55. Review
    78 Yamashiro T, Tummers M, Thesleff I. Expression of bone morphogenetic proteins and Msx genes during root formation. Journal of Dental Research, 2003,82(3):172
    79 Aberg T, Wozney J, Thesleff I. Expression patterns of bone morphogenetic proteins (Bmps) in the developing mouse tooth suggest roles in morphogenesis and cell differentiation. Der Dyn, 1997,210(4):383-96.
    80 Bloch-Zupan A, Leveillard T, Gorry P, et al. Expression of p21(WAF1/CIP1) during mouse odontogenesis.Eur J Oral Sci, 1998,106 Suppl 1:104-11.
    81 Maas R, Bei M. The genetic control of early tooth development. Crit Rev Oral Biol Med, 1997, 8:34-39.
    82 Coin R, Lesot H, Vonesch JL, et al. Aspects of cell proliferation kinetics of the inner dental epithelium during mouse molar and incisor morphogenesis: a reappraisal of the role of the enamel knot area.Int J Der Biol, 1999, 43(3):261-7.
    83 Qiu M, Bufone A, Ghattas I, et al. Role of Dlx-1 and -2 in proximodistal patterning of the branchial arches: mutations alter morphogenesis of proximal skeletal
    
    elements derived from the first and second branchial arches. Dev Biol, 1997, 185:165-184.
    84 Wright E, Hargrave MR, Christiansen J, et al. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nature Genet, 1995, 9:15-20
    85 余擎,肖明振,等.小鼠核心结合因子1成熟胎编码区的cDNA克隆和序列分析.牙体牙髓牙周病学杂志,2002,3(12):121—123
    86 Hess J, Porte D, Munz C, et al. AP-1 and Cbfa/runt physically interact and regulate parathyroid hormone-dependent MMP13 expression in osteoblasts through a new osteoblast-specific element 2/AP-1 composite element. J Biol Chem ,2001,276(23):20029-38
    87 李璞主编.医学遗传学.北京:中国协和大学出版社,2000.1.313-319
    88 章静波,林建银,杨恬.医学分子细胞生物学.北京:中国协和医科大学出版社,2002.313
    89 Nelson, et al. Analysis of Hoxgeneexpression in thechich limb bud. Development, 1996,122(5):1449-1466
    90 Jezewsky P A, Vieira A R, Nishimura C, et al. Comple-te sequencing shows a role for MSX1 in non-syndrom-ic cleft lip and palate. Journal of Medical Genetics, 2003,40(6):399
    91 Debeer, C Bacchelli, P J Scambler, et al. Severe di-gital abnormalities in a patient heterozygous for both a novel missense mutation in HOXD13 and a polyalanine tract expansion in HOXA13. Journal of Medical Genetics. 2002,39(11):852
    
    
    92 D Alan Underhill. Genetic and biochemical diversity in the Pax gene family. Biochemistry and Cell Biology, 2000,78(5):629-639
    93 LuisM, LauraG, Angela M, et al. The diffuse endo-crine system: From embryogenesis to carcinogenesis. Progress in Histochemistry and Cytochemistry, 2003,38(2):155
    94 陈竺,强伯勤,方德福主编。基因组学与人类疾病。北京:科学出版社,2002.
    95 查锡良主编.医学分子生物学.北京:人民卫生出版社,2002.43-47
    96 Marshall E. The hunting of the SNP. Science, 1997,278:2064
    97 Kruglyak L. The use of a genetic map of biallelic markers in linkage study. Nature Genetics,1997,17(1):2
    98 Taylor JO, Choi EH, Foster CB et al. Using genetic variation to study human disease. Trends in Molecu-lar Medicine, 2001,7:507-512
    99 Schafer A, Hawkins J. NDA variation and the future of human genetics. Nature Biotech, 1998,16:33-39
    100 Collins F S, Guyer M S, Charkrabati A. Variations on a theme:cataloging human DNA sequence variation. Science, 1997,278:1580
    101 Zhao L P, Aragaki C, Hsu L, et al. Maping of complex traits by single nucleotide polymorphisms. Am J Hum Genet, 1998,63:225
    102 Bostein D, et al. Construction of a genetic linkage map in man using restriction fragment polymorphisms. Am J Hum Genet, 1980,32:314
    
    
    103 Weber J L, May P E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet, 1989,44(3):388
    104 Jin L, Zhang Y, Chkraborty R. The exact numbers of possible microsatellite motifs. Am J Hum Genet, 1994,55(3):582
    105 DibC, Faure S, Fizames C, et al.A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature, 1996,380(6570):152-154
    106 Lander E S. The genomics:globle views of biology.Science, 1996,274(5284):536-9
    107 Mcguigan TL, Livak KJ, Brenner S. DNA fingerprinting by sampled sequencing. Methods Enzymol, 1993,218:241-58