核心结合因子α亚基对釉原蛋白转录调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙齿的发育矿化是上皮和间充质相互作用的结果,这是一个由众多信号通路参与的复杂过程,这些通路从细胞外的各种信号分子开始,经过表面受体、跨膜信号转导,胞内信号传递等一系列过程,引发特异性基因的表达,导致了特异性的细胞生物学行为,作为体内非常特殊的一种钙化器官,牙齿的发育过程尤其体现了这样一种特异性行为。作为引发钙化的成釉细胞与成牙本质细胞这两种特殊的细胞,二者分泌的基质特异性蛋白是形成这两种矿化组织的关键,成釉细胞所分泌的釉原蛋白是釉质形成过程中含量最丰富的蛋白,它的缺陷可以直接导致遗传性牙釉质发育不全的产生,那么是什么因素导致了这种蛋白在成釉细胞表达的组织特异性呢?通常人们在这方面最为关注的是转录环节的问题。因此,寻找重要的转录调控因子,便成为一个重要的研究内容,Cbfα1是一种成骨分化特异性转录因子,许多矿化相关蛋白如ALP、OC、OPN、BSP等均受其调控。基因敲除的小鼠不仅全身骨发育异常,还出现牙齿发育障碍。Cbfα1的转录因子特性和它在牙齿发育过程中的表达特征提示其可能具有调节釉原蛋白的转录活性的能力。以下进行的各项研究验证了这个设想。
     通过对釉原蛋白编码区上游8.5k bp的区域进行检索和对这段序列上是否具有潜在的Cbfα1结合位点进行的分析,发现釉原蛋白的上游序列中的确存在可能与Cbfα1结合的位点。根据最为严谨、也是比较公认的一种核心序列的碱基排列方式—PuACCPuCA,总共有三个位点最为可能,其中两个分别位于转
Tooth development and mineralization is regulated by the sequential and reciprocal interactions between the epithelial and mesenchymal tissues ,Which is composed of complex signaling network, including growth factors, their receptors, transmembrane signal transduction, transcription factors and intracellular signal pathway. Theses pathway induce some special gene expression and affect some special biological behavior of these cells. As a special biomineralized organ, tooth development is an important model of these procedure. The extracellular matrix proteins secreted by ameloblast and odontoblast are the key protein for the development of enamel and dentin. Amelogenin is the most abundant extracellular matrix protein in enamel developing. Amelogenin-deficiency can cause amelogenesis imperfecta(AI). What is the reason of the cell specific gene expression? The most important thing we care of is transcriptional regulation. So to find the key trancription factors is very important for us to learn the transcription information. Cbfal is a strong regulator for osteo-specific gene expression, such as ALP, OC, OPN, BSP. The Cbfal-deficient mice also showed abnormal dental development. According to the expression characteristic of Cbfal in tooth development. We soppose that Cbfal can regulate the trancription activity of Amelogenin. To prove the suppose, we did the experiment as followed.Fitst, the 8.5 kbp secquence of 5'flanking of Amelogenin gene was anylized,
    and some potential Cbfal binding sites were found. According to the most common core binging secquence-PuACCPuCA. 3 binding sites at -5224, -1641 and +92 were found. To analyse all the transcription region, we amplified the overlapped secquence3760bp and 3035bp by PCR from the genomic DNA of mouse C57BL/6J. By restriction endonucleases enzyme digestion and ligation, 5 transcriptional regulation sequences different in length of the 5'flanking of Amelogenin gene including the basal promoter were cloned and ligated with luciferase gene in PGL3 -Basic vector.These report genes were transient transfected into CHO, Hela and UMR-106 cells and luciferase assay was performed to analyze the transcription activation of these promoters. The activity of luciferase was very strong in Hela cells. On the contrary, the CHO and UMR-106 cells showed weak fluorescence. Hela cell can be used as a good model to study the transcriptional regulation of Amelogenin promoter. According to the different activity of different length, it is suggested that there were some potential siliencer located between -1693 and -975, and some potential activator in the region between -532 and -285. The longest promoter report gene was co-transfected into Hela, CHO, and UMR-106 cells with Cbfal to compare the different roles of Cbfal in Hela, CHO, and UMR-106 cells. Cbfal served as a strong transcriptional activator on Amelogenin promoter in Hela cells. In CHO and UMR-106 cells, Cbfal showed weak activation. It proved that this activation is epithelium-specific. To find the binding site of Cbfal in the promoter region, the activitation of Cbfal was systematically tested in Hela cell by co-transfection of Cbfal with 6 different Amelogenin promoter report genes. In this way, we found that activation of Cbfal on single site didn't upgulate in large-scale . It seemed that the up-regulation is related to cooperation of muti-sites . To confirm the conclusion of bio-information analysis, three report vector deleted or mutated on -5224, -1641 and +92 are constructed. Co-transfected with Cbfal to Hela cells, the three sites showed different activation. -1641 and +92 are concerned with the up-regulated expression. -5224 showed weak activation.To further prove the two site -1641 and +92 were the binding sites of Cbfal.
引文
[1] Toyasawa, S., Ohuigin, C., Figueroa, F., Tichy, H., Klein, J., 1998.Identification and characterization of amelogenin genes in monotremes, reptiles, and amphibians. Proc. Natl. Acad. Sci. USA 95, 13056_13061.
    [2] Nikiforuk, G., Simmons, N.S., 1965. Purification and properties of protein from embryonic bovine enamel. J. Dent. Res. 44, 1119_1122.
    [3] Snead, M.L., Lau, E.C., Zeichner-David, M., Fincham, A.G., Woo, S.L., Slavkin, H.C., 1985. DNA sequence for cloned cDNA for murine amelogenin reveals the amino acid sequence for enamel-specific protein. Biochem. Biophys. Res. Commun. 129, 812_818.
    [4] Fincham, A.G., Moradian-Oldak, J., 1993. Amelogenin post-transitional modifications: Carboxy-terminal processing and the phosphorylation of bovine and porcine 'TRAP' and 'LRAP' amelogenins. Biochem. Biophys. Res. Commun. 197, 248_255.
    [5] Simmer JP, Snead M, 1995. Molecular Biology of the amelogenin gene. In: Robinson, C., Kirkham, J., Shore, R.(?)Eds., Dental Enamel Formation to Destruction. CRC Press, New York, pp. 59_84.
    [6] Moradian-Oldak, J., Simmer, J.P., Lau, E.C., Sarte, P.E., Slavkin, H.C., Fincham, A.G., 1994. Detection of monodisperse aggregates of a recombinant amelogenin by dynamic light scattering. Biopolymers 34, 1339_1347.
    [7] Fincham, A.G., Moradian-Oldak, J., Diekwisch, T.G.H. et al., 1995.Evidence for amelogenin 'nanospheres' as functional components of secretory-stage enamel matrix.J. Struct. Biol. 115, 50_59.
    [8] Ravindranath, R.M.H., Moradian-Oldak, J., Fincham, A., 1999. Tyrosyl motif in amelogenin binds N-acetyl-D-glucosamine. J, Biol. Chem. 274, 2464_2471.
    [9] Hu CC,Zhang C,Qian Q. Cloning,DNA sequence and alternative splicing of opossum amelogenin mRNAs. Calcif Tissue Res. 1996;
    [10] Salido EC,Yen PH,Koprivnikar K,et al. The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes. Am J Hun Genet 1992;50:303-316.
    [11] GibsonCW, Golub E, Ding W, et al. Identification of the leucine-rich amelo-genin peptide(LRAP) as the translation product of an alternatively spliced transcript. Biochem Biophys Res Commun 1991; 174:1306-1312.
    [12] Simmer JP. Alternative splicing of amelogenins. Connect Tissue Res, January 1, 1995; 32(1-4): 131-6.)[15] Ryu, O.H., Fincham, A.G., Hu, C.C. et al., 1999. Characterization of recombinant pig enamelysin activity and cleavage of recombinant pig and mouse amelogenins. J. Dent. Res. 78, 743_750.
    [13] Bartlett, J.D., Simmer, J.P., Xue, J., Margolis, H.C., Moreno, E.C.,1996. Molecular cloning and mRNA tissue distribution of a novel matrix metalloproteinase isolated from porcine enamel organ. Gene 183, 123_128.
    [14] Simmer, J.P., Fukae, M., Tanabe, T. et al., 1998. Purification, characterization and cloning of enamel matrix serine proteinase 1. J. Dent. Res. 77, 377_386
    [15] Ryu, O.H., Fincham, A.G., Hu, C.C. et al., 1999. Characterization of recombinant pig enamelysin activity and cleavage of recombinant pig and mouse amelogenins. J. Dent. Res. 78, 743_750
    [16] Llano, E., Pendas, A.M., Knauper, V. et al., 1997. Identification and structural and functional characterization of human enamelysin MMP-20.. Biochemistry 36, 15101J5108.
    [17] Caterina, J., Shi, J., Sun, X. et al., 2000. Cloning, characterization, and expression analysis of mouse enamelysin. J. Den. Res. 79, 1697_1703.
    [18] Fukae, M., Tanabe, T, Uchida, T. et al., 1998. Enamelysin matrix metalloproteinase-20. localization in the developing tooth and effects of pH and calcium on amelogenin hydrolysis. J. Dent. Res. 77,1580_1588.
    [19] Moradian-Oldak, J., Jimenez, I., Maltby, D., Fincham, A.G., 2001. Controlled proteolysis of amelogenins reveals exposure of both carboxy- and amino-terminal regions. Biopolymers 58, 606_616.
    [20] Paine, M., Snead, L., 1997. Protein interactions during assembly of the enamel organic extracellular matrix. J. Bone Miner. Res. 12, 221_227.
    [21] Fincham AG, Moradian-Oldak J, Simmer JP, Sarte P, Lau EC, Diekwisch T, and Slavkin HC Self-assembly of a recombinant amelogenin protein generates supramolecular
     structures. J Struct Biol, Mar 1994; 112(2): 103-9.
    [22] Rajeswari M. H. Ravindranath, Janet Moradian-Oldak, and Alan G Fincham. Tyrosyl Motif in Amelogenins Binds N-Acetyl-D-glucosamine. The Journal of Biological Chemistry. Vol. 274, No. 4, Issue of January 22, pp. 2464-2471, 1999
    [23] Rajeswari M. H. Ravindranath, Wai-Yin Tam, Pauline Nguyen, and Alan G. Fincham. The Journal of Biological Chemistry. The Enamel Protein Amelogenin Binds to the N-Acetyl-D-glucosamine -mimicking Peptide Motif of Cytokeratins. Vol. 275, No. 50, Issue of December 15, pp. 39654-39661,2000
    [24] Rajeswari M. H. Ravindranath(?), Wai-Yin Tam, Pablo Bringas, Jr., Valentino Santos, and Alan G. Fincham. Amelogenin-Cytokeratin 14 Interaction in Ameloblasts duringEnamel Formation. The Journal of Biological Chemistry. Vol. 276, No. 39, Issue of September 28, pp. 36586-36597, 2001
    [25] Rajeswari M. H. RavindranathJ, Rajam M. Basilrose, Sr., Naren H. Ravindranath, and Bhavapriya Vaitheesvaran.Amelogenin Interacts with Cytokeratin-5 in Ameloblasts during Enamel Growth. The Journal of Biological Chemistry. Vol. 278, No. 22, Issue of May 30, pp. 20293-20302, 2003
    [26] Cuervo, L. A., Pita, J. C, and Howell, D. S. (1973) Calcif. Tissue Res. 13, 1-10
    [27] Chung, C. C, and Boskey, A. L. (1985) Calcif. Tissue Int. 37, 395-400
    [28] Boskey, A. L., Stiner, D., Binderman, I., and Doty, S. B. (1997) J. Cell. Biochem. 64, 632-643
    [29] Doi, Y., Eanes, E. D., Shimokawa, H., and Termine, J. D. (1984) in Tooth Enamel Ⅳ (Fearnhead, R. W., and Suga, S., eds) pp. 19-23, Elsevier Science Publishers, Amsterdam
    [30] Fincham, A. G, Hu, Y., Lau, E., Slavkin, H. C, and Snead, M. L. (1991) Arch. Oral Biol. 36,305-317
    [31]. Moradian-Oldak, Sarte, P. E., and Fincham, A. G. (1996) Connect. Tissue Res. 35, 231-238
    [32] Suga, S., Murayama, Y, and Musashi, T. (1970) Arch. Oral Biol. 15, 597-612
    [33] Robinson, C, Briggs, H. D., Atkinson, P. J., and Weatherell, J. A. (1979) J. Dent. Res. 58B, 871-882
    [34] Hu, C.-C., Fukae, M., Uchida, T., Qian, Q., Zhang, C. H., Ryu, O. H., Tanabe, T.,
     Yamakoshi, Y., Murakami, C, Dohi, N., Shimizu, M and Simmer, J. P. (1997) J. Dent. Res. 76, 1720-1729
    [35] Takagi, M., Suzuki, M., Baba, T., Minegishi, K., and Sasaki, S. (1984) Biochem. Biophys. Res. Commun. 121, 592-597
    [36] Sasaki, S., Takagi, T., and Suzuki, ML (1991) in Mechanisms and Phylogeny ofMineralization in Biological Systems (Suga, S., ed) pp. 79-81, Springer Verlag, New York
    [37] Feng JQ, Luan X, Wallace J, et al. Genomic organization, chromosomal mapping, and promoter analysis of the mouse dentin sialophopho-protein gene, which codes for both dentin sialoprotein and dentin phosphopeotein [J]. J Biol Chem, 1998;273:9457-9464.
    [38] Chen E,Piddington R,Decker S,et al. Regulation of amelogenin gene expression during tooth development.Dev Dyn 1994;199:189-198
    [39] Snead ML, Paine ML, Chen LS, et al. The murine amelogenin promoter: developmentally regulated expression in transgenic animals [J]. Connect Tissue Res, 1996;35(1-4):41 -7.
    [40] Papagerakis P, Hotton D, Lezot FEvidence for regulation of amelogenin gene expression by 1,25-dihydroxyvitamin D(3) in vivo J Cell Biochem. 1999 Dec;76(2):194-205
    [41] Snead ML, Paine ML, Chen LS, et al. The murine amelogenin promoter: developmentally regulated expression in transgenic animals [J]. Connect Tissue Res, 1996;35(1-4):41-7.
    [42] Yan Larry Zhou and Malcolm L. Snead.Identification of CCAAT/Enhancer-binding protein a as a transactivator of the mouse amelogenin gene [J]. J Biol Chem, Apr 2000; 275: 12273 - 12280.
    [43] Yan Larry Zhou, Yaping Lei, Snead ML. Functional antagonism between Msx2 and CCAAT/enhancer-binding protein a in regulating the mouse amelogenin gene expression is mediated by protein-protein interaction [J]. J Biol Chem, Sep 2000; 275: 29066 - 29075.
    [44] Couwenhoven, R. I., and Snead, M. L. (1994) Dev. Biol. 164, 290-299
    [45] Thesleff I., Vaahtokari A. and Partanen AM. Regulation of organogenesis. Common molecular mechanisms regulating the development of teeth and other organs. Int. J. Dev. Biol. 1995; 39: 35~50
    [46] Mundlos S.CIeidocranial dysplasia: clinical and molecular genetics. J Med Genet 1999
     Mar;36(3):177-82
    [47] Satake M, Nomura S, Yamaguchi-Iwai Y, et al. Expression of the Runt domain-encoding PEBP2 alpha genes in T cells during thymic development. Mol Cell Biol. 1995; 15(3): 1662-70.
    [48] Mundlos S, Otto F, Mundlos C, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89(5):773-9.
    [49] Zhang YW, Bae SC, Takahashi E, et al. The cDNA cloning of the transcripts of human PEBP2alphaA/CBFA 1 mapped to 6p12.3-p21.1, the locus for cleidocranial dysplasia. Oncogene 1997 Jul 17;15(3):367-71
    [50]Takagi Y, Veis A, Sauk JJ. Relation of mineralization defects in collagen matrices to noncollagenous protein components. Identification of a molecular defect in dentinogenesis imperfecta. Clin Orthop Relat Res, 1983, (176): 282-90.
    [51] Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A, Komori T, Nakatsuka M. Cbfαl isoforms exert functional differences in osteoblast differentiation. J Biol Chem, 1999, 274(11):6972-8.
    [52] Xiao ZS, Thomas R, Hinson TK, Quarles LD. Genomic structure and isoform expression of the mouse, rat and human Cbfal/Osf2 transcription factor. Gene, 1998, 214(1-2): 187-97
    [53] Vaillant F, Blyth K, Terry A, et al. A f μll-length Cbfal gene product perturbs T-cell development and promotes lymphomagenesis in synergy with myc. Oncogene. 1999 25;18(50):7124-34. [71] Tatsuya Yoshizawa, Fumio Takizawa, Futabako Iizawa.Homeobox Protein Msx2 Acts as a Molecular Defense Mechanism forPreventing Ossification in Ligament Fibroblasts. MOLECULAR AND CELLULAR BIOLOGY, Apr. 2004, p. 3460-3472
    [54] Kanzler B, Kuschert SJ, Liu YH, et al. Hoxa-2 restricts the chondrogenic domain and inhibits bone formation during development of the branchial area. Development. 1998 Jul;125(14):2587-97
    [55] Otto F, Thornell AP, Crompton T, et al. Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89(5):765
    [56] Kreiborg S, Jensen BL, Larsen P, et al. Anomalies of craniofacial skeleton and teeth in cleidocranial dysplasia. J Craniofac Genet Dev Biol. 1999;19(2):75-9.
    [57] Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R. T., Gao, Y. H., Inada, M., Sato, M., Okamoto, R., Kitamura, Y, Yoshiki, S., and Kishimoto, T. (1997) Cell 89, 755-764.
    [58] Hoshi, K., Komori, T., and Ozawa, H. (1999) Bone 25, 639-651.
    [59] Inada, M., Yasui, T., Nomura, S., Miyake, S., Deguchi, K., Himeno, M., Sato, M., Yamagiwa, H., Kimura, T., Yasui, N., Ochi, T., Endo, N., Kitamura, Y, Kishimoto, T., and Komori, T. (1999) Dev. Dyn. 214, 279-290.
    [60] Kim, I. S., Otto, F., Zabel, B., and Mundios, S. (1999) Mech. Dev.80, 159-170.
    [61] Gao, Y. H., Shinki, T., Yuasa, T., Kataoka-Enomoto, H., Komori, T., Suda, T., and Yamaguchi, A. (1998) Biochem. Biophys. Res. Commun. 252, 687-702.
    [62] Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., and Karsenty, G.(1997) Cell 89, 747-754.
    [63] Ferguson, C, Alpern, E., Miclau, T., and Helms. J. A. (1999) Mech. Dev. 87, 57-66.
    [64] Enomoto, H., Enomoto-Iwamoto, M., Iwamoto, M, Nomura, S., Himeno, M., Kitamura, Y, Kishimoto, T., and Komori, T. (2000) J. Biol. Chem. 275, 8695-8702.
    [65] D'Souza RN, Aberg T, Gaikwad J et al. Cbfαl is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development 1999 Jul;126(13):2911-20
    [66] Bronckers AL, Engelse MA, Cavender A et al. Cell-specific patterns of Cbfal mRNA and protein expression in postnatal murine dental tissues. Mech Dev 2001 Mar;101(1-2):255-8
    [67] Thomas Aberg, Adriana Cavender, Joel S. Phenotypic Changes in Dentition of Runx2 Homozygote-null Mutant Mice. Journal of Histochemistry & Cytochemistry. Volume 52(1): 131-139,2004
    [68] Yamashiro T, Aberg T, Levanon D, Groner Y, and Thesleff I. Expression of Runxl, -2 and -3 during tooth, palate and craniofacial bone development.Gene Expr Patterns, Nov 2002; 2(1-2): 109-12.
    [69] Sangeeta D and Paul H. K. Role of Cbfal in Ameloblastin Gene Transcription. J. Biol. Chem. Vol. 276, Issue 37, 35159-35164, September 14, 2001
    [70] Rena N, D'Souza, Thomas Aberg, et al. Cbfal is required for epithelial-mesenchymal
     interactions regulating tooth development in mice.Development 126, 2911-2920 (1999)
    [71] Tatsuya Yoshizawa, Fumio Takizawa, Futabako Iizawa.Homeobox Protein Msx2 Acts as a Molecular Defense Mechanism forPreventing Ossification in Ligament Fibroblasts. MOLECULAR AND CELLULAR BIOLOGY, Apr. 2004, p. 3460-3472
    [72] Aberg T, Wang XP, Kim JH,et al. Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev Biol, Jun 2004; 270(1): 76-93
    [73] Ducy, P., Starbuck, M., Priemel, M. Shen, J., Pinero, G, Geoffroy, V., Amling, M., and Karsenty, G (1999) Genes Dev. 13, 1025-1036.
    [74] Komori T, Kishimoto T. Cbfα 1 in bone development. Curr Opin Genet Dev 1998 Aug;8(4):494-9
    [75] Banerjee C, McCabe LR, Choi JY, et al. Runt homology domain proteins in osteoblast differentiation: AML3/CBF A 1 is a major component of a bone-specific complex. J Cell Biochem. 1997 Jul 1;66(1):1-8.
    [76 ]Bidwell JP, Alvarez M, Feister H, et al. Nuclear matrix proteins and osteoblast gene expression. J Bone Miner Res 1998 Feb;13(2): 155-67]
    [77] Sato M, Morii E, Komori T, et al. Transcriptional regulation of osteopontin gene in vivo by PEBP2alphaA/CBF A 1 and ETS1 in the skeletal tissues. Oncogene 1998 Sep 24;17(12):1517-25
    [78] Rodan GA, Harada S. The missing bone. Cell. 1997 May 30;89(5):677-80. [79] Ji C, Casinghino S, Chang DJ, et al .Cbfα (AML/PEBP2)-related elements in the TGF-beta type I receptor promoter and expression with osteoblast differentiation. J Cell Biochem 1998 Jun 1;69(3):353-63
    [79] Ji C, Casinghino S, Chang DJ, et al .Cbfα (AML/PEBP2)-related elements in the TGF-beta type I receptor promoter and expression with osteoblast differentiation. J Cell Biochem 1998 Jun l;69(3):353-63
    [80] Jimenez MJ, Balbin M, Lopez JM, et al. Collagenase 3 is a target of Cbfα 1, a transcription factor of the runt gene family involved in bone formation. Mol Cell Biol 1999 Jun;19(6):4431-42
    [81] Chang DJ, Ji C, Kim KK, et al. Reduction in transforming growth factor beta receptor I expression and transcription factor Cbfα 1 on bone cells by glucocorticoid. J Biol Chem
     1998 Feb 27;273(9):4892-6
    [82] Lee, B., Thirunavukkarasu, K., Zhou, L., et al (1997) Missense mutation abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nature Genet. 16,307 310
    [83] Kagoshima, H., Akamatsu, Y., Ito, Y, Shigesada, K. (1996) Functional dissection of the α and βsubunits of transcription factor PEBP2 and the Redox susceptibility of its DNA binding activity. J. Biol. Chem. 271, 33074 33082
    [84] Akamatsu, Y., Tsukumo, S., Kagoshima, H., Tsurushita, N., Shigesada, K. (1997) A simple screening for mutant DNA binding proteins: application to murine transcription factor PEBP2α subunit, a founding member of the Runt domain protein family. Gene 185, 111 117.
    [85] Ogawa, E., Inuzuka, M., Maruyama, M., et al (1993a) Molecular cloning and characterization of PEBP2β the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2α . Virology 194, 314 331.
    [86] Wang, S., Wang, Q., Crute, B.E., et al (1993) Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol. Cell. Biol. 13,3324 3339.
    [87] Sasaki, K., Yagi, H., Bronsonm, R.T., et al (1996) Absence of fetal liver hematopoiesis in transcriptional co-activator, core binding factor P(Cbfβ) deficient mice. Proc. Natl. Acad. Sci. USA 93, 12359 12363
    [88] Wang, Q., Stacy, T., Miller, J.D., et al (1996b) The CBFβ subunit is essential for CBFα2 (AML1) function in vivo. Cell 87, 697 708.
    [89] Niki, M., Okada, H., Takano, H., et al (1997) Hematopoiesis in the fetal liver is impaired by targeted mutagenesis of a gene encoding a non-DNA binding subunit of the transcription factor, PEPB2/CBF. Proc. Natl. Acad. Sci. USA 4, 5697 5702.
    [90] Kim, W.-Y, Sieweke, M., Ogawa, E., et al (1999) Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains. EMBO J. 18, 1609 1620.
    [91] Lu, J., Maruyama, M., Satake, M., et al (1995) Subcellular localization of the αand β subunits of the acute myeloid leukemia-linked transcription factor PEBP2/CBF. Mol. Cell.
     Biol. 15, 1651 1661
    [92] Adja, N., Stacy, T., Speck, N.A., Liu, P.P. (1998) The leukemic protein CBFb-SMMHC sequesters Cbfα2 into cytoskeletal filaments and aggregates. Mol. Cell. Biol. 18, 7432 7443.
    [93] Kanno, T., Kanno, Y., Chen, L.-F., et al (1998a) Intrinsic transcriptional activation/inhibition domains of the PEBP2/CBF subunit revealed in the presence of the subunit. Mol. Cell. Biol. 18,2444 2454
    [94] Ogawa, E., Maruyama, M., Kagoshima, H., et al (1993b) PEBP2/PEA2 represents a family of transcription factors -homologous to the products of the Drosophila runt gene and the human AMLl gene . Proc. Natl. Acad. Sci. USA 90,6859 6863.
    [95] Zhang, D.E., Fujioka, K., Hetherington, C.J., et al (1994) Identification of a region which directs the monocytic activity of the colony-stimulating factor 1 (macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AMLl). Mol. Cell. Biol. 14, 8085 8095
    [96] Zhang, D.E., Hetherington, C.J., Meyers, S., et al (1996) CCAAT enhancer-binding protein (C/EBP) and AML1 macrophage colony-stimulating factor receptor promoter. Mol. Cell. Biol. 16, 1231 1240.
    [97] Hanai, J., Chen, L.F., Kanno, T., et al (1999) Interaction and functional cooperation of PEBP2/CBF with Smads: Synergistic induction of the immunoglobulin germline Cα promoter. J. Biol. Chem. 274, 31577 31582.
    [98] Tanaka, T., Kurokawa, M., Ueki, K., et al (1996) The extracellular signal-regulated kinase pathway phosphorylates AMLl, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Mol. Cell. Biol. 16,3967 3979.
    [99] Leprince, D., Gegonne, A., Coll, J., et al (1983) A putative second cell-derived oncogene of the avian leukaemia retrovirus E26. Nature 306, 395 397.
    [100] Nunn, M.F., Seeburg, PH., Moscovic, C, Duesberg, P.H. (1983) Tripartite structure of the avian erythroblastosis virus E26 transforming gene. Nature 306, 391 395.
    [101] de Taisne, C, Gegonne, A., Stehelin, D., Bernheim, A., Berger, R. (1984) Chromosomal localizarion of the human proto-oncogene c-ets . Nature 310, 581 583.
    [102] Hernandez-Munain, C. & Krangel, M.S. (1995) c-Myb and core-binding factor/PEBP2