氟化物刺激成纤维细胞成骨表型表达及其在氟骨症骨周化骨发生机制中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨周软组织钙化和骨化是慢性氟中毒重要的骨病变之一,其发生机制不清。骨周软组织中的主要细胞成分是成纤维细胞,本文将重点研究氟化物对成纤维细胞增殖分化、骨生长因子表达、成骨表型转换以及细胞内Ca2+浓度等方面的影响,探讨氟骨症骨周软组织钙化和骨化的可能机制。
    以小鼠皮肤成纤维细胞株(L929)为研究对象,应用MTT法、电镜观察及流式细胞术等方法,研究氟化物对成纤维细胞增殖活性、细胞周期和形态结构的变化。结果表明,成纤维细胞染氟后细胞增殖活力增强,合成和分泌功能旺盛,DNA合成明显增加。应用Elisa、RT-PCR和Western blot等方法,证明氟化物刺激成纤维细胞cbfa1、BMP-2、OCN及I型胶原从mRNA到蛋白的表达明显加强,证明成纤维细胞已有成骨表型的表达。染氟成纤维细胞bFGF、PDGF和IGF等生长因子的表达增加,可能在促进成纤维细胞成骨表型表达和成骨作用增强中起重要作用。应用激光扫描共聚焦显微镜检测,证明氟化物可导致成纤维细胞Ca2+一过性升高,其意义可能在于刺激细胞增殖、分化及某些生长因子的表达,进而促进成纤维细胞成骨功能的发挥。
    对比研究同样染氟条件对小鼠颅骨成骨样细胞的影响,在细胞增殖、cbfa1和OCN表达、BMP-2、bFGF、PDGF和IGF-1含量等方面两种细胞多具有相同的变化趋势,进一步证明了在氟化物的作用下,成纤维细胞向成骨细胞方向的发展。
    综合分析研究结果,认为氟化物刺激成纤维细胞向成骨细胞方向分化,成骨功能增强,在氟骨症骨周化骨发生机制中起重要作用。
Extraperiosteal calcification and ossification plays an important role in thedevelopment of severe disabled skeletal fluorosis. We will focus our attention onfibroblast which is the main type of cell exists in the extraperiosteal soft tissue includingtendon and the point linking up the ligament. Fibroblast is in the category of inducibleosteogenic precursor cell(IOPC)because of its osteogenesis function under thenon-physiological conditions. It is possible that fluoride can induce expression ofosteogenic phenotype and enhance the potent osteogenesis function of FB. Althoughmany details remain to be studied,the interaction between fluoride and FB would bestrongly analogous to the mechanism of extraperiosteal ossification.
    The effects and importance of fluoride on FB remain be unclear. Based on ourinferences above, we investigated the effects of fluoride on FB lin(eL929), including cellproliferation and differentiation, expression of osteogenic phenotype, and the level ofintracellular ionic calcium ([Ca~(2+)]_i).
    1. The effects of fluoride on the proliferation, differentiation,synthesis and secretionfunction of FB and OB(1)The MTT method was used to detect the proliferation of FB and OB in vitro. Resultsshowed that the proliferous activity increased significantly in FBs exposed to certainrange of fluoride concentration (0.001mgF-/L) at certain time (1h and 2hs). Afterwards,the proliferous activity was decreased with the time of culture and the doses increase offluoride. The effect of fluoride on the proliferous activity of FB was dose-andtime-dependent. The same tendency was found in OB and stronger enhancement wasobserved during the longer period.(2)The ultrastructural changes were observed in FB exposed to fluoride for 48h. Somefindings including lots of enlarged rough endoplasmic reticula, Golgi complexes, fatdrops and glycogen were observed in the fluoride-treated groups. No obvious cytotoxicitywas found even in the group of 10mg F-/L. The results suggest that fluoride can stimulatethe functions of FB in cell proliferation, differentiation,synthesis and secretion.(3)DNA synthesis and cell apoptosis were studied by using flow Cytometry. Thepercentage of cell in G0-G1 phase was 54.0% in the group of 0 mg F-/L and 48.8% in thegroup of 0.1mg F-/L;the percentage of S phase was 31.7% in the group of 0 mg F-/L and32.4%, 46.1%, 32.4%, 35.1%, and 33.7% in the groups of 0.0001, 0.001, 0.1,1,10 and20mg F-/L respectively. The percentage of apoptotic cell was 3.1% in the group of 0 mgF-/L and 2.6%, 2.5%, 1.3%, 0.8%, 0.5%, 1.9% in the groups of 0.0001, 0.001, 0.1, 1, 10and 20 mg F-/L respectively. These data indicated that the DNA synthesis of FB waspromoted,but the cell apoptosis was significantly inhibited by certain concentration offluoride.(4)A major product of OB is type I collagen. By using the methods of RT-PCR and
    Elisa, we investigated the expression of Col I in FB and OB following the treatment withfluoride. Compared with the group of 0 mg F-/L, the content of Col I mRNA and proteinand the formation of mineralized nodule were increased obviously. The results means thatFB is in a higher activity state in preparing for the calcium deposition, under thestimulation of fluoride.2. The expression of osteogenic phenotype in fluoride-treated FB(1)Cbfa1 is the earliest and most specific marker of osteogenesis and an essentialtranscriptional factor for osteoblast differentiation, synthesis and deposition of boneextracellular matrix. Osteocalcin, a major noncollagenous matrix protein of bone, dentin,and cementum, is found tight association with the calcium phosphate mineral phase ofthese tissues. The expression of OCN suggests the activity of OB and the level of boneturnover. The gene expression of OCN is controlled by cbfa1. The expression of bothmRNA and protein of cbfa1 and OCN were increased significantly in FB stimulated byfluoride. It can be concluded that FB have been transformed into OB under the influenceof fluoride.(2)It is of interest to note that the relationship between expression of proto oncogenesc-fos, c-jun and osteogenetic function of fluoride-treated FB. Proto oncogenes areinducible transcriptional factors and regulate growth factors such as bFGF,TGF-β,ColI,c-myc and endothelin in cooperation with other transcriptional factors and play the keyroles in cell proliferation, differentiation and signal transduction. The higher expressionof c-fos and c-jun in fluoride-treated FBs were found in this study. It is possible that protooncogenes have cooperated with fluoride in the inducible expression of cbfa1, OCN andbone derived growth factors in FB.(3)The development, differentiation, synthesis and functions of OB includingangiogenesis, DNA synthesis and bone extracelluar matrix deposition, etc. , are
    controlled by bone derived growth factors(BDGFs). By using the methods of Elisa,RT-PCR and Western blot,the higher expression of BMP-2、bFGF、PDGF, and IGF-1protein were found in fluoride-treated FB. Although many details remain to be studied,itis supposed that BDGFs should play an important role in promoting the osteogeneticaction of FB. Based on the references and our work,It is inferred that the higherexpression of BMP-2 may mediate higher level of cbfa1 and OCN induced by fluoride. Itis our further work to reveal the interrelations between higher expression of BDGF andosteogenetic function of FB exposed to fluoride.3.The effect of fluoride on the level of intracellular ionic calcium ([Ca2+]i) in FBSkeletal fluorosis was regarded as a “calcium paradox disease”. The elevation of[Ca2+]i may be one of earlier mechanism in activating OB in the exist of fluoride. It issupposed that change of [Ca2+]i in FB induced by fluoride may promote thetransformation from FB into OB by enhancing the expression of cbfa1 and other bonegrowth factors. The level of [Ca2+]i in FB was examined by using laser scanning confocalmicroscope. We found that a significant increase in [Ca2+]i in FB treated with 1mg F-/L.The elevation of FB [Ca2+]i plays an very important role in regulating the coorperationand restriction among the cbfa1 and other growth factors including BMPs, Smads, TGF-β, PDGF, bFGF, IGF-1 and promoting the proliferation, differentiation, expression ofosteogenesis phenotype in FB.4. Effects of fluoride on OBUnder the same experimental condition as showed in FB, we investigated the effectsof fluoride on OB. The similar tendency were showed on the expression of cbfa1, OCN,BMP-2, bFGF, PDGF and IGF-1 in OB. These data not only provide an experimentalsupport that osteoblast can be activated by fluoride in vitro,but also indicate that FBexposed to fluoride has the similar phenotype and function as OB.
    Fluoride could stimulate the expression of osteogenesis phenotype in FB was firstreported in this paper. These results coincided in our hypothesis that the osteogenic actionof FB, i.e. the non-physiological osteogenesis leading to extraperiosteal ossificationwould be induced by fluoride. The studies above will demonstrate the critical function ofcbfa1 in the pathogenesis of extraperiosteal ossification. To elucidate the mechanisms bywhich fluoride promotes osteogenesis of FB may help to find the causal relations offluoride—FB—extraperiosteal ossification. The project will not only explain thepathogenesis of calcification and osteogenesis in extraperiosteal tissues and contribute toestablish the scientific policy for protecting disabled skeletal fluorosis, but also give cluesto the studies of other similar diseases.Several points need to be put forward for the better understanding of the effects ofosteogenesis stimulated by fluoride in FB in our further study. For example, theinterrelations between [Ca2+]i and bone derived growth factors, the mediated function ofBMP-2 in elevating the expression of cbfa1 in FB exposed to fluoride, and so on.
引文
1. 柴本甫,汤雪明. 实验性骨折愈合的超微结构研究. 中华外科杂志, 1979, 17: 365-366
    2. Bereford JN. Osteogenic stem cells and the stromal system of bone and marrow. Clin Orthop, 1989, 240: 270-280
    3. Ducy P, Schinke T, Karsenty G. The Osteoblast: A sophisticated fibroblast under central surveillance. Science, 2000, 289(5484): 1501-1504
    4. 柴本甫, 汤雪明. 实验性骨折愈合的超微结构研究-成纤维细胞成骨作用的电子显微镜观察. 中华实验外科杂志, 1985, 2(4):157-159
    5. 裘世静,柴本甫. 不同接骨板固定后骨折修复的超微结构研究. 中华外科杂志, 1990, 28(2):88-91
    6. 柴本甫, 汤雪明, 李慧. 实验性骨折愈合中钙化骨化的超微结构观察(兼论成纤维细胞的成骨作用). 中华创伤杂志, 1995, 11(1): 4-6
    7. 柴本甫,汤雪明,李慧.骨折二期愈合过程中的成纤维细胞成骨作用. 中华骨科杂志, 1996, 16(4): 245-248
    8. 邓廉夫, 柴本甫, 齐进. 损伤性和骨关节炎性滑膜细胞成骨作用的体外研究.中华骨科杂志, 1997, 17(11):693-695
    9. 徐荣辉, 饶寒敏, 朱雅萍,等. 皮肤成纤维细胞在体外培养中的成骨作用.中华外科杂志, 1994, 32(3):190-192
    10. 饶寒敏, 徐荣辉, 朱雅萍,等.家兔皮肤成纤维细胞在体外培养中的成骨作用(显微录象与四环素标记观察). 中华骨科杂志, 1995, 15(5):295-301
    11. 饶寒敏, 徐荣辉, 朱雅萍, 等. 成纤维细胞成骨潜能的体外培养研究 中华骨科杂志, 1995, 15(12): 845-847
    12. Jaye M,Schlessinger J,Craig A,et al. FGFR tyrosine kinases molecular analysis and singnal transduction. Biochem Biochem Acta, 1992, 1135:185.
    13. 孙铭一,王丽颖. FGFs/FGFRs 信号传导的研究进展. 国外医学分子生物学分册, 2000, 22(3):142-146
    14. Montero A, Okada Y, Tomita M, et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest, 2000, 105 (8): 1085-1093
    15. Liang H, Pun S and Wronski T. J. Bone anabolic effects of basic fibroblast growth factor in ovariectomized rats. Endocrinology, 1975,140(12):5780-5788
    16. 曾晖,杜靖远,郑启新,等. 碱性成纤维细胞生长因子对成骨细胞增殖和分化的影响. 实用医学杂志, 2002, 18(2):126-128
    17. 曾晖,杜靖远,郑启新,等. 碱性成纤维细胞生长因子对成骨细胞中转化生长因子β1 和碱性成纤维细胞生长因子 mRNA 表达的影响. 中华实验外科杂志, 2002, 19(6): 575-576
    18. 陈建庭, 杨德鸿, 景宗森, 等. bFGF 调节 PDGF 对人成骨细胞的促增殖作用. 中华外科杂志, 2000, 38(9): 707-710
    19. 尹飚,苏增贵,彭杰,等. 碱性成纤维细胞生长因子影响兔成骨细胞增殖与分化的实验. 广州医学院学报, 2001, 29(1):22-25
    20. Alka M, Paola B, Malika S, et al. Signaling by fibroblast growth factors (FGF) and fibroblast growth factor receptor 2 (FGFR2)–activating utations Blocks Mineralization and Induces Apoptosis in Osteoblasts. J Cell Biol, 2000, 149(6): 1297-1308
    21. Chikazu D, Hakeda Y, Ogata N, et al. Fibroblast growth factor (FGF)-2 directly stimulates mature osteoclast function through activation of FGF receptor 1 and p42/p44 MAP kinase. J Biol Chem, 2000, 275(40): 31444-31450
    22. Tang KT, Capparelli C, Stein JL, et al. Acidic fibrobalst growth factor inhibits osteoblast differtiation in vitro: altered expression of collagenase, cell growth-related, and mineralization-associated genes. J cell Biochem, 1996,61(1): 152-156
    23. Deng C, Wynshaw-Boris A, Zhou F, et al. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell, 1996, 84(6): 911-921
    24. Kubota K, Iseki S, Kuroda S, et al. Synergistic effect of fibroblast growth factor-4 in ectopic bone formation induced by bone borphogenetic protein-2. Bone, 2002, 31(4): 465-471
    25. Wiltfang J, Merten HA, Wiltfang J. Ectopic bone formation with the help of growth factor bFGF. J Craniomaxillofac Surg, 1996, 24(5): 300-304
    26. Sakano S, Hasegawa Y, Murata Y, et al. Inhibitory effect of bFGF on endochondral heterotopic ossifcation. Biochem Biophysic Res Commun, 2002, 293:680-685
    27. Anne M. Delany and Ernesto Canalis. Basic fibroblast growth factor destabilizes osteonectin mRNA in osteoblasts. Am J Physiol cell physiol, 1998, 274(3): C734-C740
    28. Bhora FY, Dunkin BJ,Batzri S, et al. Effect of growth factors on cell proliferation and epithelialization in human skin. J Surg Res, 1995, 59(2): 236-244
    29. 鞠燕,张建华,郑磊,等. 血小板源性生长因子和碱性成纤维细胞生长因子对兔角膜基质成纤维细胞体外增殖的影响. 国际眼科杂志, 2005, 5(3): 451-454
    30. Wazney JM. The bone morphogenetic protein family:multifunction cellular regulators in the embryo and adult. Eur J Oral Sci, 1998, 106(suppl 1): 160-166
    31. Urist MR. Bone formation by autoinduction. Science, 1965,150:893
    32. Reddi AH. Bone morphogenetic proteins,bone marrow stromal cells,and mesinchymal stem cells. Clin Ortiop, 1995, 313:115-119
    33. Wilke A,Traub F, Kienapfel H, et al. Cell differentiation under the influence of rhBMP-2. Biochem Biophysic Res Commun, 2001, 284:1093-1097
    34. Kawasaki K,Aihara M,Honmo J,et al. Effects of recombinant human bone morphogenetic protein-2 on differentiation of cells isolated from human bone, muscle and skin. Bone, 1998, 23(3): 223-231
    35. 孟国林, 胡蕴玉, 蒲勤, 等. rhBMP-2 对成纤维细胞成骨表型的影响. 第四军医大学学报, 2001, 22(11):984-986
    36. 孟国林, 胡蕴玉, 蒲勤, 等. BMP-2 在成纤维细胞对 BMP-3 表达的调节作用. 中国矫形外科杂志, 2001, 8(10): 988-989
    37. Chen D,Harris MA,Rossini G,et al. Bone morphogenetic protein 2(BMP-2) enhances BMP-3, BMP-4 and bone cell differentiation marker gene expression during the induction of mineralized bone matrix formation in cultures of fetal rat calvarial osteoblast. Calcif Tissue Int, 1997, 60:283-290
    38. 谭祖键, 胡蕴玉. 骨形态发生蛋白 3 基因转染成纤维细胞诱导成骨的实验研究. 中华医学杂志, 2001, 81(17): 1070-1073
    39. 栗向东,胡蕴玉. 稳定表达人骨形成蛋白-2 基因的成纤维细胞体内诱导成骨作用 中国修复重建外科杂志, 2003,17(3):177-179
    40. 石键, 林月秋, 王力, 等. BMP-2 基因转染成纤维细胞株 KMB-17 量效关系的研究. 昆明医学院学报, 2002, (4):32-35
    41. 司晓辉, 刘正. 骨形成蛋白2基因转染的人牙周膜成纤维细胞的骨诱导作用. 华西口腔医学杂志, 2003, 21(5):347-349
    42. 司晓辉, 刘正. 骨形成蛋白-2 基因转染的人牙周膜成纤维细胞超微结构观察. 中华口腔医学杂志, 2001,36(4): 266-269
    43. 董广英,吴织芬,王勤涛. hrBMP-2 基因转染对人牙龈成纤维细胞生物学特性的影响. 牙体牙髓牙周病学杂志, 2004, 14(6): 315-318
    44. 张韶君, 彭凤, 章锦才, 等. rhBMP-2 对人牙龈成纤维细胞体外矿化能力的影响. 广东牙病防治, 2004, 12(1):15-18
    45. 孟国林, 胡蕴玉, 潭祖键, 等. BMP-4 基因在成纤维细胞内的表达. 中国矫形外科杂志, 2000, 7(8):783-786
    46. 马真胜, 胡蕴玉, 吕荣, 等. 骨形态发生蛋白在闭合性长骨骨折愈合中的作用.中华实验外科杂志, 1997, 14(1):50-51
    47. 马真胜, 胡蕴玉, 王臻, 等. 骨形态发生蛋白 4(BMP-4)在骨折愈合过程中的定位. 中华骨科杂志, 1997, 17:517-519
    48. Yamaguchi A,Ishizuya T,Kinto N,et al. Effect of BMP-2,BMP-4,BMP-6 on the osteoblast differentiation of bone marrow-derived stromal cell lines,ST2 and MC3T3-G2/PA6. Biochem Biophy Res Comm, 1996, 220: 366-371
    49. 邓廉夫,冯伟,张玥,等. 诱导成纤维细胞表达核结合因子的研究. 中华外科杂志, 2002, 40(8):592-595
    50. Jeffes EW 3rd, Schmitz K, Yamamoto R, et al. A simple nonisotopic in vitro bioassay for LT and TNF employing sodium fluoride-treated L-929 target cells that detects picogram quantities of LT and TNF in as sensitive as TNF assays done with ELISA methodology. Lymphokine Cytokine Res, 1991, 10(1-2): 147-151
    51. Hayashi N, Tsutsui T. Cell cycle dependence of cytotoxicity and clastogenicity induced by treatment of synchronized human diploid fibroblasts with sodium fluoride. Mutat Res, 1993, 290(2):293-302
    52. Tsutsui T, Tanaka Y, Matsudo Y, et al. No increases in chromosome aberrations in human diploid fibroblasts following exposure to low concentrations of sodium fluoride for long times. Mutat Res. 1995, 335(1):15-20
    53. Jeng JH, Hsieh CC, Lan WH, et al. Cytotoxicity of sodium fluoride on human oral mucosal fibroblasts and its mechanisms. Cell Biol Toxicol. 1998;14(6):383-389
    54. Veron MH, Couble ML, Magloire H. Selective inhibition of collagen synthesis by fluoride in human pulp fibroblasts in vitro. Calcif Tissun Int, 1993, 53(1): 38-44
    55. Kawase T, Suzuki A. Studies on the transmembrane migration of fluoride and its effects on proliferation of L929 fibroblast (L cells)in vitro. Arch Oral Biol, 1989, 34(2):103-107
    56. Kawase T, Ishikawa I, Suzuki A, et al. The calcium-mobilizaing action of low concentration of sodium fluoride in single fibroblast. Life Sci, 1988, 42(12): 1253-1257
    57. Sato T, Yagori A, Niwa M. Low sensitivity of cultured human young adult and adult gingival fibroblast to fluoride. I. Relation to doubling time. Pharmacol Toxicol, 1987,61(5): 313-315
    58. Tsutsui T, Suzuki N, Ohmori M, et al. Cytotoxicity, chromosome aberrations and unscheduled DNA synthesis in cyltured human diploid fibroblast induced by sodium fluoride. Mutat Res,1984, 139(4):183-198
    59. 刘春生, 马道新, 孙建霞等. 用端粒酶的定性定量检测方法研究氟化钠对人胚肺成纤维细胞的毒性作用. 中华预防医学杂志, 2000,34(5):313-315
    60. 刘春生,马道新. 氟化钠对人胚肺成纤维细胞 p16 基因改变的研究. 癌变 畸变 突变, 2000, 12(3):133-135
    61. 孙建霞,李杰,刘春生, 等. 氟化物转化细胞的超微结构观察.山东医科大学学报, 2001,39(2):181-183
    62. Editorial. Fluoride's Effect on Collagen—A breakthrough. Fluoride, 1979, 12(3): 111-113
    63. Susheela AK,Shama YD. Certain facet of F-action on collagen protein in osseous and non-osseous tissue. Fluoride, 1982, 15(4): 177-190
    64. 井玲, 王简学, 李广生. 氟中毒大鼠血清皮质酮含量的变化.中国地方病学杂志, 1991,10(4):215-217
    65. 詹重万. 地方性氟骨症(1 例)扫描电镜初步观察. 中华病理学杂志, 1982, 11: 157
    66. 井玲, 赵轶卓, 齐玲, 李广生. 氟对成纤维细胞增殖活性的剂量—效应关系 中国地方病学杂志, 2005,24(5): 517-519
    67. 李广生, 井玲. 关注氟化物的剂量—效应问题. 中国地方病学杂志, 2004, 23(2): 3-4
    68. 刘晓秋, 李广生. 氟化物对骨形成中成骨细胞的影响及机制. 中国地方病学杂志, 2000;19(5): 394-395
    69. 刘晓秋, 孙波, 李广生. 氟化物对体外乳鼠颅盖骨分离细胞活力的影响. 白求恩医科大学学报, 2001,27(5): 464-466
    70. 卜丽莎, 高申, 华坤, 等. 氟对体外培养的小鼠成骨细胞的增殖活力的影响. 中国地方病学杂志, 2003, 22(6): 495-497
    71. Mckibbin B, The biology of fracture healing in long bone. JBone Joint Surg,1978, 60(1):150
    72. Sampath JK. Desimone DP, Reddi AH. Extra cellular bone matrix-derived growth factor. Exp Cell Res, 1982,142(1): 460
    73. 邓廉夫, 汤雪明, 柴本甫, 等. 肿瘤坏死因子α和骨形态发生蛋白-2 诱导成纤维细胞成骨表型表达的体外研究. 中国修复重建外科杂志, 1998, 12(4):236
    74. 邓廉夫,冯伟,张玥,等. 肿瘤坏死因子α和骨形态发生蛋白-2 诱导成纤维细胞表达成骨表型表达的协同作用机制. 国外医学骨科学分册, 2001,22(2): 101-104
    75. Hirata K,Tsukazaki T, Kadowaki AK, et al. Transplantation of skin fibroblasts expressing BMP-2 promotes bone repair more effectively than those expressing Runx2. Bone, 2003, 32: 502-512
    76. Mimatsu K,Kishi S,Hasbizume Y. Experimental chronic compression on the spinal cord of the rabbit by ectopic bone formation in the ligamentum flvum with BMP. Spinal Cord, 1997, 35(11): 740-746
    77. Murakami H. Experimental study on ossification of spinal lifaments in the rabbit under influence of bone morphogenetic protein. Nippon Seikergeka Gallao Zassbi, 1998, 62(12): 1211-1220
    78. Hoshi K, Amizuka N, Sakou T, et al. Fiborblast of spinal ligments pathologically differentiate into chondroncytes induced by human BMP-2 morphological examinations for ossification of spinal cord. Bone, 1997,21(2): 155-162
    79. Kon T, Yamzaki M.Tagawa M, et al. BMP-2stimulates differentiation of cultured spinal ligament cells from patients with ossification of the posterior longitudinal ligament. Calcif Tissue Int, 1997,60(3): 291-296
    80. 徐顺清,郑刚,李明键,等. 氟对骨形态蛋白的直接作用. 中华预防医学杂志, 2000, 34(4):215-217
    81. 徐顺清, 李明健, 舒柏华, 等.氟中毒大鼠骨形态发生蛋白活性研究.中国公共卫生学报,1997,16(6):364-365.
    82. 胡蕴玉. 成纤维细胞成骨能力的研究. 第四军医大学学报, 2001, 22(11):961-964
    83. Chen M, Wang GJ, Diao Y, et al. Adeno-associated virus mediated interferon-gamma inhibits the progression of hepatic fibrosis in vitro and in vivo. World J Gastroenterol, 2005, 11(26): 4045-4051
    84. Ducy, P. and G. Karsenty. Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol. Cell. Biol,1995.15: 1858-1869
    85. Gerard K. Role of cbfa1 in osteoblast differentiation and function. Cell Develop Biol, 2000, 11:343-346
    86. Ducy P. Cbfa1:a molecular switch in osteoblast biology. Dev Dyn, 2000, 219(4):461-471
    87. Sapiro IM. Discovery:osf2/cbfa1,a master gene of bone formation. Clin Orthod Res, 1999,2(1): 42-46
    88. Reddi AH. Bone morphogenetic proteins , bone marrow stromal cells and mesinchymal stem cells. Clin Ortiop, 1995, 313:115-119
    89. Ducy P, Starbuck M, Priemel M, et al. A cbfa1-dependent genetic pathway control bone formation beyond embryonic development. Genes Dev, 1999,13: 1025-1036
    90. Komori T, Yagi H, Nomura A, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblast. Cell, 1997, 89:755-764
    91. Sato I, Sunohara M, Sato T. Quantitative analysis of extracellular matrix proteins in hypertrophic layers of the mandibular condyle and temporal bone during human fetal development. Cells Tissues Organs, 1999,165(2): 81-90
    92. Hauschka PV, Lian JB, Cole DE, et al. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev, 1989, 69(3): 990-1047.
    93. Thiede MA, Smock SL, Petersen DN,et al. Presence of messenger ribonucleic acid encoding osteocalcin, a marker of bone turnover, in bone marrow megakaryocytes and peripheral blood platelet. Endocrinology, 1994, 135(3): 929-937.
    94. Ichikawa H, Itota T, Torii Y, et al. Osteocalcin-immunoreactive primary sensory neurons in the rat spinal and trigeminal nervous systems. Brain Res. 1999,838(1-2): 205-209.
    95. Benayahu D, Shamay A, Wientroub S. Osteocalcin (BGP), gene expression, and protein production by marrow stromal adipocytes. Biochem Biophys Res Commun, 1997, 231(2):442-446
    96. 刘红, 综述,廖二元, 伍贤平 审校. 骨钙素与代谢性骨病. 国外医学内分泌学分册, 2004, 24(4): 230-241
    97. 王萧枫, 高根德. 强直脊柱炎成纤维细胞分泌骨钙素的实验研究. 中国矫形外科杂志 2002, 9(4):367-369
    98. 张兴凯, 杨庆铭, 邓廉夫,等. 骨质疏松成骨细胞生物学特征的体外研究. 中国骨质疏松杂志, 2004, 10(1):48-51
    99. 郭国宁, 张正丰, 周跃, 等. Cbfa1 基因转移对原代培养的兔皮肤成纤维细胞的影响. 重庆医学, 2005, 34(8):1175-1177
    100. 顾小曼,付小兵. 癌基因与碱性成纤维细胞生长因子(bFGF)基因相互调控及其与细胞增殖和分化关系研究进展. 西北国防医学杂志,2001,22(2):167-169
    101. 付小兵,顾小曼,孙同柱,等. 体外刺激对培养成纤维细胞功能与表达 c-fos 基因的影响. 中国重建修复外科杂志,2001,15(5):295-298
    102. FU Xiaobing,JIANG Lixian,SUN Tongzhu,et al. Expression of oncoprotein c-fos and c-jun in hypertrophic scars and chronic ulcers and their regulation of basic fibroblastic growth factor. Chinese Med J,2001,114(8):852-856
    103. Gu XM, Fu XB, Yang YH, et al. mRNA and protein expression of transcriptionfactor c-fos in burned rats and their effects on wound healing. Chin J Trauma 2000;3(3): 141-145
    104. Machwate M, Jullienne A, Moukhtar M, et al. Temporal variation of c-fos proto-oncogene expression during osteoblast differentiation and osteogenesis in developing rat bone. J Cell Biochem, 1995, 57(1): 62-67
    105. Machwate M,Jullienne A,Moukhtar M,et al. C-fos proto-oncogene is involved in mitogenic effect of transforming growth factor-beta in osteoblast cells. Mol Endocrinol, 1995, 9(2):187-198
    106. Winkles JA, Peifley KA, Friesel RE. Tumor promotes induced basic fibroblast growth factor gene expression in human dermal fibroblasts. Cancer Res 1992;52(4):1040-1043
    107. 毋巨龙, 李荟元, 李世荣. TGF-β1 对增生性瘢痕成纤维细胞中 c-myc 和 c-fos 表达及胶原分泌的影响. 第三军医大学学报, 2002,24(5):594-596
    108. Imamura T,Takase M,Nishihara A,et al. Smad 6 inhibits signalling by the TGF-beta superfamily. Nature, 1997, 389(6651):622-626
    109. Kruijer W, Cooper JA,Hunter T, et al. Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature, 1984, 312(5996): 711-716
    110. 陈璐璐, 童安莉, 余达林, 等.氟化钠对乳鼠成骨细胞 c-fos、c-jun 基因表达及细胞增殖的影响.中华预防医学杂志, 2000, 34(6): 327-329.
    111. 张文岚, 崔亚南, 高申. 过量摄入氟后激活的成骨细胞系中原癌基因的表达. 中华预防医学杂志, 2003, 37: 246-251
    112. Fromigue O, Marie PJ, Lomri A. Bone morphogenetic protein-2 and transforming frowth factor-beta 2 interact to modulate human bone marrow stromal cell proliferation and differentiation. J Cell Biochem, 1998, 68:411-426
    113. Katagiri T, Yamaguguchi A, Ikeda T, et al. The non-osteogenic mouse pluripotent cell line,C3H10T1/2,is induced to differentiate into osteoblastic cells by recombinant human morphogenetic protein-2. Biochem Biophys Res Commun 1990, 172: 295-299
    114. Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem, 2003, 88(3): 446-454.
    115. Franceschi RT, Xiao G, Jiang D, et al. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation.Connect Tissue Res. 2003,44 Suppl 1:109-116.
    116. Takagi M, Kamiya N, Takahashi T, et al. Effects of bone morphogenetic protein-2 and transforming growth factor beta1 on gene expression of transcription factors, AJ18 and Runx2 in cultured osteoblastic cells. J Mol Histol. 2004, 35(1): 81-90.
    117. Xiao ZS, Hinason TK, Quarles LD. Cbfa1 isoform overexpression upregulates osteocalcin gene expression in nonosteoblastic and pre-ostelblastic cells. J Cell Biochem. 1999, 74: 596-605.
    118. Takazawa Y, Tsuji K, Nifuji A, et al. An Osteogenesis-related transcription factor, core-binding factor A, is constitutively expressed in the chondrocytic cell line TC6,and its expression id upregulated by BMP-2 Endocrinology 2000 ,165:579-586
    119. Bonewald, L.F. Transforming growth factor-β In Principles of bone biology (ed. J.P. Bilezikian, L.G. Raisz and G.A. Rodan), 1996,pp. 647-659. Academic Press, San Diego, CA.
    120. Bonewald LF, Dallas SL Role of active and latent transforming growth factor-β in bone formation. J Cell Biochem 1994,55:350–357
    121. Fromigue O, Marie PJ, Lomri A. Bone morphogenetic protein-2 and transforming growth factor-beta2 interact to modulate human bone marrow stromal cell proliferation and differentiation. J Cell Biochem,1998,68(4):411-426
    122. Lee KS, Hong SH, Bae SC. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene,2002,21(47): 7156-7163.
    123. Zheng MH, Wood DJ, Wysocki S, et al. Recombinant human bone morphogenetic protein-2 enhances expression of interleukin-6 and transforming growth factor-beta 1 genes in normal human osteoblast-like cells. J Cell Physiol, 1994, 159(1):76-82.
    124. 潘红卫,曾骏. TGF-β1 对小鼠巩膜成纤维细胞增殖和细胞周期的影响. 眼科研究, 2005, 23(3):232-234
    125. 吕远东, 罗少军, 刘嘉琦, 等. 转化生长因子β1 对成纤维细胞增殖和胶原合成的影响 中华烧伤杂志, 2001,17(6):345-347
    126. Mukherjee A, Dong SS, Clemens T, et al. Co-ordination of TGF-beta and FGF signaling pathways in bone organ cultures. Mech Dev. 2005, 122(4): 557-571
    127. 李洪岩, 张文岚, 华坤. 氟对成骨细胞的作用. 见:李广生主编. 地方性氟中毒发病机制 北京 科学出版社,2004, 76-106
    128. Reed BY,Zerwekh JE,Antich PP,et al. Fluoride-stimulated [3H] thymidine uptake in human osteoblastic osteosarcoma cell line is dependent on transforming growth factor beta. J Bone. Miner Res, 1993, 8(1):19-25
    129. 高彦辉, 孙殿军. 氟骨症转换过程中转化因子-β 超家族成员的表达. 中国地方病学杂志, 2005, 24(6-1):40-44
    130. Kang JS, Alliston T, Delston R, et al. Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. EMBO J, 2005, 24(14): 2543-2555
    131. Noda M. Transcriptional regulation of osteocalcin production by transforming growth factor-beta in rat osteoblast-like cells. Endocrinology,1989,124(2):612-617
    132. Kretzschar M,Liu F,Hata A,et al. The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev,1997,11:984-995
    133. 沈红雷 综述, 吴军正 审校. 碱性成纤维细胞生长因子对骨组织的生物学效应. 中国矫形外科杂志, 2000;7(2):181-183
    134. D'Orazio D, Besser D, Marksitzer R, et al. Cooperation of two PEA3/AP1 sites in uPA gene induction by TPA and FGF-2. Gene, 1997, 201(1-2): 179-187
    135. 付小兵. 再论成纤维细胞生长因子与软组织创伤修复.中国修复重建外科杂志 2000;14(5): 257
    136. Zheng MH, Wood DJ, Papadimitriou JM. What's new in the role of cytokines on osteoblast proliferation and differentiation. Pathol Res Pract, 1992;188(8): 1104-1121
    137. Yu X, Hsieh SC, Bao W, et al. Temporal expression of PDGF receptors and PDGF regulatory effects on osteoblastic cells in mineralizing cultures. Am J Physiol 1997;272(5 Pt 1):C1709-1716
    138. 丁生乐, 孙正义. 成纤维细胞生长因子对大鼠骨髓基质细胞诱导成骨的影响. 第四军医大学学报, 2003;24(2): 119-121
    139. Kasperk CH, Wergedal JE, Mohan S, et al. Interactions of growth factors present in bone matrix with bone cells: Effect of DNA synthesis and ALP Growth Factors. 1990, 3(2): 147-158
    140. Globus RK, Patterson BP, Gospopdarowicz D. Regulation of bovine bone cells synthesize bFGF and TGF-β.Endocrinology, 1988, 123(1):98-105
    141. Blanquaer F, Delany AM, Canalis E. bFGF induce hepatocyte growth factor/scatter factor expression in osteoblast. Endocrinology 1999,140(3):1069-1074
    142. Marie PJ. Fibroblast growth factor signaling controlling osteoblast differentiation. Gene,2003, 316(16):23-32
    143. Graves DT, Cochran DL. Periodontal regeneration with polypeptide growth factors. Curr Opin Periodontal, 1994, 178-186
    144. Graves DT, Kang YM, Kose KN. Growth factors in periodontal regeneration. Compend Suppl, 1994(18): S672-S677
    145. Valerie G, Sheila R, Bari G. Insulin-Like Growth Factor II Promoter Expression in Cultured Rodent Osteoblasts and Adult Rat Bone. Endocrinology, 1998, 139(5): 2287-2292
    146. Zhang X, Sobue T, Hurley MM. FGF-2 Increases Colony Formation, PTH Receptor, and IGF-1 mRNA in Mouse Marrow Stromal Cells. Biochem Biophys Res Commun;2002;290(1): 526-531.
    147. Hurley MM, Abreu C, Gronowicz G, et al. Expression and regulation of basic fibroblast growth factor mRNA levels in mouse osteoblastic MC3T3-E1 cells. J Biol Chem 1994;269: 9392-9396.
    148. Chaudhary LR, Hruska KA. The cell survival signal Akt is differentially activated by PDGF-BB,EGF,,and FGF2 in osteoblastic cells. J Cell Biochem,2001, 81(2): 304-311.
    149. 杜俊杰,罗卓荆,胡蕴玉,等.碱性成纤维细胞生长因子促进 rhBMP-2 诱导成骨的载体. 第四军医大学学报, 2000, 21(12): 1489-1492
    150. Fujii H, Kitazawa R, Maeda S, et al. Expression of platelet-derived growth factor proteins and their receptor alpha and beta mRNAs during fracture healing in the normal mouse. Histochem Cell Biol, 1999;112(2): 131-138.
    151. Stephan EB, Renjen R, Lynch SE, et al. Platelet-derived growth factor enhancement of a mineral-collagen bone substitute. J Periodontol, 2000, 71(12): 1887-1892.
    152. 陈建庭, 李菊根, 金大地. 血小板衍生生长因子促进成骨细胞 DNA 合成的实验研究. 中华外科杂志, 1999, 37: 409-411
    153. Risto O, Wahlstrom O, Abdiu A, et al. Effect of platelet-derived growth factor on heterotopic bone formation in rats. Acta Orthop Scand. 1991, 62(1): 49-51.
    154. 陈建庭, 史占军, 区伯平, 等. 异种 PDGF 与复方 BMP 联合使用促进骨缺损修复.中华骨科杂志, 1994, 14: 764-768
    155. 陈建庭, 金大地, 杨德鸿, 等. 转移生长因子β、碱性成纤维细胞生长因子诱导人成骨细胞表达血小板衍生生长因子βmRNA 的研究. 中华实验外科杂志, 2001, 18(1):72-73
    156. Yeh YL, Kang YM, Chaibi MS, et al. IL-1 and transforming growth factor-beta inhibit platelet-derived growth factor-AA binding to osteoblastic cells by reducing platelet-derived growth factor-alpha receptor expression. J Immunol, 1993, 150(12): 5625-5632.
    157. Xie JF, Stroumza J, Graves DT. IL-1 down-regulates platelet-derived growth factor-alpha receptor gene expression at the transcriptional level in human osteoblastic cells. J Immunol 1994;153(1): 378-383.
    158. Tumber A, Meikle MC, Hill PA. Autocrine signals promote osteoblast survival in culture. J Endocrinol, 2000;167(3): 383-390.
    159. Zhao G, Monier-Faugere MC, Langub MC, et al. Targeted Overexpression of Insulin-Like Growth Factor I to Osteoblasts of Transgenic Mice: Increased Trabecular Bone Volume without Increased Osteoblast Proliferation. Endocrinology, 2000;141(7): 2674-2682.
    160. Scutt A, Bertram P. Basic fibroblast growth factor in the presence of dexamethasone stimulates colony formation, expansion, and osteoblastic differentiation by rat bone marrow stromal cells. Calcif Tissue Int, 1999;64: 69-77.
    161. Lau KH, Farley JR, Freeman TK, et al. A proposed mechanism of the mitogenic action of fluoride on bone cells: inhibition of the activity of an osteoblastic acid phosphatase. Metabolism, 1989;38(9): 858-868.
    162. FarLey JR, Werdegal JE, Baylink DJ. Fluoride directly stimulates proliferation and ALP activity in bone forming cells. Science, 1983, 222: 330-332
    163. Khokher MA, Dandona P. Fluoride stimulates [3H] thymidine incorporation and alkaline phosphatase production by human osteoblasts. Metabolism, 1990, 39(11): 1118-1121.
    164. Berridge MJ. Calcium signal transduction and cellular control mechanisms. Biochim Biophys Acta. 2004, 1742(1-3): 3-7.
    165. Bary EL. Expression of mRNA for the alpha 1 subunit of voltage-gated calcium channels in human osteoblast like cell line and normal human osteoblasts Calcif Tissue Int, 2000, 66(2): 145-150
    166. Dziak R,Stern PH. Calcium transport in isolated bone cells and effects of parathyroid hormone and cyslic 3'5'AMP. Endocrinology, 1975, 97:1281-1287.
    167. Reid IR, Civitelli ML, Halstead LR,et al. Parathyroid hormone acutely elevates intracellular calcium in osteoblast like cells. Am J Physiol, 1987,253:E45-E51
    168. Yamaguchi DT, Hahn TJ, Iida-Klein A, et al. Parathyroid hormone-activated calcium channels in an osteoblast-like clonal osteosarcoma cell line. cAMP-dependent and cAMP-independent calcium channels. J Biol Chem, 1987, 262(16): 7711-7718.
    169. Yamada H, Tsutsumi M, Fukase M, et al. Effects of human PTH-related peptide and human PTH on cyclic AMP production and cytosolic free calcium in an osteoblastic cell clone. Bone Miner, 1989, 6(1): 45-54.
    170. Valin A, Guillen C, Esbrit P. C-terminal parathyroid hormone-related protein (PTHrP) (107-139) stimulates intracellular Ca2+ through a receptor different from the type 1 PTH/PTHrP receptor in osteoblastic osteosarcoma UMR 106 cells. Endocrinology, 2001, 142(7): 2752-2759.
    171. Loza J,Carpio L,Lawless G,et al. Role of extracellular calcium influx in EGF-induced osteoblastic cell proliferation. Bone,1995,16(4 Suppl):341S-347S
    172. Sugimoto T, Kanatani M, Kano J, et al. IGF-I mediates the stimulatory effect of high calcium concentration on osteoblastic cell proliferation. Am J Physiol, 1994, 266(5 Pt 1): E709-E716.
    173. Kozawa O, Suzuki A, Watanabe Y, et al. Effect of platelet-derived growth factor on phosphatidylcholine-hydrolyzing phospholipase D in osteoblast-like cells. Endocrinology, 1995, 136(10): 4473-4478.
    174. Berridge MJ. Calcium signalling and cell proferation. Bioassay, 1997, 17: 491-500
    175. Schreiber R. Ca2+ signaling, intracellular pH and cell volume in cell proliferation. J Membr Biol, 2005, 205(3): 129-137
    176. Kawase T, Ishikawa I, Suzuki A. NaF-induced Ca2+ mobilization is dependent upon the culture density in a parathyroid hormone-responsive osteoblast-like cell line. Life Sci, 1988, 43(26): 2241-2247.
    177. Zerwekh JE, Morris AC, Padalino PK, et al. Fluoride rapidly and transiently raises intracellular calcium in human osteoblasts. J Bone Miner Res, 1990, 5(Suppl 1): 131-136.
    178. Farley JR, Hall SL, Herring S, et al. Fluoride increases net 45Ca uptake by SaOS-2 cells: The effect is phosphate dependent. Calcif Tissue Int, 1993;53: 187-192.
    179. 李广生,张文岚,华坤, 等. 地氟病属于“钙矛盾疾病”. 矿物岩石地球化学通报, 2003, 22( 2):93-95
    180. 华坤, 赵红, 黄民, 等. 氟对成骨细胞样细胞胞内钙和钙通道电流的影响. 中国应用生理学杂志, 2003, 19(2):179-181
    181. Deyama A, Deyama Y, Matsumoto A, et al. A low calcium environment enhances AP-1 transcription factor-mediated gene expression in the development of osteoblastic MC3T3-E1 cells. Miner Electrolyte Metab,1999,25(3):147-60