放线菌的两个菌株中重要功能基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
放线菌中的链霉菌和刺糖多孢菌是产生抗生素的重要来源。链霉菌Streptomyces lydicus产生的利迪链菌素(Streptolydigin)是一类重要的天然产物,为典型的Tetramic acid类抗生素,具有抗细菌活性、抗肿瘤活性、抗HIV蛋白酶活性。为了研究其生物合成途径中主要基因的功能,基于实验室已获得的基因簇,对聚酮合酶(PKS),两个细胞色素P450氧化酶(P450-1,P450-2),异柠檬酸脱氢酶(Idha),转氨酶(Adtf),2,3-己糖脱氢酶(Hdt)进行了基因中断,获得了同源单交换的中断突变株△PKS,△P450-1,△P450-2,△IDHA,△ADTF,△HDT。经过高效液相色谱(HPLC)和液相色谱和质谱耦连(LC-MS)检测证实中断突变株△PKS,△P450-1,△HDT不产生利迪链菌素或产生微量的利迪链菌素,说明这三个基因是利迪链菌素生物合成所必需的基因。然而中断突变株△P450-2,△IDHA,△ADTF仍然产生利迪链菌素,说明这些基因与利迪链菌素生物合成不相关或者菌体内存在其他基因,替补了这些基因的作用。这为理解利迪链菌素的生物合成提供了一定的基础,为提高利迪链菌素的产量和获得活性好的类似物提供了分子水平的依据。
     放线菌刺糖多孢菌,是一种商业杀虫剂Spinosad的产生菌,它能够产生在细胞内和细胞外具有脱氧核糖核苷酸酶活的酶,我们用PCR的方法从刺糖多孢菌中克隆了这些基因,并鉴定到两个脱氧核糖核苷酸酶基因(exoⅠ和exoⅡ),这两个酶在氨基酸序列上只有29%的同源性。本研究克隆了这两个基因,并在大肠杆菌中进行表达,纯化后对其进行了生化特征的研究。ExoⅠ在大肠杆菌中是以包涵体的形式表达的,通过复性后测定其活性。ExoⅡ通过低温诱导得到可溶性表达。这两个酶都显示了对单链DNA和双链DNA的酶切活性,但它们都需要二价阳离子(Mg2+,Ca2+)发挥活性,并且他们的活性都会受到螯合剂的抑制。这为研究脱氧核糖核苷酸内切酶在刺糖多孢菌发酵过程中所起的作用提供了体外的数据。
Streptomyces and Saccharopolyspora, two actinomycetes, are important sources for producing antibiotics. Streptolydigin, an important natural secondary metabolite produced by Streptomyces lydicus, which belongs to classic tetramic acid, shows antimicrobic, antitumor and anti-HIV activity. In order to study the roles of genes in the streptolydigin biosynthesis pathway, based on the previous data in our lab, the polyketide synthase gene(PKS), two cytochrome P450 oxygenase gene (P450-1, P450-2), the isotratic dehydratase gene (Idha), the like amino transferase gene(Adtf), the 2,3-glucose dehydratase gene(Hdt) were inactivated by disrupting, and the disrupted mutants△PKS,△P450-1,△P450-2,△IDHA,△ADTF,△HDT were obtained by single crossover. No streptolydigin or little production was detected in the mutant strains (△PKS,△P450-1, AHDT) cultured in the fermentation broth, the results confirmed that the PKS, the cytochrome P450 oxygenase-1, Hdt were essential for streptolydigin biosynthesis. While streptolydigin production was still detected in the mutant strains△P450-2, AIDHA, AADTF, indicates that these genes may be not involved in the biosynthesis pathway of streptolydigin or some alternative genes exist in the stain. The research provides basis for understanding the biosynthesis pathway of streptolydigin, improving the yield of streptolydigin, and obtaining derives which show better activity.
     Saccharopolyspora spinosa, a commercial insecticide spinosad producer, produces intra-and extracellular enzymes with deoxyribonuclease activities. PCR were used to clone these deoxyribonuclelases and two deoxyribonuclease genes(exo I and exo II) were identified from Saccharopolyspora spinosa. Exo I and Exo II show only 29% amino acids sequence identities. These two genes were amplified and expressed in Escherichia coli, purified to homogeneity and characterized. The Exo I was expressed and refolded from inclusion bodies. The Exo II was expressed in soluble fraction when induced at low temperature. Both enzymes showed activities either on ssDNA or dsDNA. They required a divalent cation (Mg2+, Ca2+) and its activity was inhibited by chelating agents. The results provide datas in vitro for studying the roles of the two deoxyribonucleases in the process of fermentation of Saccharopolyspora spinosa.
引文
[1]阮继生等.放线菌研究及应用,第一版[M].北京:科学出版社,1990.
    [2]刘志恒,姜成林.放线菌现代生物学与生物技术[M].北京:科学出版社,2004.
    [3]FoxGE, Staekebrandt E, HesPell RB, et al. The Phylogeny of Prokaryotes [J].Science,1980,209:457-463.
    [4]Stackebrandt E, Ludwig W, Sehleifer KH, Gross HJ. Rapid cataloging of ribonuclease TI resistant oligonucleotides from ribosomal RNAs for Phylogenetic studies [J].Mol Evol,1981,17:227-236.
    [5]Staekebrandt E, Woese C R.The Phylogeny of Prokaryotes [J].Microbiol Sci,1984,1:117-122.
    [6]姜成林等.微生物资源学[M].北京:科学出版社,1995.
    [7]Mann J.Secondary metabolism,2nd eds [M].Oxford:Clarendon Press, 1987:3-4.
    [8]刘志恒.放线菌--微生物药物的重要资源[J].微生物学通报,2005,32 (6):143-145.
    [9]Yoshitake Tanaka et a1.放线菌的代谢产物[J].国外医药抗生素分册,1991,12(5):336-337.
    [10]Janos B. Bioactive microbial metabolies [J] J Antibiotic,2005,58(1): 1-26.
    [11]姜怡,唐蜀昆,张玉琴,娄恺,徐丽华.放线菌产生的生物活性物质[J]. 微生物学通报,2007,34(1):188-190.
    [12]黄佳,邵雷,王曼.紫霉素与卷曲霉素生物合成研究进展药物生物技术[J].Pharmaceutical Biotechnology,2009,16(5):486-489.
    [13]白林泉,邓子新.微生物次级代谢产物生物合成基因簇与药物创新[J].中国抗生素杂志2006,31(2):80-99.
    [14]Shen, B. Biosynthesis of Aromatic Polyketides [M] Heidelberg:, Springer Berlin,Topics in Curr. Chem 2000,209,1-51.
    [15]Moore, BS, Hopke JN. Discovery of a new bacterial polyketide biosynthetic pathway[J].Chem Bio Chem,2001,2(1):35-38.
    [16]Marahiel, MA, Stachelhaus T, Mootz HD. Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis[J].Chem. Rev.1997 97(7):2651-2674.
    [17]Hopwood DA. Genetic Contributions to Understanding Polyketide Synthases[J].Chem. Rev.,1997 97(7):2465-2498.
    [18]Wohlleben W, Spellig T, Miiller-Tiemann.Biocombinatorial Approaches for Drug Finding [M].Heberg:Springer,2005,45-46.
    [19]Malpartida F, Hopwood DA. Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host [J].Nature,1984,309(5967):462-464.
    [20]Hopwood DA. Genetic contributions to Understanding Polyketide synthases [J].Chem Rev,1997,97(7):2465-2498.
    [21]Bao W, Sheldon P J, Hutch inson C R. Purification and properties of the Streptomyces peucetius DpsC beta-ketoa-cyl:acyl carrier protein synthase III that specifies the propionate-starter unit for typeⅡ polyketide biosynthesis[J].Biochemistry,1999,38(30):9752-9757.
    [22]Funa N, Ohnishi Y, Fujii I, et al. A new pathway for polyketide synthesis in microorganisms [J].Nature,1999,400(6747):897-899.
    [23]Shen B. Polyketide biosynthesis beyond the typeⅠ, Ⅱ and Ⅲ polyketide synthase paradigms[J].Curr Opion Chem Biol,2003, 7(2):285-295.
    [24]Bruner SD, Weber T, Kohli RM, et al.Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE[J].Structure 2002,10(3):301-310.
    [25]连云阳,程元荣.杂合NRPS-PKS的研究进展[R].福州福建微生物所,福建省药学会2006年学术年会,2006,23-30.
    [26]Julien B, Shah S, Ziermann R, et al. Isolation and characterization of the epothilone biosynthetic gene cluster from Sorangium cellulosum [J].Gene,2000,249(1-2):153-160.
    [27]Tang L, Shah S, Chung L,et al. Cloning and heterologous expression of the epothilone gene cluster[J].Science,2000,287(5453):640-642.
    ([28]Chen H, O'Connor S, Cane DE, et al. Epothilone biosynthesis: assembly of the methylthiazolylcarboxy starter unit the EpoB subunit [J].Chemistry&Biology,2001,8(9):899-912.
    [29]Deboer C, Dietz A,Savage GM, et al. Streptolydigin, a new antimicrobial antibiotic I Biologic studies of streptolydigin [J].Antibiot Annu,1955-1956,3:886-892.
    [30]Eble TE,Large CM,DeVries WH,et al.Streptolydigin, A new antimicrobial antibiotic Ⅱ:Isolation and characterization[J].Antibiot Annu,1955-1956,3:893-896.
    [31]Lewis C, Wilkins JR, Schwartz DF, et al.Streptolydigin,A new antimicrobial antibiotic III.In vitro and in vivo laboratory studies [J].Antibiot Annu,1955-1956,3:897-902.
    [32]Siddhikol C, Erbstoeszer JW, Weisblum B.Mode of action of streptolydigin [J]. Bacteriol,1969,99(1):151-155.
    [33]Reevaluation of the Mode of Action of Streptolydigin in Escherichia coli:Induction of Transcription Termination In Vivo [J]. Antimicrobial agents and chemotherapy,1978,13 (2):234-243.
    [34]Fritz, R. Streptolydigin, an Inhibitor of Oxidative Phosphorylation in Rat Liver Mitochondria [J].Journal of bacteriology,1969, 100(3):1335-1341.
    [35]Temiakov D, Zenkin N, Vassylyeva MN, et al.Structural basis of transcription inhibition by antibiotic streptolydigin[J].Mol Cell,2005, 19(5):655-666.
    [36]Tuske S, Sarafianos SG, Wang X, et al. Inhibition of bacterial RNA polymerase by streptolydigin:stabilization of a straight-bridge-helix active-center conformation[J].Cell,2005,122(4):541-552.
    [37]Kyzer S, Zhang J, Landick R. Inhibition of RNA polymerase by streptolydigin:no cycling allowed[J].Cell,2005,122(4):494-496.
    [38]Artsimovitch I, Chu C, Lynch A, et al. A new class of bacterial RNA polymerase inhibitor affects nucleotide addition [J].Science,2003, 302 (5645):650-654.
    [39]Mukhopadhyay J, Sineva E, Knight J, et al. Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel [J].Mol Cell,2004, 14(6):739-751.
    [40]Campbell E, Korzheva N, Mustaev A, et al. Structural mechanism for rifampicin inhibition of bacterial rna polymerase[J].Cell,2001, 104(6):901-912.
    [41]Campbell E, Pavlova O, Zenkin N, et al. Structural,functional,and genetic analysis of sorangicin inhibition of bacterial RNA polymerase[J].EMBO J,2005,24(4):674-682.
    [42]Rinehart KL, Beck JR, Borders DB, et al.Structure of streptolydigin. [J].Antimicrobial Agents Chemother(Bethesda),1963,161:346-348.
    [43]Lee VJ, Rinehart KL Jr.13C NMR spectra of streptolydigin, tirandamycin, and related degradation products [J].Antibiot, 1980,33(4):408-415.
    [44]Pearce CJ, Rinehart KL Jr.The use of doubly-labeled 13C-acetate in the study of streptolydigin biosynthesis [J].J Antibiot.1983,36(11): 1536-1538.
    [45]Pearce CJ, Ulrich SE, Rinehart KL Jr. Biosynthetic incorporation of propionate and methionine into streptolydigin[J].J Am Chem Soc,1980,102(7):2510-2512.
    [46]Chen H, Harrison PHM. Investigation of the original of C2 units in biosynthesis of streptolydigin [J].Org Lett,2004,6(22):4033-4036.
    [47]Rix U, Fischer C, Remsing LL, et al.Modification of post-PKS tailoring steps through combinatorial biosynthesis [J].Nat Prod Rep,2002,19(5):542-580.
    [48]Pohl NL. Non-natural substrates for polyketide synthases and their associated modifying enzymes [J].Current Opinion in Chemical Biology,2002,6(6):773-778.
    [49]Sohn YS, Nam DH, Ryu DD. Biosynthetic pathway of Cephabacins in Lysobacter lactamgenus:molecular and biochemical characterizeation of the upstream region of the gene clusters for engineering of novel antibiotics [J].Metab Eng,2001,3(4):380-392.
    [50]Probst A, Tamm C.Biosynthesis of the cytochalasans. Biosynthetic studies on chaetoglobosin A and 19-O-acetylchaetoglobosin A [J]. Helv Chim Acta 2004,64(7):2065-2077.
    [51]Chen H, Olesen SG, Harrison PHM. Biosynthesis of streptolydigin: origin of the oxygen atoms [J].Org Lett,2006,8(23):5329-5332.
    [52]Li XB, Qiao B, Yuan YJ. Differential analysis of secondary metabolites by LC-MS following strain improvement of Streptomyces lydicus AS 4.2501 [J].Biotechnol Appl Biochem,2006, 45(Pt3):107-118.
    [53]Waldron C, Madduri K, Crawford K,et al. A cluster of genes for the biosynthesis of spinosyns, novel macrolide insecticides [J]. Antonie van Leeuwenhoek,2000,78(3-4):385-390.
    [54]Raymond-Delpech V, Matsuda K, Sattelle BM, et al. Ion channels: molecular targets of neuroactive insecticides [J]. Invert Neurosci, 2005,5(3-4):119-133.
    [55]Millar NS, Denholm I. Nicotinic acetylcholine receptors:targets for commercially important insecticides [J]. Invert Neurosci,2007, 7(1):53-66.
    [56]Salgado VL. Studies on the mode of action of spinosad:insect symptoms and physiological [J]. Pestic Biochem Physiol,1998,60: 91-102.
    [57]WEI Y, APPEL AG, MOAR WJ,et al. Pyrethroid resistance and cross-resistance in the German cockroach, Blatella germanica(L) [J]. Pest Manag Sci,2001,57(11):1055-1059.
    [58]Mota-Sanchez D, Hollingworth RM, Grafius EJ, et al. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) [J].Pest Manag Sci,2006,62(1):30-37.
    [59]Holt KM, Opit GP, Nechols JR, et al. Testing for non-target effects of spinosad on two spotted spider mites and their predator Phytoseiulus persimilis under greenhouse conditions[J]. Experimental and Applied Acarology,2006,38(2-3):141-149.
    [60]Cleveland CB, Mayes MA, Cryer SA. An ecological risk assessment for spinosad use on cotton [J].Pest Manag Sci,2002,58(1):70-84.
    [61]Mertz FP, Yao RC. Actinomadura fibrosa sp. nov. isolated from soil[J]. Int J Syst Bacteriol,1990,40(1):28-33.
    [62]Sparks TC, Kirst HA, Mynderse JS, et al. Chemistry and biology of the spinosyns:components of spinosad (Tracer), the first entry into Dow Elanco's naturalyte class of insect control products [J]. Proc Beltwide Cotton Conf,1996,2:692-696.
    [63]Musser FR, Shelton AM. The influence of post-exposure temperature on the toxicity of insecticides to Ostrinia nubilalis (Lepidoptera: Crambidae) [J]. Pest Manag Sci,2005,61(5):508-510.
    [64]Semiz G, Cetin H, Isik K, Yanikoglu A. Effectiveness of a naturally derived insecticide, spinosad, against the pine processionary moth Thaumetopoea wilkinsoni Tams (Lepidoptera:Thaumetopoeidae) under laboratory conditions[J].Pest Manag Sci,2006,62(5):452-455.
    [65]Jones T, Scott-Dupree C, Harris R, et al. The efficacy of spinosad against the western flower thrips, Frankliniella occidentalis, and its impact on associated biological control agents on greenhouse
    cucumbers in southern Ontario[J].Pest Manag Sci,2005, 61(2):179-185. [66]Premachandra DW, Borgemeister C, Poehling HM. Effects of neem and spinosad on Ceratothripoides claratris (Thysanoptera:Thripidae), an important vegetable pest in Thailand, under laboratory and greenhouse conditions [J].J Econ Entomol,2005,98(2):438-448. [67]Kusters JG, Gerrits MM, Van Strijp JA. Vandenbroucke-Grauls CM, Coccoid forms of Helicobacter pylori are the morphologic manifestation of cell death [J]. Infect.Immun.1997,65(9): 3672-3679. [68]Ning SB, Guo HL, Wang L, Song YC. Salt stress induces programmed cell death in prokaryotic organism Anabaena [J].Appl. Microbiol.2002,93(1):15-28 [69]Gautam S, Sharm A. Involvement of caspase-3-like protein in rapid cell death of Xanthomonas [J].Mol. Microbiol.2002,44(2):393-401 [70]Rice KC, Bayles KW. Molecular control of bacterial death and lysis[J].Microbiol Mol Biol Rev.2008,72 (1):85-109. [71]Manteca A, Fernadez M, Sanchez J. Cytological and biochemical evidence for an early cell dismantling event in surface cultures of Streptomyces antibioticus.[J] Research in Microbiology,2006,157(2): 143-152.
    [72]Manteca A, Mader U, Connolly BA, Sanchez J. A proteomic analysis of Streptomyces coelicolor programmed cell death [J]. Proteomics 2006,6(22):6008-6022.
    [73]Kornberg A. DNA replication [M]. New York:W. H. Freeman Comp.,1980,103-105.
    [74]Friedberg EC. DNA repair [M]. New York:W. H. Freeman Comp., 1985,143-146.
    [75]Nicieza RG, Huergo J, Connolly BA, Sanchez J. Purification, characterization, and role of nucleases and serine proteases in Streptomyces differentiation[J].J. Biol. Chem.1999,274(29):20366-20375.
    [76]Brnakova Z, Godany A, Timko J. An extracellular endode-oxyribonuclease from Streptomyces aureofaciens, Biochim. Biophys. Acta 2005,1721(1-3):116-123.
    [77]Brnakova Z, Godany A, Timko J. An exodeoxyribonuclease from Streptomyces coelicolor:Expression, purification and biochemical characterization [J]. Biochim. Biophys. Acta 2007,1770 (4):630-637.
    [78]Podust L M, Bach H, Kim Y C, et al. Comparison of the 1.85 A structure of CYP154A1 from Streptomyces coelicolor A3(2) with the closely related CYP154C1 and CYPs from antibiotic biosynthetic pathways. [J]. Protein Sci.2004,13(1):255-268.
    [79]Rodriguez AM, Olano C, Mendez C, et al. A cytochrome P450-like gene possibly involved in oleandomycin biosynthesis by Streptomyces antibioticus [J].FEMS Microbiol Lett.1995, 127(1-2):117-120.
    [80]Andersen JF, Hutchinson CR. Characterization of Saccharopolyspora erythraea cytochrome P-450 genes and enzymes, including 6-deoxyerythronolide B hydroxylase [J].J.Bacteriol.1992,174(3): 725-735.
    [81]Andersen JF, Tatsuta K, Gunji H,et al. Substrate specificity of 6-deoxyerythronolide B hydroxylase, a bacterial cytochrome P450 of erythromycin A biosynthesis [J].Biochemistry 1993, 32(8):1905-1913.
    [82]Chen H, Solveig GO, Paul HM, et al.Biosynthesis of Streptolydigin: Origin of the Oxygen Atoms [J]. Organic Letters 2006,8(23):5329-5332.
    [83]Olano C, Gomez C, Perez M, et al. Deciphering Biosynthesis of the RNA Polymerase Inhibitor Streptolydigin and Generation of Glycosylated Derivatives[J].Chemistry & Biology,2009,16(10): 1031-1044.