发夹型DNA荧光探针设计新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着第一台核酸合成仪的诞生和DNA化学合成、标记技术取得的重大突破,核酸分子探针的应用得到了飞速发展。由于核酸探针设计简单、稳定性好、易于合成、信号转导机制灵活,因而被广泛的应用到化学、医学和生物学等领域。至今,核酸探针已经发展出许多类型,如经典的RNA探针、cDNA探针及基因组DNA探针等,新型的阴阳探针、TaqMan探针、Padlock探针、核酸识体(aptamer)探针、分子信标探针等。自从Tyagi和Krammer于1996年发明分子信标探针以来,发夹型的核酸探针作为一种高选择性和高灵敏性的新型荧光探针得到了广泛的应用。随着对发夹型核酸探针研究的深入及新型发夹型核酸探针的出现,人们发现发夹型核酸探针不仅适用于体外蛋白质和核酸的分析,同样也适用于活体分析。它还可以用于核酸与药物小分子、蛋白质等相互作用的研究,是一种极好的研究核酸与蛋白质相互作用的工具,也是一种极具发展前景的新型核酸探针。发夹型核酸探针与传统的核酸探针相比,能很好的分辨单碱基错配,且能用于实时监测。核酸探针的标记物有生物素、放射性物质和荧光基团等。其中,荧光分子标记由于对生物分子影响较小、灵敏度高、且分析检测手段简单,成为最常用的标记物。本论文着眼于发夹型DNA荧光探针新方法的研究,主要开展以下三个方面的工作:
     (1)基于时间分辨荧光技术,设计了一种利用铕离子配合物作为荧光基团的发夹型荧光探针。由于铕离子配合物的荧光寿命长,用于生物样品检测时能有效消除背景荧光,提高了探针检测的灵敏度。
     (2)基于汞离子与DNA的T碱基的特异性结合作用和荧光共振能量转移(fluorescence resonance energy transfer, FRET),设计了以T-Hg2+-T结构为茎部的发夹型DNA荧光探针,并用此DNA荧光探针实现了生物硫的高灵敏度检测。
     (3)基于一些杂环荧光小分子能与DNA缺失位点中的碱基形成氢键结合的特性,设计了一种免标记发夹型荧光核酸探针,考察了这种核酸探针的实验条件,并对其合理性进行了验证。
With the birth of the first nucleic acid synthesis and DNA chemical synthesis, markers get break through, a nucleic acid molecule probe have developed rapidly. Because the nucleic acid probe is simple in design, good stability, easy synthesis, signal mechanism flexible, by widespread application to chemistry, medicine and biology, etc. So far, many types of nucleic acid probe has developed, such as classic ucleic acid probe including RNA probe, cDNA probes and genomic DNA probe etc, the new-style nucleic acid probe including Yin Yang probe,TaqMan probe, Padlock probe, Aptamer probe, molecules beacon probe , etc.
     Since Tyagi and Krammer invent the molecular beacon probe in 1996, hairpin nucleic acid probe as a high selectivity and high sensitivity of new fluorescent probe been widely used. Along with the further research of hairpin nucleic acid probe and the emergence of new types hairpin nucleic acid probe, people found hairpin nucleic acid probe not only applicable in the analysis of protein and nucleic acid in vitro, also suitable for living analysis. It can also be used to analyt the interaction of drug small molecules, protein and nucleic acid, it is a powerful tool to research nucleic acid and protein interaction, also is a kind of extremely promising new nucleic acid probe. Contract with traditional nucleic acid probe, the hairpin probe can be used in detecting single base mismatch and real-time monitoring. The nucleic acid probe marker is biotin, radioactive substances and fluorescence group, etc. Among them, the fluorescent signal is less influence of biological molecules, high sensitivity and simple, become the most commonly markers. This paper focus on hairpin type of DNA fluorescence probe new method research, mainly in the following three areas:
     Based on room-temperature phosphorescence, designed a hairpin probe which using Eu~(3+) ion complexes as fluorescence group. Due to the Eu~(3+) ion complexes' have a long luminescence lifetime, when used in biological samples can effectively reduce the background, improves the sensitivity.
     Based on mercury ion competitive ligation and fluorescence resonance energy transfer (FRET), designed a hairpin probe which used the structure of T-Hg2+-T for stem, and it is used to detection biological sulfur with high sensitivity.
     Based on some heterocyclic fluorescence small molecules can inset in Abasic site, designed a label-free hairpin fluorescence nucleic acid probe, and investigated experimental conditions' s effort, also verified the rationality.
引文
[1] Heid C A, Stevens J, Livak K J, et al. Real time quantitative PCR. Genome Research, 1996, 6(10): 986-994
    [2] Orlando C, Pinzani P, Pazzagli M. Developments in quantitative PCR. Clinical Chemistry and Laboratory Medicine, 1998, 36(5): 255-269
    [3] Li Q Q, Luan G Y, Guo Q P, et al. A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Research, 2002, 30(2): e5
    [4] Nazarenko I, Pires R, Lowe B, et al. Effect of primary and secondary structure of oligodeoxyribonucleotides on the fluorescent properties of conjugated dyes. Nucleic Acids Research, 2002, 30(9): 2089-2095
    [5] Fredriksson S, Gullberg M, Jarvius J, et al. Protein detection using proximity-dependent DNA ligation assays. Nature Biotechnology, 2002, 20(5): 473-477
    [6] Nutiu R, Li Y F. Structure-switching signaling aptamers. Journal of the American Chemical Society, 2003, 125(16): 4771-4778
    [7] John B B, James R P, David J M, et al. A continuous assay for DNA cleavage: The application of“break light”to endiynes, ion-dependent agent, and nuclease. Proceedings of National Academy of Sciences of the United States of America, 2000, 97(25): 13537-13542
    [8] Andrei M, Alexander A I, Guenhael S. A molecular beacon assay for measuring base excision repair activities. Biochemical and Biophysical Research Communications, 2004, 319(1): 240-246
    [9] Nazarenko I, Lowe B, Darfler M, et al. Multiplex quantitative PCR using self-quenched primers labeled with a single fluorophore. Nucleic Acids Research, 2002, 30 (9): e37
    [10] Johansson M K, Cook R M. Intramolecular dimers: a new design strategy for fluorescence quenched probes. Chemistry A European Journal, 2003, 9(15): 3466-3471
    [11] Tyagi S, Kramer F R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnology, 1996, 14(3): 303-308
    [12] Cazzato A, Capobianco M L, Zambianchi M, et al. Oligothiophene molecularbeacons. Bioconjugate chemistry, 2007, 18(2): 318-322
    [13] Yang C Y J, Pinto M, Schanze K, et al. Direct synthesis of an oligonucleotide-poly(phenylene ethynylene) conjugate with a precise one-to-one molecular ratio. Angewanate Chemie, 2005, 117(17): 2628-2632
    [14] Huang H M, Wang K M, Tan W H, et al. Design of a modular-based fluorescent conjugated polymer for selective sensing. Angewanate Chemie, 2004, 116(42): 5753-5756
    [15] Dubertre B, Calame M, Libehaber A J. Single-mismatch detection using gold-quenehed fluorescent oligonueleotides. Nature Biotechnology, 2001, 19(4): 365-370
    [16] Hwang G T, Seo Y J, Kim B H. A highly discriminating quencher-free Molecular beaeon for Probing DNA. Journal of the American Chemical Society, 2004, 126(21): 6528-6529
    [17] Yang C Y J, Lin H, Tan W H. Molecular assembly of superquenchers in signaling molecular interactions. Journal of the American Chemical Society, 2005, 127(37): 12772-12773
    [18] Brunner J, Kraemer R. Copper(Ⅱ)-quenched oligonucleotide probes for fluorescent DNA sensing. Journal of the American Chemical Society, 2004, 126(42): 13626-13627
    [19] Tan W H, Wang K M, Drake T J. Molecular beacons. Currrent opinion chemical biology, 2004, 8(5): 547-553
    [20]孔德明,古珑,沈含熙等. TaqMan-分子灯标:一种新型的荧光基因检测探针.化学学报, 2003, 61(5): 755-759
    [21] Tan Z W, Wan K M, Tan W H, et al. Real-time monitoring of nucleic acid ligation in homogenous solutions using molecular beacons. Nucleic Acids Research, 2003, 31(23): el48
    [22] Ma C B, Tang Z W, Huo X Q, et al. Real-time monitoring of double-stranded DNA cleavage using molecular beacons. Talanta, 2008, 76(2): 458-461
    [23] Solo D L, Zhang X L, Lu P, et al. Real time detection of DNA /RNA Hybridi- zation in living cells. Proceedings of National Academy of Sciences of the United States of America, 1998, 95(20): 11538-11543
    [24] Matsuo T. In situ visualization of messenger RNA for basic fibroblast growth factor in living cells. Biochimica et Biophysica Acta, 1998, 1379(2): 178-184
    [25] Wang L, Yang C J, Tan W H, et a1. Locked nucleic acid molecular beacons. Journal of the American Chemical Society, 2005, 127(45): 15664-15665
    [26] Bratu D P, Cha B J, Mhlanga M M. Visualizing the distribution and transport of mRNAs in living cells. Proceedings of National Academy of Sciences of the United States of America, 2003, 100(23): 13308-13313
    [27] Santangelo P J, Nix B, Tsourkas A. Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Research, 2004, 32(6): e57
    [28] Nitin N, Santangelo P J, Kim G. Peptide-linked molecular beacons for efficient delivery and rapid mRNA detection in living cells. Nucleic Acids Research, 2004, 32(6): e58
    [29] Mhlanga M M, Vargas D Y, Fung C W. tRNA-linked molecular beacons for imaging mRNAs in the cytoplasm of living cells. Nucleic Acids Research, 2005, 33(6): 1902-1912
    [30] Tan W H, Fang X H, Jeffery L, et al. Molecular beacons: a novel DNA probe for nucleic acid and protein studies. Chemistry A European Journal, 2006, 6(7): 1107-1111
    [31] Fang X H, Li J W J, Tan W H. Using molecular beaeons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA. Analytical Chemistry, 2000, 72(14): 3280-3285
    [32] Radi A E, Sanchez J L A, Baldrich E, et al. Reagentless reusable, ultrasensitive electrochemical molecular beacon aptasensor. Journal of the American Chemical Society, 2006, 128(1): 117-124
    [33] Fang X, Cao Z, Tan W H, et al. Molecular aptamer for real-time oncoprotein plateled-derived growth factor monitoring by fluorescence anisotropy. Analytical Chemistry, 2001, 73(23): 5752-5757
    [34] Wang H, Li J, Liu H P, et al. Label-free hybridization detection of a single a nucleotide mismatch by inunobilization of molecularc beacons on anagarose film. Nucleic Acids Research, 2002, 30(12): e61
    [35] Yang C Y, Jockusch S, Vicens M, et al. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proceedings of the National Academy of Sciences of the Unites of States of America, 2005, 102(48): 17278-17283
    [36] Fu C C, Lee H S, Chen K, et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proceedings of the National Academy of Sciences of the Unites of States of America, 2007, 104(3): 727-732
    [37] Conlon P, Yang C Y, Wu Y, et al. Pyrene excimer signaling molecular beacons of probe nucleic acids. Journal of the American Chemical Society, 2008, 130(1):336-342
    [38] He Y, Wang H F, Yan X P. Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological Fluids. Analytical Chemistry, 2008, 80(10): 3832-3837
    [39] Kim N W S, O’Connell M, Wisdom J A, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proceedings of National Academy of Sciences of the United States of America, 2005, 102(33): 11600-11605
    [40] Zhang S, Metelev V, Tabatadze D, et al. Fluorescence resonance energy transfer in near-infrared fluorescent oligonucleotide probes for detecting protein-DNA interactions. Proceedings of National Academy of Sciences of the United States of America, 2008, 105(11): 4156-4161
    [41] Lippincott-Schwartz J, Patterson G H. Development and use of fluorescence protein markers in living cells. Science, 2003, 300(5616): 87-91
    [42] Yu J, Xiao J, Ren X, et al. Probing gene expression in live cells, one protein molecule at a time. Science, 2006, 311(5767): 1600-1603
    [43] Jeng E S, Moll A E, Roy A C, et al. Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes. Nano Letters, 2006, 6(3): 371-375
    [44] Yu S J, Kang M W, Chang H C, et al. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. Journal of the American Chemical Society, 2005, 127(50): 17604-17605
    [45] (a) O’Sullivan P J, Burke M, Soini A E, et al. Synthesis and evaluation of phosphorescent oligonucleotide probes for hybridisation assays. Nucleic Acids Research, 2002, 30(21), e114 ; (b) Kuijt J, Ariese F, Brinkman U A T, et al. Room temperature phosphorescence in the liquid state as a tool in analytic chemistry. Analytical Chimica Acta, 2003, 488(2): 135-171
    [46] Powe A M, Das S, Lowry M, et al. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Analytical Chemistry, 2010, 82(12): 4865-4894
    [47] Binnemans K. Lanthanide-based luminescent hybrid materials. Chemical Reviews, 2009, 109(9): 4283-4374
    [48] Yuan J L, Matsumoto K. A new tetradentateβ-diketonate-europium chelate that can be covalently bound to proteins for time-resolved fluoroimmunoassay. Analytical Chemistry, 1998, 70(3): 596-601
    [49] Lakowicz J R. In principles of luminescence spectroscopy. Kluwer-Plenum Press, New York, 2006
    [50] Bevington P R. In data reduction and error analysis for the physical sciences, McGraw-Hill, New York, 1969
    [51] (a) Aromori S, Bell M L, Oh C S, et al. Modular fluorescence sensors for saccharides . Journal of the Chemical Society, Perkin Transaction 1, 2002, 96(6): 803-808; (b) Onoda M, Uchiyama S, Santa T, et al. A photoinduced electron-transfer reagent for peroxyacetic acid, 4-Ethylthioacetylamino-7- phenylsulfonyl-2,1,3-benzoxadiazole, based on the method for predicting the fluorescence quantum yields. Analytical Chemistry, 2002, 74(16): 4089-4096
    [52] Shao N, Jin J Y, Yang R H, et al. Europium(III) complex-based luminescent sensing probes for multi-phosphate anions: modulating selectivity by ligand choice. Chemistry Communications, 2008, (9): 1127-1129
    [53] Yang R H, Wang K M, Tan W H, et al. A selective optode membrane for histidine based on fluorescence enhancement of meso-meso-linked porphyrin dimer. Analytical Chemistry, 2002, 74(5): 1088-1096
    [54] Yang R H, Chan W H, Lee A W, et al. A ratiometric fluorescent sensor for AgI with high selectivity and sensitivity. Journal of the American Chemical Society, 2003, 125(10): 2884-2885
    [55] Risitano A, Fox K R. The stability intramolecular DNA quadruplexes with extended loop forming inter-and intra-loop duplexes. Organic & Biomolecular Chemistry, 2003, 1(11): 1852-1855
    [56] Zhang S Y, Ong C N, Shen H M. Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Letters, 2004, 208(2): 143-153
    [57] Rusin O, Luce N N S, Agbaria R A, et al. Visual detection of cysteine and homocysteine. Journal of the American Chemical Society, 2004, 126(2): 438-439
    [58] Wang W H, Rusin O, Xu X Y, et al. Detection of homocysteine and cysteine. Journal of the American Chemical Society, 2005, 127(45): 5949-15958
    [59] Tanaka F J, Mase N, Carlos F, et al. Determination of cyateine concentration by fluorescence increase: reaction of cysteine with a fluoregenic aldehyde. Chemical Communications, 2004, (15): 1762-1763
    [60] Spataru N, Sarada B V, Popa E, et al. Voltammetric determination of L-cysteine at conductive diamond electrodes. Analytical Chemistry, 2001, 73(3): 514-519
    [61] Ndamanisha J C, Bai J, Qi B, et al. Application of electrochemical properties ofordered mesoporous carbon to the determination of glutathione and cysteine. Analytical biochemistry, 2009, 386(1): 79-84
    [62] Lu C, Zu Y B, Yam V W W. Nonionic surfactant-capped gold nanoparticles as postcolumn reagents for high-performance liquid chromatography assay of low-molecular-mass biothiols. Journal of Chromatography A, 2007, 1163(1-2): 28-32
    [63] Zhang W, Wan F L, Zhu W, et al. Determination of glutathione and glutathione disulfide in hepatocytes by liquid chromatography with an electrode modified with functionalized carbon nanotubes. Journal of Chromatography B, 2005, 818(2): 27-32
    [64] Vacek J, Klejdus B, Petrlova J, et al. A hydrophilic interaction chromatography coupled to a mass spectrometry for the determination of glutathione in plant somatic embryos. Analyst, 2006, 131(10): 1167-1174
    [65] Zhang F X, Han L, Daras J G, et al. Colorimetric detection of thiol-containing amino acids using gold nanoparticles. Analyst, 2002, 127(4): 462-465
    [66] Sudeep P K, Joseph S T S, Thomas K G. Selective detection of cysteine and glutathione using gold nanorods. Journal of the American Chemical Society, 2005, 127(18): 6516-6517
    [67] Huang H, Liu X, Hu T, et al. Ultra-sensitive detection of cysteine by gold nanorod assembly. Biosensors and Bioelectronicc, 2010, 25(9): 2078-2083
    [68] Lim I S, Mott D, Ip W, et al. Interparticle interactions in glutathione mediated assembly of gold nanoparticles. Langmuir, 2008, 24(16): 8857-8863
    [69] Kou X S, Zhang S Z, Yang Z, et al. Glutathione and cysteine induced transverse overgrowth on gold nanorods. Journal of the American Chemical Society, 2007, 129(20): 6402-6404
    [70] Uehara N, Ookubo K, Shimizu T. Colorimetric assay of glutathione based on the spontaneous disassembly of aggregated gold nanocomposites conjugated with water-soluble polymer. Langmuir , 2010, 26(9): 6818-6825
    [71] Berthon G. The stability constants of metal complexes of amino acids with polar side chains. Pure and Applied Chemistry, 1995, 67(7): 1117-1240
    [72] Oram P D, Fang X J, Fernando Q. The formation constants of mercury(II)-glutathione complexes. Chemical Research in Toxicology, 1996, 9(4): 709-712
    [73] Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. AngewandteChemie International Edition, 2007, 46(22): 4093-4096
    [74] Miyake Y, Togashi H, Tashiro M, et al. MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. Journal of the American Chemical Society, 2006,128(7): 2172–2173
    [75] Fuhr B J, Rabenstein D L. Nuclear magnetic resonance studies of the solution chemistry of metal complexes. IX. binding of cadmium, zinc, lead, and mercury by glutathione. Journal of the American Chemical Society, 1973, 95(21): 6944-6950
    [76] Corradi A B, Cramarossa M R, Jolanda G G, et al. Trans-2-styrylbenzothiazole complexes with mercury(II) halides. synthesis, characterization and X-ray crystal structure of diiodobis(trans-2-styrylbenzothiazole)mercury(II). Polyhedron, 1993, 12(18): 2235-2239
    [77] Rulísek L, Havlas Z. Theoretical Studies of Metal ion selectivity. 1. DFT calculations of interaction energies of amino acid side chains with selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+). Journal of the American Chemical Society, 2000, 122(42): 10428-10439
    [78] Stricks W, Koltho I M. Reactions between mercuric mercury and cysteine and glutathione. apparent dissociation constants, heats and entropies of formation of various forms of mercuric mercapto-cysteine and glutathione. Journal of the American Chemical Society, 1953, 75(22): 5673-5681
    [79] Fu Y H, Li W H, Hu W P, et al. Fluorescence probes for thiol-containing amino acids and peptides in aqueous solution. Chemistry Communications, 2005, (25): 3189-3191
    [80] Han B Y, Yuan J P, Wang E K. Sensitive and selective sensor for biothiols in the cell based on the recovered fluorescence of the CdTe quantum dots-Hg(II) system. Analytical Chemistry, 2009, 81(13): 5569-5573
    [81] Lee J S, UImann P A, Han M S, et al. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Letters, 2008, 8(2): 529-533
    [82] Li L, Li B X. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Analyst, 2009, 134(7): 1361-1365
    [83] Heller M J. DNA microarray technology: devices, systems, and application. Annual Review of Biomedical Engineering, 2002, 4(1): 129-153
    [84] Tyagi S, Marras S A E, Kramer F R. Wavelength-shifting molecular beacons Nature Biotechnology, 2000, 18(11): 1191-1196
    [85] Stojanovic M N, Mitchell T E, Stefanovic D. Deoxyribozyme-based logic gates. Journal of the American Chemical Society, 2002, 124 (14): 3555-3561
    [86] Fan C H, Plaxco K W, Heeger A J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100 (16): 9134-9137
    [87] Fujimoto K, Shimizu H, Inouye M. Unambiguous detection of target DNAs by excimer-monomer switching molecular beacons. The Journal of Organic Chemistry, 2004, 69(10): 3271-3275
    [88] Feng X L, Duan X R, Liu L B, et al. Cationic conjugated polyelectrolyte/ molecular beacon complex for sensitive, sequence-specific, real-time DNA detection. Langmuir, 2008, 24(21): 12138-12141
    [89] Shinohara Y, Bag S S, Takeuchi Y, et al. Ends free and self-quenched molecular beacon with pyrene labeled pyrrolocytidine in the middle of the stem. Tetrahedron, 2009, 65(4): 934-939
    [90] Shinohara Y, Bag S S, Takeuchi Y, et al. Pyrene-labeled deoxyguanosine as a fluorescence sensor to discriminate single and double strands DNA structures: design of ends free molecular beacons. Medicine Chemistry Letters, 2009, 19(22): 6392-6395
    [91] Venkatesan N, Seo Y J, Kim B H. Quencher-free molecular beacons: a new strategy in fluorescence based nucleic acid analysis. Chemical Society Review, 2008, 37(4): 648-663
    [92] Stohr K, Hafner B, Nolte O, et al. Species-specific identification of mycobacterial 16S rRNA PCR amplicons using smart probes. Analytical Chemistry, 2005, 77(22) : 7195-7203
    [93] Guo Q, Lu M, Marky L A, et al. Interaction of the dye ethidium bromide with DNA containing guanine repeats. Biochemistry, 1992, 31(9) : 2451-2455
    [94] Lee K, Maisel K, Rouillard J M, et al. Sensitive and selective label-free DNA detection by conjugated polymer-based microarrays and intercalating dye. Chemistry of Materials, 2008, 20(9): 2848-2850
    [95] Nakatani K, Sando S, Saito I. Recognition of a single guanine bulge by 2-acylamino- 1,8-naphthyridine. Journal of the American Chemical Society, 2000, 122(10): 2772-2177
    [96] Yoshimoto K, Nishizawa S, Minagawa M, et al. Use of abasic site-containingChemical Society, 2003, 125(30): 8982-8983
    [97] Satake H, Tong A, Teramae N, et al. Fluorescence detection of cytosine/guanine transversion based on a hydrogen bond forming ligand. Talanta, 2004, 63(1): 175-179
    [98] Yoshimoto K, Xu C Y, Nishizawa S, et al. Fluorescence detection guanine-adenine transition by a hydrogen bond forming small compound. Chemical Communications, 2003, (24): 2960-2961
    [99] Dai Q, Xu C Y, Sato Y, et al. Enhancement of the binding ability of a ligand for nucleobase recognition by introducing a methyl group. Analytical Sciences, 2006, 22(2): 201-201
    [100] Zhao C X, Dai Q, Seino T, et al. Strong and selective binding of amiloride to thymine base opposite AP sites in DNA duplexes: simultaneous binding to DNA phosphate backbone. Chemical Communications, 2006, (11) : 1185-1187
    [101] Sankaran N B, Nishizawa S, Seino T, et al. Abasic-site-containing oligodeoxynucleotides as aptamers for riboflavin. Angewandte Chemie International Edition, 2006, 45(10): 1563-1568
    [102] Rajendar B, Nishizawa S, Teramae N. Alloxazine as a ligand for selective binding to adenine opposite AP sites in DNA duplexes and analysis of single-nucleotide polymorphisms. Organic & Biomolecular Chemistry, 2008, 6(4): 670-673