间伐对杨树人工林生产力和养分循环的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以6年生杨树人工林为研究对象,按人工林不同间伐方式和间伐强度设计了4种间伐模式(对照、30%强度的下层伐、50%强度的下层伐、50%强度的机械伐),探讨了不同间伐模式对杨树人工林小气候、林分结构、植物多样性、养分循环及生产力的影响研究,以期通过间伐调控提高杨树人工林生产力并为杨树大径材人工林的培育提供理论依据。主要研究结果如下:
     (1)不同间伐模式对杨树人工林小气候影响差异显著。50%强度的机械伐模式在夏季和秋季林内光合有效辐射强度均显著高于其他3个间伐处理,其他两个季节差异不显著。相同季节不同间伐处理林内空气温度除夏季外其他季节差异均不不显著,夏季机械伐处理的温度值显著高于其他3个间伐处理,均值达到21.25℃。相同季节不同间伐处理林内空气湿度差异不显著。各间伐模式土壤温湿度的差异仅仅出现在0~10cm土壤层次。
     (2)对夏季不同间伐处理林分郁闭度进行分析,结果显示:不间伐处理(CK)林分郁闭度(78.6%)显著大于30%下层伐(64.3%),30%下层伐显著大于50%下层伐和机械伐(51.5%);夏季不同间伐处理林分叶面积指数其结果与郁闭度变化基本一致,即:CK>30%下层伐>50%下层伐>机械伐。
     (3)杨树人工林间伐1年后的林下植被多样性指数和各物种重要值等数据分析表明,相同季节不同间伐处理林下植被Shannon-Wiener生物多样性均是机械伐处理的最高,但是在优势度指数上不间伐(CK)处理的最高,这说明在优势种上以CK处理的集中程度最高,机械伐最低。相同季节,机械伐和50%高强度下层伐林下植被生物量也显著大于其他两个处理。
     (4)不同间伐模式下土壤有效氮的含量呈显著性差异,以机械伐和50%强度下层伐的间伐处理其微生物量氮(MBN)、水溶性有机氮(DON)、土壤无机氮含量均显著高于其他3个间伐处理。其中土壤无机氮以硝态氮为主要存在形式。间伐后土壤有效氮含量在不同土层中呈现明显的表聚性,即土壤有效氮含量在垂直分布上从下层土壤至上层土壤呈上升趋势。
     (5)关于氮素矿化,在夏季和秋季,机械伐和50%强度伐下层伐土壤氮素净矿化量显著高于对照和30%强度下次伐,与对照相比,低强度间伐并不能促进土壤氮素的净矿化量增加。相同季节相同间伐模式的土壤氮素矿化量,基本是0~5cm土层的氮素净矿化量值显著高于5~10cm和10~20cm两个土壤层次,而后两者差异不显著。
     (6)不同间伐模式间,土壤呼吸在春季变异最大,但是夏季却并不明显。间伐对微生物生物量碳的影响是一个缓慢的过程,在间伐后的6个月,不同间伐模式间,间伐措施仅仅影响了0~10cm层次土壤。50%强度的机械伐土壤微生物生物量碳含量显著高于其他3个间伐处理。
     (7)生长季节,50%强度的下层伐和机械伐更能提升表层土壤(0~10cm)酶活性,间伐强度越强,土壤酶活性普遍也就越高。此外,低强度间伐(30%)能够促进生长季节中脲酶的活性,但是,低强度间伐(30%)与对照相比,夏季(7月)的蛋白酶和秋季(10月)的过氧化氢酶活性与对照并不存在显著差异
     (8)对间伐一年后杨树人工林胸径生长量、材积生长量和生物量增加量分析表明机械伐和50%下层伐的单株胸径、材积年生长量和生物量增加量均显著大于不间伐ck和30%下层伐间伐处理。
     (9)对林分间伐后氮素养分循环进行研究表明,不同间伐模式林分氮素年总供应量均大于林分年总需求量,说明该试验林分土壤作为氮素供应库足够满足现阶段林分生长的需求。其中机械伐的林分氮素年总供应量最大,而它的年总需求量最小。30%间伐伐林分氮素年总需求量最大,不间伐林分的年氮素总供应量最小。
In order to improve the quality of the poplar plantations and study the cultivation pattern ofbig-diameter wood, the6-year-old poplar plantations were selected to study thinning effects. Fourthinning treatments (contrast,30%intensity of the lower thinning,50%intensity of the lowerthinning and50%intensity of the mechanical thinning) were designed in this experiment. Theeffects of thinning treatments on poplar plantation microclimate, forest structure, plant diversity,nutrient cycling and poplar plantation productivity were investigated. The main findings are asfollows:
     1. Poplar plantation microclimate was significantly affected by different thinning treatments. Insummer, Forest photosynthetic active radiation of50%intensity of the mechanical thinningwas apparently higher than the other three thinning treatments, while in other seasons, thisdifference was not significant. Forest air temperatures of different thinning treatments in thesame season, except for summer, were not significantly different. In summer, the airtemperature of mechanical thinning was significantly higher than the other three treatments,and the average temperature of mechanical thinning reach to21.25. The forest air moisturesof different treatments were not significantly different in the same season. For all types ofthinning treatments, the soil temperature difference and moisture difference only existed in0-10cm soil layer.
     2. The canopy densities of contrast thinning treatment was significantly higher than30%intensity of the lower thinning, the canopy of which was then significantly higher than50%intensity of the lower thinning and50%intensity of the mechanical thinning; In summer,forest leaf area index corresponded to change of canopy densities.
     3. One year later, Understory vegetation plant diversity and importance value of different plantsshowed that for the same season and different thinning treatments, mechanical thinning hadthe highest Shannon-Wiener biodiversity, while contrast treatment had the highest dominanceindex, which showed that dominant species was most concentrated in contrast treatment, leastin mechanical treatment. And in the same season, biomass of50%intensity of the lowerthinning and50%intensity of the mechanical thinning was significantly larger than that ofthe other two treatments.
     4. Under different thinning treatments, the contents of available nitrogen were significantlydifferent. The contents of inorganic nitrogen、DON (soil dissolved organic nitrogen) andMBN (soil microbial biomass nitrogen) of50%intensity of the lower thinning and50%intensity of the mechanical thinning were significantly higher than that of the other twotreatments. The surface gathering of the available nitrogen was found for all the treatments,which meant that the contents of available nitrogen increased along with the depth of soil,from the bottom soil to the surface soil.
     5. In summer and autumn, the net soil mineralized nitrogen contents of50%intensity of the lower thinning and50%intensity of the mechanical thinning were significantly higher thanthat of contrast and30%intensity of the lower thinning. Compared to the contrast thinning,low intensity of thinning didn’t promote the increase of net soil mineralized nitrogen. In theother two seasons, the net soil mineralized nitrogen contents of different thinning treatmentshad no significant difference. Under the same season and the same thinning treatment,commonly the net soil mineralized nitrogen contents of0-5cm layer were significantly higherthan that of5-10cm layer and10-20cm layer, the difference of which two was not significant.
     6. Under different thinning treatments, the soil respiration had significant difference only inspring. It is a long and slow process for thinning to affect microbial biomass carbon. Duringthe six months after thinning, between different thinning treatments did the thinningtreatments only had influence on0-10cm layer. The contents of microbial biomass carbon of50%intensity of the mechanical thinning were significantly higher than that of the other threethinning treatments.
     7. In growing season (spring and autumn), compared to contrast and low intensity of thinning,high intensity of thinning(50%) and mechanical thinning were more efficient in improvingenzyme activity of0-10cm soil layer. Commonly, the higher the intensity of thinning themore active those soil enzymes would be. Then when it came to the same thinning treatments,the enzymes activity, especially protease, had no significant difference between different soillayers. Low intensity of thinning promoted the activity of urease in growing season. Andprotease activity (summer) and catalase activity (autumn) of low intensity of thinning (30%)had no significant difference with contrast group.
     8. One year after the thinning individual plant DBH increment, quantity increment, in thetreatments with50%intensity of the lower thinning and50%intensity of the mechanicalthinning were all significantly higher than that of contrast and30%intensity of the lowerthinning.
     9. The research on nitrogen nutrient cycling of plantation after thinning showed that underdifferent thinning treatments, annual forest nitrogen supply was always larger than forestnitrogen demand, which showed that this experimental forest could meet the need of forestgrowth at the present stage. And the annual nitrogen supply of mechanical thinning was thebiggest while the annual demand of it was the least; the annual nitrogen demand of30%intensity thinning was the biggest while the annual nitrogen supply of contrast was the least.
引文
[1] Aciego P J, Brookes P C. Substrate inputs and pH as factors controlling microbial biomass, activity andcommunity structure in an arable soil [J]. Soil Biology and Biochemistry,2009,41(7):1396-1405.
    [2] Aerts R. leaf chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship[J].Oikos,1997,79(3):439-449.
    [3] Bailey J D. Montane alternative silvicultural systems (MASS): establishing and managing amulti-disciplinary, multi-partner research site [J]. Forestry Ecology and Management,1998,112(3):289-302.
    [4] Bailey R A. Compatible model relating slash pine plantation survival to density, age, site index and typeand intensity of thinning [J]. Forest Science,1985,31(1):180-189.
    [5] Baldwin V C, Peterson K D. The effect of spacing and thinning on stand and tree characteristic of38yearsold loblolly pine [J]. Forest Ecology and Management,2000,137(3):91-102.
    [6] Berg B, Muller M, Wessen B. Decomposition of red clover (Trifolium pratense) roots [J]. Soil Biology&Biochemistry,1987,19(5):589-594.
    [7] Binkley D, Hart S C. The components of nitrogen avail ability assessments in forest soils [J]. Soil Science,1989,(10):57-111.
    [8] Bonde T A, Schnurer J, Rosswall T. Microbial biomass as a fraction of potentially mineralizable nitrogenin soils from long-term field experiments [J]. Soil Biochemistry,1988,20:447-452.
    [9] Boyer J N, Groffman P M. Bioavailability of water extractable organic carbon fractions in forest andagricultural soil profiles [J]. Soil Biology and Biochemistry,1996,28:783-790.
    [10] Brookes P C. The soil microbial biomass: Concept, measurement and applications in soil ecosystemresearch [J]. Microbes and Environments,2001,16:131-140.
    [11] Bruce R K. A Growth and yield model for thinned stands of yellow-poplar[J]. Forest Science,1986,32(2):51-64.
    [12] Buongiorno J, Dahir S. Tree size diversity and economic returns in uneven aged forest stand[J]. ForestScience,1994,40(1):83-103.
    [13] Chagas C I. Tillage and cropping effects on selected PorPerties of an argiudoll in Argentina[J].Communications in soi1Science and plant Analysis,1995,26(5-6):643-655.
    [14] Choonsig K, Son Y, Lee W K, et al. Influences of forest tending works on carbon distribution and cyclingin a Pinus stand in Korea[J]. Forest Ecology and Management,2009,257(5):1420-1426.
    [15] Clutter J L, Jones E P. Prediction of growth after thinning in old-field slash pine plantations[R]. USDAFor Serv: Res Pap,1980, SE217.19.
    [16] Dalva M, Moore T R. Sources and sinks of dissolved organic carbon in a forested swamp catch stands[J].Biogeochemistry,1991,15:1-19.
    [17] Doran J W, Parkin T B. Defining and assessing soil quality [A].In:Doran J W, Coleman D C, Bezdicek DF et al. Defining soil Quality for a Sustainable Environment [C]. Soil Society of America SpetialPublication (SSSA Spec. Pub1).35.SSSA and ASA. Ma dison.Wisconsin.1994,3-21.
    [18] Eaton W D, Anderson C.Saunders E F, et al. The impact of Pentaclethra macroloba on soil microbialnitrogen fixing communities and nutrients within developing secondary forests in the Northern Zone ofCosta Rica[J]. Tropical Ecology,2012,53(2):207-214.
    [19] Gilliam F S, Turrill N L, Adams M B. Herbaceous layer and over story species in clear cut and maturecentral Appalachian hardwood forest[J]. Ecology Appl,1995,5(4):947-955.
    [20] Gonzalo L P, Douglas B. Efficient specification and solution of the even-aged rotation and thinningproblem[J]. Forest Science,1978,33(1):14-29.
    [21] Hodge A, Robinson D, Fitter A. Are microorganisms more effective than plants at competing fornitrogen[J]. Trends in Plant Science,2000,5(7):304-308.
    [22] Hongve D, Van Hees P A W, Lundstrom U S. Dissolved components in precipitation water percolatedthrough forest litter[J]. Europen Journal of Soil Science,2000,51:667-677.
    [23] Ineson P, Benham D G, Poskitt J, et al. Effect of climate change on nitrogen dynamics in upland soil. Asoil warming study [J]. Global Change Biology,1998,4(1):153-161.
    [24] Jenkinson D S, Powlson D S. The effects of biotical treatment on metabolism in soil [J]. Soil Biology andBiochemistry,1976,8:209-213.
    [25] John P M, Robert L. Compatible basal area and diameter distribution models for thinned loblolly pineplantation in Santa arina, Brazil [J]. Forest Science,1987,33(1):13-51.
    [26] Jones D L, Healey J R, Willett V B, et al. Dissolved organic nitrogen uptake by plants-An important Nuptake pathway?[J]. Soil Biology and Biochemistry,2005,37:413-423.
    [27] Jones D L, Shannona D, Murphy D V, et al. Role of dissolved organic nitrogen (DON)in soil N cycling ingrassland soils [J]. Soil Biology and Biochemistry,2004,36:749-756.
    [28] Kalbitz K, Knappe S. Influence of soil properties on the release of dissolved organic matter (DOM)fromthe topsoil[J]. Journal of Plant Nutrition Soil Science,1997,160:475-483.
    [29] Kalbitz K, Schmerwitz J, Schwesig D, et al. Biodegradation of soil-derived dissolved organic matter asrelated to its properties [J]. Geoderma,2003,113:273-291.
    [30] Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: areview[J]. Soil Science,2000,165:277-304.
    [31] Kammesheidt L. Effect of selective logging on tree species diversity in a seasonally wet tropical forest inVenezuela [J]. Forestry Ecology and Management,1996,67(1):14-24.
    [32] Kiillila O, Kitunen V, Smolander A. Dissolved soil organic matter from surface organic horizons underbirch and conifers: Degradation in relation to chemical characteristics [J]. Soil Biology and Biochemistry,2006,38:737-746.
    [33] Klemens E, Ellen K, Christian P, et al. Soil carbon preservation through habitat constraints and biologicallimitations on decomposer activity [J]. Journal of Plant Nutrition and Soil Science,2008,171(1):27-35.
    [34] Knoebel B C, Burkhart H E, Beck D E. A growth and yield model for thinned stands of yellow-poplar [J].For Science,1986,32(2):27,62.
    [35] Likens C E, Bormann F H and Johnson N M. Nitrification: importance to nutrient losses from a cutoverforested ecosystem [J]. Science,1969,163:1205-1206.
    [36] Lioyd J and Taylor J A. On the temperature dependence of soi1res Pairtion [J]. Functional Ecology,1994,8:315-323.
    [37] Lqbal J, Hu R G, Feng M L, et al. Microbial biomass, and dissolved organic carbon and nitrogen stronglyaffect soil respiration in different land uses: A case study at Three Gorges Reservoir Area, South China[J].Agriculture, Ecosystems&Environment,2010,137:294-307.
    [38] Lundquist E J, Scow K M, Jackson L E, et al. Rapid response of soil microbial communitiesfromconventional, low input, and organic farming systems to a wet/dry cycle[J]. Soil Biology andBiochemistry,1999,31:1661-1675.
    [39] Magill A H, Aber J D. Variation in soil net mineralization rates with dissolved organic carbon additions[J]. Soil Biochemistry,2000,32:597-601.
    [40] Mangoyana R B. Bioenergy from forest thinning: Carbon emissions, energy balances and cost analysis [J].Renewable Energy,2011,36(9):2368-2373.
    [41] Merckx R, Brans K, Smolders E. Decomposition of dissolved organic carbon after soil drying andrewetting as an indiator of metal toxicity in soils[J].Soil Biology and Biohemistry,2001,33:235-240.
    [42] Moore J M, Klise S, Tabatabai M A. Soil microbical biomass carbon and nitrogen as affected by croppingsystems[J]. Biol. Fertil. Soils,2000,31:200-210.
    [43] Nagai M, Yoshida T. Variation in understory structure and plant species diversity influenced bysilvicultural treatments among21to26year old Picea glehnii plantations [J]. For Res,2006,11(1):1-10.
    [44] Neff J C, Chapin F S, Vitousek P M. Breaks in the cycle: dissolved organic nitrogen in terrestrialecosystems [J]. Nitrogen in terrestrial ecosystems,2003,1(4):205-221.
    [45] Niese J N, Strong T F. Economic and tree diversity trade-offs in managed northern hardwoods[J].Canadian Journal of Forest Research,1992,22(11):1807-1813.
    [46] Parham J A, Deng S P. Detection, quantification and characterization of β-glucosaminidase activity in soil[J]. Soil Biology and Biochemistry,2000,32:1183-1190.
    [47] Pastor J, Aber J D, Mcclaugherty C A. Aboveground Production and N and P cycling along a nitrogenMineralization gradient on Blackhawk Wisconsin [J]. Ecology,1984,65(l):256-268.
    [48] Perakis S S, Hedin L O. Nitrogen loss from unpolluted South American forests mainly via dissolvedorganic compounds [J]. Nature,2002,415:416-419.
    [49] Raich J W and Schlesinger W H. The global carbon dioxide efflux in soil respiration and its relationshipto vegetation and climate [J]. Tellus,1992,44B:81-90.
    [50] Reader R J, Bricker B D. Value of selectively cut deciduous forest for understory herb conservation: anexperimental assessment [J]. For Ecol Manag,1992,51(4):317-327.
    [51] Remid A, Bernd Z, et al. Decomposition of European beech (Fagus sylvatica) litter: combining qualitytheory and15N labelling experiments [J]. Soil Biology&Biochemistry,2008,40(2):322-333.
    [52] Ross H, Grant R, John G. Response increment. A method to analyze thinning response in even-agedforests [J]. Forest Science,1978,32(1):243-253.
    [53] Sachse A, Babenzien D, Ginzel G, et al. Characterization of dissolved organic carbon (DON) in adystrophic lake and an adjacent fen [J]. Biogeochemistry,2001,54:279-296.
    [54] Satefanic F, Eliade G, Chirnoganu I. Researches concerning a biological index of soil fertility [A]. In5thSymp. On soil biology [C]. Bucharest, Romaina, February1981. Romanian National Society of SoilScience. Bucharest. Fedbreuary1981,35-45.
    [55] Schloter M, Dilly O, Munch J C. Indicators for evaluating soil quality [J]. Agriculture, Ecosystems andEnvironment,2003,98:255-262.
    [56] Scott N A, Binkley D. Foliage litter quality and annual net mineralization: comparison across NorthAmerican forest sites. Oecologia,1997,111:151-159.
    [57] Singh J S, Raghubanshi A S, Singh R S,et al. Microbial biomass acts as a source of plant nutrients in drytropical forest and savanna[J]. Nature,1989,338:499-500.
    [58] Smith H C, Miller G W. Managing Appalachian hardwood stands using four regeneration practice34years results [J]. Northern Journal of Applied Forestry,1987,4:180-185.
    [59] Taylor B R, Parkinson D, Parsons W F J. Nitrogen and lignin content as predictor of litter decay rates: amicrocosm test [J]. Ecology,1989,70(1):137-167.
    [60] Tian L, Dell E, Shi W. Chemical composition of dissolved organic matter in agroecosystems: Correlationswith soil enzyme activity and carbon and nitrogen mineralization [J]. Applied Soil Ecology,2010,46(3):426-435.
    [61] Tu C, Ristaino J B, Hu S. Soil microbial biomass and activity in organic tomato farming systems-Effectsof organic inputs and straw mulching[J]. Soil Biology and Biochemistry.2006,38:247-255.
    [62] Vitousek P M. Beyond global warning: ecology and global change [J]. Ecology,1994,75(7):1861-1876.
    [63] Wang C, Bond-Lamberty B and Gower S T. Soi1surface CO2flux in a boreal black sprace firechronosequence[J]. Joural of Geophysical Research-Atmospheres,2002,108:8221-8224.
    [64] Yano Y, Dowell W H, Aber J D. Biodegradable dissolved organic carbon in forest soil solution andeffects of chronic nitrogen deposition[J]. Soil Biology and Biochemistry,2000,32:1743-1751
    [65] Yano Y, Dowell W H, Kinner N E. Quantification of biodegradable dissolved organic carbon in soilsolution with flow-through bioreators [J]. Soil Science Society of America Journal,1998,62:1556-1564
    [66] Yim Y, Kira T. Distribution of forest vegetation and climate in the Korean peninsula (1.Distribution of some Indices of thermal climate)[J].Japanese Journal of Ecology,1975,25(2):77-88.
    [67] Zachara T. The influence of selective thinning on the social structure of the young scots pine stand[J].Prace Instytutu Badawczego Lesnictwa,2000,3:35-61.
    [68] Zhang H Y, Xiao Y H, Zhang X D. Microbial biomass as an indicator for evaluation of soil fertilityproperties [J]. Chinese Journal of Soil Science,2006,37(3):422-425.
    [69] Zhou L X, Zhou S G, Zhan X H. Sorption and biodegradability of sludge bacterial extracellular polymersin soil and their influence on soil copper behavior [J]. Journal of Environmental Quality,2004,33(10):154-162.
    [70]安藤贵,尹富启.优势木间伐对森林质和量生长的影响[J].林业技术,1984,13(2):23-26.
    [71]蔡锡安,彭少麟,赵平,等.三种乡土树种在二中林分改造模下的生理生态比较[J].生态学杂志,2005,24(3):243-250.
    [72]陈立新,段文标.模拟氮沉降对温带典型森林土壤有效氮形态和含量的影响[J].应用生态学报,2011,22(8):2005-2012.
    [73]陈立新,陈祥伟,段文标.落叶松人工林凋落物与土壤肥力变化的研究[J].应用生态学报,1998,9(6):581-586.
    [74]陈伏生,曾德慧,范志平,等.沙地不同树种人工林土壤氮素矿化过程及其有效性研究[J].生态学报,2006,26(2):341-348.
    [75]陈伏生,曾德慧,何兴元,等.森林土壤氮素的转化与循环[J].生态学杂志,2004,23(5):126-133.
    [76]陈武荣,刘勤,禹洪双.长期不同施肥处理水稻土溶解性有机质组分含量及其特性研究[J].水土保持学报,2010,24(6):111-116.
    [77]陈欣,沈善敏,张璐,等. N、P供给对作物排放N2O的影响研究初报[J].应用生态学报,1995,6(1):104-105.
    [78]邓送求,闫家锋,王宇,等.间伐强度对不同林分类型美景度的影响[J].东北林业大学学报,2010,38(3):4-7.
    [79]董希斌.采伐强度对林分蓄积生长量的影响[J].东北林业大学学报,2001,29(2):35-37.
    [80]董希斌,李耀翔,姜立春.间伐对兴安落叶松人工林林分结构的影响[J].东北林业大学学报,2000,28(1):23-26.
    [81]杜纪山.林木生长和收获预估模型的研究动态[J].世界林业研究,1999,12(4):19-22.
    [82]杜纪山,唐守正.抚育间伐对林分生长的效应及其模型研究[J].北京林业大学学报,1996,18(1):79-83.
    [83]丁洪,张玉树,郑祥洲.除草剂对土壤氮素循环的影响[J].生态环境学报,2011,20(4):767-772.
    [84]丁九敏,徐涵湄,刘胜,等.雪灾对武夷山常绿阔叶林土壤有效氮的影响[J].南京林业大学学报:自然科学版,2010,34(3):136-140.
    [85]方海波,田大伦.间伐后杉木人工林生态系统生物产量的动态变化[J].中南林学院学报,1999,19(1):16-19.
    [86]方海波,田大伦,康文.杉木人工林间伐后林下植被生物量的研究[J].中南林学院学报,1998,18(1):5-9.
    [87]方海波,田大伦,康文星,等.间伐后杉木人工林生态系统养分动态的研究[J].中南林学院学报,1999,19(2):15-22.
    [88]方升佐.中国杨树人工林培育技术研究进展[J].应用生态学报,2008,19(10):2308-2316.
    [89]方升佐,徐锡增,吕士行.杨树定向培育[M].合肥:安徽科学技术出版社,2004.
    [90]方运霆,莫江明,皮特,等.森林土壤氮素转换及其对氮沉降的响应[J].生态学报,2004,24(7):1523-1530.
    [91]傅校平.杉木人工林不同间伐强度对林分生物量的影响[J].福建林业科技,2000,27(2):41-43.
    [92]郭蓓,刘勇,李国雷,等.飞播油松林地土壤酶活性对间伐强度的响应[J].林业科学,2007,43(7):128-133.
    [93]郭剑芬,杨玉盛,陈光水.森林凋落物分解研究进展[J].林业科学,2006,42(4):93-100.
    [94]韩晓日,邹德乙,郭鹏程,等.长期施肥条件下土壤微生物量氮的动态及其调控氮素营养的作用[J].植物营养与肥料学报,1996,2(1):16-22.
    [95]郭忠玲,郑金萍,马元丹.长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究[J].生态学报,2006,26(4):037-1046.
    [96]胡建伟,朱成秋.抚育间伐对森林环境的影响[J].东北林业大学学报,1999,27(3):65-67.
    [97]胡万良,谭学仁,张放,等.抚育间伐对红松人工林生物量的影响[J].辽宁林业科技,1999,49(2):13-16.
    [98]黄登银.不同密度马尾松林下植被和土壤性质[J].防护林科技,2009(2):21-23.
    [99]江波,袁位高,戚连忠,等.江河滩地优质大径杨木培育关键技术研究[J].林业科学,2002,1(1):68-75.
    [100]姜文南,张铁砚.日本落叶松林分密度控制图数表的编制及应用[J].辽宁林业勘测设计,1987,23(1):35-27.
    [101]雷向东,陆元昌,张会儒,等.抚育间伐对落叶松云冷杉混交林的影响[J].林业科学,2005,41(4):78-85.
    [102]李春,杜纪,张会儒.抚育间伐对森林生长的影响及其模型研究[J].林业科学研究,2003,16(5):636-641
    [103]李春义,马履一,王希群,等.抚育间伐对北京山区侧柏人工林林下植物多样性的短期影响[J].北京林业大学学报,2007,29(3):60-66.
    [104]李东坡,陈利军,武志杰,等.不同施肥黑土微生物量氮变化特性及相关因素[J].应用生态学报,2004,15(10):1891-1896.
    [105]李凤日.落叶松人工林林分动态模拟系统的研究[D].北京:北京林业大学,1995.
    [106]李贵才,韩兴国,黄建辉,等.森林生态系统土壤氮矿化影响因素研究进展[J].生态学报,2001,21(7):1187-1195.
    [107]李海玲,王麒,方升佐.两个杨树无性系中大量元素含量的年变化[J].南京林业大学学报:自然科学版,2006,30(1):50-55.
    [108]李景芳,张辉,姜冠,等.红皮云杉造林及透光抚育技术的研究[J].林业科技,1995,12(3):12-15.
    [109]李瑞霞,马洪靖,闵建刚,等.间伐对马尾松人工林林下植物多样性的短期和长期影响[J].生态环境学报,2012,21(5):807-812.
    [110]李文华.森林生物生产量的概念及其研究的基本途径[J].自然资源,1978,23(1):71-92.
    [111]李艳红,杨万勤,罗承德,等.桉-桤不同混合比例凋落物分解过程中养分的变化[J].生态学报,2012,33(1):625-633.
    [112]李志建,倪恒,周爱国.额济纳旗盆地土壤过氧化氢酶活性的垂向变化研究[J].干旱区自然与环境,2004,18(1):86-89.
    [113]李振高,骆永明,滕应.土壤与环境微生物研究法[M].北京:科学出版社,2008.
    [114]李志安,邹碧,丁永祯,等.森林凋落物分解重要影响因子及其研究进展[J].生态学杂志,2004,23(6):77-83.
    [115]林英杰,高芳,张佳蕾,等.不同种植方式对花生土壤微生物生物量及活性的影响[J].应用生态学报,2010,21(9):2323-2328.
    [116]刘福德,姜岳忠,王华田,等.杨树人工林连作地力维持技术的探讨[J].林业科学,2007,43(增):58-64.
    [117]刘明国,苏芳莉,谭学仁,等.不同间伐强度下天然次生林凋落物分解进程研究[J].土壤通报,2010,41(4):877-880.
    [118]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997, l7(5):469-476.
    [119]刘盛全,江泽慧,鲍甫成.人工林杨树木材性质与生长培育关系的研究[J].林业科学,2001,37(2):90-96.
    [120]刘足跟,朱教君,王贺新,等.落叶松人工林开阔度的主要环境效应[J].辽宁工程技术大学学报,2006,25(3):457-460.
    [121]卢蒙.氮输入对生态系统碳氮循环的影响整合分析[D].上海:复旦大学,2009.
    [122]鲁顺保,周小奇,芮亦超,等.森林类型对土壤有机质微生物生物量及酶活性的影响[J].应用生态学报,2011,22(10):2567-2573.
    [123]陆耀东,薛立,等.去除地面枯落物对加勒比松(pinus caribaea)林土壤特性的影响[J].生态学报,2008,28(7):3205-3211.
    [124]罗天样,赵士洞.中国杉木林生物生产力格局及其数学模型[J].植物生态学报,1997,21(5):403-415
    [125]莫江明,彭少麟,方运霆,等.鼎湖山马尾松针阔叶混交林土壤有效氮动态的初步研究[J].生态学报,2001,21(3):492-497.
    [126]庞欣,张福锁,王敬国.不同供氮水平对根际微生物量氮及微生物活度的影响[J].植物营养与肥料学报,2000,6(4):476-480.
    [127]乔旭,黄爱军,褚贵新,等.有机与无机肥配施对小麦土壤速效养分、酶活性及微生物数量的影响[J].新疆农业科学,2011,48(8):1399-1403.
    [128]秦燕.贺兰山西坡不同草地类型土壤酶活性特征[D].兰州:兰州大学,2007.
    [129]曲宏辉.间伐对杨树人工林生态因子和氮素循环的影响[D].南京:南京林业大学,2012.
    [130]任立忠,罗菊春,李新彬.抚育采伐对山杨次生林植物多样性影响的研究[J].北京林业大学学报,2000,22(4):14-17.
    [131]桑卫国,马克平,陈灵芝,等.森林动态模型概论[J].植物学通报,1999,16(3):193-200.
    [132]单鸿宾,梁智,王纯利,等.连作及灌溉方式对棉田土壤微生物量碳氮的影响[J].干旱地区农业研究,2010,28(4):202-205.
    [133]沈宏,曹志洪,徐本生.玉米生长期间土壤生物量与土壤酶变化及其相关性研究[J].应用生态学报,1999,10(4):471-474.
    [134]盛炜彤,杨承栋,范少辉.杉木人工林的土壤性质变化[J].林业科学研究,2003,16(4):377-385.
    [135]盛炜彤,杨承栋.关于杉木林下植被对改良土壤性质效用研究[J].生态学报,1997,17(4):377-385.
    [136]孙志高,刘景双,陈小兵.三江平原典型小叶章湿地土壤中硝态氮和铵态氮的空间分布格局[J].水土保持通报,2009.29(3):66-72.
    [137]唐守正.广西大青山马尾松全林整体模型生长模型及其应用[J].林业科学研究,1991,4(增):8-13.
    [138]唐树梅,漆智平.土壤含水量与氮矿化之间的关系.热带农业科学[J].1997(4):54-60.
    [139]田镐锡.编制林分密度控制图的理论[J].林业调查规划,1980,35(1):45-49.
    [140]汪殿蓓,暨淑仪,陈飞鹏.植物群落物种多样性研究综述[J].生态学杂志,2001,20(4):55-60.
    [141]王光华,金剑,徐美娜,等.植物、土壤及土壤管理对土壤微生物群落结构的影响[J].生态学杂志,2006,25(5):550-556.
    [142]王国良.不同采集作业措施对马尾松幼林生长的影响[J].林业科技开发,2000,14(4):21-23.
    [143]汪金松,赵秀海,张春雨,等.改变C源输入对油松人工林土壤呼吸的影响[J].生态学报,2012,32(9):2768-2777.
    [144]王敬,李贤伟,荣丽.森林土壤氮贮量及氮素输入过程研究进展[J].世界林业研究,2008,21(1):14-19.
    [145]王梅,楚光明,牛攀新.人工绿洲防护林林下植物多样性研究[J].干旱区资源与环境,2013,27(04):165-172.
    [146]王美丽,李军,朱兆洲.土壤溶解有机质的研究进展[J].矿物岩石地球化学通报,2010,29(3):304-310.
    [147]王薇,袁亮.设施栽培土壤微生物氮的变化规律及其与土壤肥力的关系[J].山东农业科学,2011,4:53-55.
    [148]王小利,苏以荣,黄道友,等.土地利用对亚热带红壤低山区土壤有机碳和微生物碳的影响[J].中国农业科学,2006,39(4):750-757.
    [149]温远光,刘世荣,陈放.连栽对桉树人工林下物种多样性的影响[J].应用生态学报,2005,16(9):1667-1671.
    [150]吴际友,龙应忠,董云平.湿地松人工林间伐效果初步研究[J].林业科学研究,1995,8(6):630-633.
    [151]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006.
    [152]肖佩兰.古代抚育竹林的经验[J].湖南林业,1994,27(2):24-26.
    [153]熊有强,盛炜彤,曾满生,等.不同间伐强度杉木林下植被发育及生物量研究[J].林业科学研究,1995,8(4):408-412.
    [154]徐六一,虞沐奎.湿地松人工林间伐效应的研究[J].安徽农业大学学报,2001,28(4):417-421.
    [155]杨文化,潘紫重,丁淑英.退耕还林地人工幼林抚育技术[J].东北林业大学学报,2002,30(5):22-23.
    [156]杨玉盛,陈光水,王小国,等.皆伐对杉木人工林土壤呼吸的影响[J].土壤学报,2005,42(4):585-591.
    [157]杨振意,薛立.间伐对生态公益林的影响研究进展[J].湖南林业科技,2011,38(5):68-69.
    [158]姚茂和,盛炜彤,熊有强.杉木林林下植被及其生物量的研究[J].林业科学,1991,27(6):644-648.
    [159]姚瑞玲,丁贵杰,王胤.不同密度马尾松人工林凋落物及养分归还量的年变化特征[J].南京林业大学学报:自然科学版,2006,30(5):83-86.
    [160]尹泰龙,韩福庆.林分密度控制图的编制与应用[J].中国林业科学,1978,23(3):45-57.
    [161]于立忠,朱教君,孔祥文,等.人为干扰(间伐)对红松人工林林下植物多样性的影响[J].生态学报,2006,26(11):3757-3764.
    [162]于树,汪景宽,高艳梅.地膜覆盖及不同施肥处理对土壤微生物量碳和氮的影响[J].沈阳农业大学学报,2006,37(4):602-606.
    [163]张鼎华,叶章发,范必有,等.抚育间伐对人工林土壤肥力的影响[J].应用生态学报,2001,12(5):672-676.
    [164]张浩,庄雪影.华南4种乡土阔叶树种枯落叶分解能力[J].生态学报,2008,28(5):2395-2403.
    [165]张敏,张怀清,陈永富.杉木人工林抚育间伐可视化模拟技术研究[J].林业科学研究,2009,22(6):813-818
    [166]张铁砚,姜文南.柞树林分密度控制图编制与应用[J].林业勘查设计,1985,23(3):34-36
    [167]赵广亮,王继兴,王秀珍,等.油松人工林密度与养分循环关系的研究[J].北京林业大学学报,2006,28(4):39-44.
    [168]赵鹏武,宋彩玲,苏日娜,等.森林生态系统凋落物研究综述[J].内蒙古农业大学学报,2009,30(2):291-299.
    [169]周旭,杜传奇,唐雪海,等.杨树一元立木材积表的编制研究[J].安徽农业大学学报,2008,35(4):486-489.