水稻品种N22强休眠性的QTL定位及遗传解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻种子休眠性是一个重要的农艺性状,与穗发芽抗性密切相关,关系到稻米的产量和品质。在水稻常规育种中,近年来培育的高产品种一旦在收获季节遇到高温多雨的天气就很容易发生穗发芽。休眠性强的品种可以抵抗穗发芽,但会导致田间出苗率低,出苗参差不齐,不利于水稻直播栽培方式的推广。因此,培育具有适度休眠性的优良水稻品种显得尤为重要。N22是强休眠的栽培品种,前人研究表明N22的强休眠性由1-2个主基因控制。本研究通过两种不同的方法对N22种子的强休眠性进行遗传研究。一是以无休眠的粳稻品种南粳35为轮回亲本,N22为供体分别构建了两个主效QTL,qSdn-1和qSdn-5的高代回交群体和近等基因系(NIL),利用高代回交群体分别对qSdn-1和qSdn-5进行了精细定位;二是对强休眠品种N22进行诱变处理,筛选与休眠相关的突变体,对筛选到的突变体进行遗传分析。两种方法相互结合,为揭示N22种子强休眠性的遗传机理奠定良好的基础。
     1.以无休眠粳稻品种南粳35为轮回亲本,强休眠的籼稻品种N22为供体,通过不断的回交和标记辅助选择分别构建了qSdn-1和qSdn-5的高代回交群体及近等基因系。
     2008年正季利用482株BC4F2(gSdn-1)和367株BC4F2(gSdn-5)分别对qSdn-1和qSdn-5进行了定位验证,将qSdn-1定位在SSR标记RM11669和RM1216之间,与标记RM11694共分离,qSdn-1可解释休眠表型变异的24.58%;将qSdn-5定位在标记RM480和RM3664之间,可解释休眠表型变异的17.58%。qSdn-1和qSdn-5的定位区间与之前定位的位置一致。并利用同时含有qSdn-1和qSdn-5位点的449株BC4F2(qSdn-1/qSdn-5)高代回交群体对两个位点间的互作进行了分析,结果表明qSdn-1和qSdn-5间不存在上位性,基因在休眠表型上的效应是可以累加的。为了进一步验证qSdn-1和qSdn-5对种子休眠的作用,我们还构建了含有qSdn-1或qSdn-5单个QTL,或含有qSdn-1和qSdn-5两个QTL位点及在这两个位点上都不含有N22片段的BC3F5高代群体。对这些高代回交家系的发芽情况进行统计,BC3F5(gSdn-1).BC3F5(qSdn-5)、BC3F5(qSdn-1/qSdn-5)和BC3F5(CK)的平均发芽率分别为7.9%、11.1%、6.1%和86.3%,这一结果进一步证明了qSdn-1和qSdn-5对N22种子的强休眠性起重要作用,是两个主效休眠位点,同时含有qSdn-1和qSdn-5两个位点的高代回交群体发芽率更低,这也证实了它们的作用是可以累加的。经7天50℃的干热处理,qSdn-1和qSdn-5控制的种子休眠便能彻底打破。
     2009和2010年正季利用遗传背景更加纯合的BC5F2和BC5F3高代回交群体对qSdn-1和qSdn-5分别进行了精细定位。2009年利用SSR标记RM128和RM11781从7300株BC5F2(qSdn-1)群体中筛选到95株极端表型的重组个体,对这些重组单株于2010年对表型进行后代(BC5F3)验证,通过进一步的加密标记将qSdn-1定位在标记L24和L34之间约655kb的范围内,与标记L27共分离;同样利用标记RM7452和RM3664从5888株BC5F2(qSdn-5)中筛选到111株重组个体,经交换单株验证后将qSdn-5定位在122kb的范围内,与Indel标记15-6共分离。qSdn-1和qSdn-5的精细定位一方面为进一步的图位克隆工作奠定了良好的基础,另一方面与休眠位点紧密连锁的标记可被用于分子标记辅助选择育种,培育具有适度休眠性的水稻优良品种对抗穗发芽。
     在精细定位的同时我们通过不断的回交及标记辅助选择构建了一套休眠QTL的NILs,即NIL (qSdn-1), NIL (qSdn-5)和NIL (CK)。2010年正季NIL (qSdn-1)、NIL (qSdn-5)和NIL(CK)的发芽率分别为23%、35%和98%,而NILs其它农艺性状与背景亲本南粳35没有差异,这也进一步验证了qSdn-1和qSdn-5对N22种子休眠性的作用。
     种子休眠通常与植物激素有密切的关系,通过外源激素及逆境处理实验表明NIL(qSdn-1)与NIL (qSdn-5)对ABA、GA和NaCl的敏感性存在差异,NIL (qSdn-5)对ABA、GA和NaCl表现的更加敏感,IAA处理实验NIL (qSdn-1)和NIL (qSdn-5)没有明显的差异,随IAA浓度的升高发芽率都有所上升。对外源激素及逆境处理响应的差异表明qSdn-1和qSdn-5潜在的基因调控种子休眠的机制有所不同。
     2.利用400Gy 60Co辐照N22种子,通过对突变表型的筛选获得两个弱休眠的突变体,暂时命名为Q4359和Q4646。Q4359和Q4646抽穗后35天收获的种子平均发芽率为43%和45%,较野生型N22发芽率高,而且在室温存放过程中突变体种子的休眠性较N22更容易破除,在种子萌发过程中突变体对ABA和NaCl的敏感性降低,且Q4359较Q4646对ABA和NaCl更加不敏感;N22种子发芽率随外源GA浓度的增加有所上升,而突变体Q4359和Q4646都表现出对GA不敏感;在对IAA的敏感性上突变体与N22没太大差异,发芽率都有所上升。
     突变体间的正反交实验表明Q4359和Q4646突变位点不等位,遗传分析实验表明两个突变性状都是由隐性单基因控制。之前的研究表明N22种子休眠性由1-2个主基因控制,通过定位分析检测到两个主效位点(qSdn-1和qSdn-5),是否是N22中的这两个主效基因发生突变导致种子休眠性减弱?于是我们利用Q4359和Q4646与无休眠的水稻品种南粳35构建分离群体对突变体中的休眠位点进行定位分析。在Q4359/南粳35 F2群体中共检测到3个控制种子休眠的QTL,其中第3染色体上检测的位点增强休眠性的等位基因来自南粳35;第5染色体检测的位置与前面定位的结果一致,为qSdn-5;另外还检测到一个控制种子休眠的新位点gSdn-9,LOD值5.5,可解释11.5%的表型变异。在Q4646/南粳35 F2群体中检测到2个控制种子休眠的QTL,位于第1染色体的QTL与之前定位的qSdn-1的位置一致,第3染色体检测的位点与Q4359/南粳35 F2群体的位置相同,增效基因同样来自南粳35。另外,像qSdn-2、qSdn-7和qSdn-11在本研究中也没被检测到。Q4359和Q4646的弱休眠表型可能是由于qSdn-1和qSdn-5位点突变引起的。
Grain dormancy is an important trait for breeders in many cereals because of its association with preharvest sprouting, which can damage end-use quality such as seed quality and yield in rice. In conventional rice breeding, high-yield varieties are liable to initiate germination before harvest given suitable environmental conditions around the time of crop maturity in recent years, strongly influence quality of rice. Strong levels of seed dormancy are correlated with a low probability of PHS and vice versa. Excessive dormancy of course can also be problematical, because it leads to uneven seedling establishment. Therefore, breeding for an intermediate level of dormancy in rice is highly desirable. The indica cultivar N22 has very strong level of dormancy. Here, two different strategies were used to genetic analysis of N22. The first, the advanced backcross (AB) populations and near-isogenic lines (NILs) contained qSdn-1 or qSdn-5 that were two major effect dormancy QTL in N22 was developed respectivily. qSdn-1 and qSdn-5 was fine mapping in a narrow region using AB-population and the effect of these two locus were also verfied using NILs. The second, the seeds of N22 were treated with 400Gy 60Co gamma-radiation, the mutants associated with seed dormancy were screened, and the simple genetic analyses were done for these mutants. These two strategies will provide some useful information to reveal the genetic mechanism for seed dormancy of N22.
     1. The intrachromosomal positions of the two grain dormancy quantitative trait locus (QTL) qSdn-1 (chromosome 1) and qSdn-5 (chromosome 5) were obtained from the segregation analysis of the advanced backcross populations derived from the cross between rice cultivars N22 and Nanjing35. Marker-assisted selection (MAS) was applied to select derivatives carrying one or both of qSdn-1 and qSdn-5 in a genetic background which was nearly isogenic to Nanjing35.
     In 2008, an analysis of dormancy in the BC4F2 population allowed qSdn-1 to be located between the simple sequence repeat (SSR) markers RM11669 and RM1216; the QTL explained 24.58% of the overall phenotypic variation and the most closely linked marker was RM11694. qSdn-5 was mapped between RM480 and RM3664, and explained 17.58% of the overall phenotypic variation. The SSR locus RM19080 mapped within 0.4 cM of qSdn-5. No epistasis was observed between qSdn-1 and qSdn-5. The mean germination rates of lines containing qSdn-1, qSdn-5 and both qSdn-1 and qSdn-5 was 7.9, 11.1 and 6.1%, respectively, whereas that of the check line lacking both QTL was 86.3%. The dormancy of both qSdn-1 and qSdn-5 could be readily broken by a 7-day post-harvest treatment at 50℃.
     Later, qSdn-1 and qSdn-5 were fine mapped using advanced backcross populations BC5F2 and BC5F3 in 2009 and 2010. In 2009,95 extreme recombinant plants were identfied using the SSR markers RM128 and RM11781 from 7300 BC5F2 (qSdn-1), the phenotypes of these recombinant plants were verified by the progenies (BC5F3) in 2010, qSdn-1 was mapped between SSR marker L24 and L34 with about 655kb, co-segregating with L27; using the same method,111 extreme recombinant plants were identfied using RM7452 and RM3664 from 5888 BC5F2 (qSdn-5), finally, qSdn-5 was mapped between Indel marker 15-2 and SSR marker RM19080 with 122kb, co-segregating with Indel marker 15-6. Fine mapping of qSdn-1 and qSdn-5 established good base for map-based cloning of these two QTL. The SSR loci linked most tightly to qSdn-1 and qSdn-5 are suitable for MAS for reduced pre-harvest sprouting in rice.
     When we fine mapped qSdn-1 and qSdn-5, three NILs, NIL (qSdn-1), NIL (qSdn-5) and NIL (CK) were developed using phenotype and marker-assisted selection. The germination rates of NIL (qSdn-1), NIL (qSdn-5) and NIL (CK) were 23%,35% and 98%, respectively in 2010, while the major agronomic traits of the NILs were same with Nanjing35. This also veried qSdn-1 and qSdn-5 act very important effect for seed dormancy of N22.
     Seed dormancy have a tight connection with plant hormones, the seed germinations of NIL (qSdn-1) and NIL (qSdn-5) were treated with hormone and adversity stress, the results showed different sensitivity to ABA, GA and NaCl between NIL (qSdn-1) and NIL (qSdn-5), NIL (qSdn-5) displayed more sensitivity than NIL (qSdn-1), there were no sensibly different between NIL(qSdn-1) and NIL (qSdn-5) when treated with IAA, the different sensitivity indicated the genetic mechanism of the gene underlying qSdn-1 and qSdn-5 is different.
     2. Two weak dormancy mutants, designated Q4359 and Q4646, were obtained from the rice cultivar N22 after treatment with 400Gy 60C0 gamma-radiation. The germination rates of Q4359 and Q4646 were 43% and 45%, respectively after 35d heading, higher than <2% of wide-type N22. The dormancy of the mutant seeds was more readily broken when exposed to period of room temperature storage. The mutants also showed a reduced level of sensitivity to ABA and NaCl compared to the N22 cultivar, although Q4359 was more insensitive than Q4646. The germination rate of N22 increased with accruement of GA concentration, while Q4359 and Q4646 displayed insensitive to GA. The germination rates of N22, Q4359 and Q4646 all increased with accruement of IAA concentration, no obvious different.
     A genetic analysis indicated that in both mutants, the reduced dormancy trait was caused by a single recessive allele of a nuclear gene, but that the mutated locus was different in each case. There is one or two major gene(s) in N22, in previous study, qSdn-1 and qSdn-5 were detected as major effect QTL. Whether or not the reduced dormancy accociated with these two QTL? So we detected the dormancy QTL of Q4359 and Q4646 using two segregation populations, Q4359/Nanjing35 F2 and Q4646/Nanjing35 F2. In Q4359/Nanjing35 F2,3 QTL, qSdNj-3, qSdn-5, and qSdn-9 were detected on chromosome 3,5 and 9, respectively. The QTL qSdn-9 was determined to be a novel dormancy locus, and it was mapped between SSR markers RM7038 and RM105 with a LOD score of 5.5, explaining 11.5% of the overall trait variation. The major dormancy QTL qSdn-1 was not detected in Q4359/Nanjing35 F2. Two QTL, qSdn-1 and qSdNj-3, were detected in Q4646/Nanjing35 F2, the position of qSdNj-3 was accorded with the QTL in Q4359/Nanjing35 F2, and qSdn-5 was not detected in Q4646/Nanjing35 F2. The following QTL:qSdn-2, qSdn-7 and qSdn-11 were not detected in the two populations. Therefore, qSdn-1 and qSdn-5 could be inherited as the major dormancy locus, but qSdn-5 in Q4359 and qSdn-1 in Q4646 were not detected. Whether the reduced dormancy phenotype caused by qSdn-1 and qSdn-5 mutated or not will require further investigation.
引文
Agrawal G K, Yamazaki M, Kobayashi M, et al. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tosl 7 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene [J]. Plant Physiology,2001,125(3):1248-1257.
    Ali-Rachedi S, Bouinot D, Wagner M H, et al. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds:studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana [J]. Planta,2004,219(3):479-488.
    Alonso-Blanco C, Bentsink L, Hanhart C J, et al. Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana [J]. Genetics,2003,164(2):711-729.
    Babiker A G T, Ma Y, Sugimoto Y, et al. Conditioning period, CO2 and GR24 influence ethylene biosynthesis and germination of Striga hermonthica [J]. Physiol Plantarum,2000,109(1):75-80.
    Bailey P, McKibbin R, Lenton J, et al. Genetic map locations for orthologous Vpl genes in wheat and rice [J]. Theoretical and Applied Genetics,1999,98(2):281-284.
    Barthe P, Garello G, Bianco-Trinchant J, et al. Oxygen availability and ABA metabolism in Fagus sylvatica seeds [J]. Plant Growth Regulation,2000,30(2):185-191.
    Baskin J M, Baskin C C.A classification system for seed dormancy [J]. Seed Science Research,2004, 14(01):1-16.
    Baskin M, Ard J, Franklin F, et al. Prevalence of obesity in the United States [J]. Obesity Reviews, 2005,6(1):5-7.
    Bassel G W, Zielinska E, Mullen R T, et al. Down-regulation of DELLA genes is not essential for germination of tomato, soybean, and Arabidopsis seeds [J]. Plant physiology,2004,136(1): 2782-2789.
    Beaudoin N, Serizet C, Gosti F, et al. Interactions between abscisic acid and ethylene signaling cascades [J]. The Plant Cell,2000,12(7):1103-1116.
    Beldetok B. Studies on dormancy in wheat [J]. Pro. Int. Seed Test. Ass.,1961,26:697-760.
    Benech-Arnold R L, Cristina Giallorenzi M, Frank J, et al. Termination of hull-imposed dormancy in developing barley grains is correlated with changes in embryonic ABA levels and sensitivity [J]. Seed Science Research,1999,9(01):39-47.
    Bentsink L, Koornneef M. Seed Dormancy and Germination[M]. The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD,2002.
    Bentsink L, Koornneef M. Seed dormancy and germination [M]. The Arabidopsis Book,2008,6(1): 1-18.
    Bentsink L, Soppe W, Koornneef M. Seed Development, Dormancy and Germination [M].2007.
    Bethke P C, Libourel I G L, Aoyama N, et al. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy [J]. Plant physiology,2007,143(3):1173-1188.
    Bewley J D. Seed Germination and Dormancy [J]. Plant Cell,1997a,9(7):1055-1066.
    Bewley J D. Breaking down the walls-a role for endo-β-mannanase in release from seed dormancy? [J]. Trends in Plant Science,1997b,2(12):464-469.
    Bewley J D, Black M. Seeds:Physiology of Development and Germination [M], New York:Plenum Publishing Corporation,1994:199-267.
    Bleecker A B, Estelle M A, Somerville C, et al. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana [J]. Science,1988,241(4869):1086-1089.
    Borthwick H A, Hendricks S B, Parker M W, et al. A Reversible Photoreaction Controlling Seed Germination [J]. Proc Natl Acad Sci USA,1952,38(8):662-666.
    Bouquin T, Meier C, Foster R, et al. Control of specific gene expression by gibberellin and brassinosteroid [J]. Plant Physiology,2001,127(2):450-458.
    Bradford K J, Nonogaki H. Seed Development, Dormancyand Germination[M]. Blackwell Publishing Ltd,2007.
    Brady S M, McCourt P. Hormone cross-talk in seed dormancy [J]. Journal of Plant Growth Regulation,2003,22(1):25-31.
    Brocard-Gifford I, Lynch T J, Garcia M E, et al. The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 locus encodes a novel protein mediating abscisic acid and sugar responses essential for growth [J]. The Plant Cell,2004,16(2):406-421.
    Cai H W, Morishima H. Genomic regions affecting seed shattering and seed dormancy in rice [J]. Theoretical and Applied Genetics,2000,100:840-846.
    Cai H W, Morishima H. QTL clusters reflect character associations in wild and cultivated rice [J]. Theoretical and Applied Genetics,2002,104:1217-1228.
    Carrera E, Holman T, Medhurst A, et al. Gene expression profiling reveals defined functions of the ATP-binding cassette transporter COMATOSE late in phase Ⅱ of germination [J]. Plant Physiology,2007,143(4):1669-1679.
    Chen X, Temnykh S, Xu Y, et al. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics,1997, 95(4):553-567.
    Chiwocha S D S, Cutler A J, Abrams S R, et al. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination [J]. Plant Journal,2005,42(1):35-48.
    Clerkx E J M, El-Lithy M E, Vierling E, et al. Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population [J]. Plant Physiology,2004,135(1): 432-443.
    Clouse S D. Brassinosteroid signal transduction and action, in:P. J. Davies (Ed.), Plant Hormones: Biosynthesis, Signal Transduction, Action[M], Dordrecht:Kluwer Academic,2004:413-436
    Clouse S D, Sasse J M. Brassinosteroids:Essential regulators of plant growth and development [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:427-451.
    Cohn M A, Butera D L. Seed dormancy in red rice (Oryza sativa). Ⅱ. Response to cytokinins [J]. Weed Science,1982:200-205.
    Corbineau F, Come D, Viemont J D et al. Dormancy of cereal seeds as related to embryo sensitivity to ABA and water potential [J]. Dormancy in plants:from whole plant behaviour to cellular control,2000:183-194.
    Cui K, Peng S, Xing Y, et al. Molecular dissection of seedling-vigor and associated physiological traits in rice [J]. Theoretical and Applied Genetics,2002,105(5):745-753.
    da Silva E A A, Toorop P E, van Aelst A C, et al. Abscisic acid controls embryo growth potential and endosperm cap weakening during coffee (Coffea arabica cv. Rubi) seed germination [J]. Planta, 2004,220(2):251-261.
    Da Silva J S, Hasegawa T, Miyagi T, et al. Asymmetric membrane ganglioside sialidase activity specifies axonal fate [J]. Nature neuroscience,2005,8(5):606-615.
    Debeaujon Ⅰ, Koornneef M. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid [J]. Plant Physiology,2000,122(2): 415-424.
    Debeaujon Ⅰ, Leon-Kloosterziel K M, Koornneef M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis [J]. Plant Physiology,2000,122(2):403-414.
    Dellaporta S L, Wood J, Hicks J B. A plant DNA minipreparation:version Ⅱ [J]. Plant Molecular Biology Reporter,1983,1(4):19-21.
    Derek B J. Seed germination and dormancy [J]. The Plant Cell,1997,9:1055-1066.
    Dewar J, Taylor J, Berjak P. Changes in selected plant growth regulators during germination in sorghum [J]. Seed Science Research,1998,8(01):1-8.
    Dill A, Jung H S, Sun T. The DELLA motif is essential for gibberellin-induced degradation of RGA [J].Proc Natl Acad Sci USA,2001,98(24):14162-14167.
    Dong Y, Tsuzuki E, Kamiunten H, et al. Identification of quantitative trait loci associated with pre-harvest sprouting resistance in rice(Oryza sativa L.) [J]. Field crops research,2003,81(2-3): 133-139.
    Emery R J, Ma Q, Atkins C A. The forms and sources of cytokinins in developing white lupine seeds and fruits [J]. Plant Physiol,2000,123(4):1593-1604.
    Fang J, Chai C, Qian Q, et al. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice [J]. The Plant Journal,2008,54(2): 177-189.
    Feurtado J A, Ren C, Ambrose S J, et al. The coat-enhanced dormancy mechanism of western white pine(Pinus monticola Dougl. ex D. Don) seeds is mediated by abscisic acid homeostasis and mechanical restraint [J]. Seed Science and Technology,2008,36(2):283-300.
    Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination [J]. New Phytologist,2006,171(3):501-523.
    Finch-Savage W, Steckel J, Phelps K. Germination and post-germination growth to carrot seedling emergence:predictive threshold models and sources of variation between sowing occasions [J]. New Phytologist,1998,139(3):505-516.
    Finkelstein R, Reeves W, Ariizumi T, et al. Molecular aspects of seed dormancy [J]. Annual Review of Plant Biology,2008,59:387-415.
    Finkelstein R R, Gampala S S, Rock C D. Abscisic acid signaling in seeds and seedlings [J]. Plant Cell,2002,14 Suppl:S15-45.
    Fischer-Iglesias C, Neuhaus G. Zygotic embryogenesis-hormonal control of embryo development. In Current trends in the embryology of angiosperms[M]. Edited by S.S. Bhojwani and W.Y. Soh. Kluwer Academic Publishes, Dordrecht, Netherlands,2001,223-247.
    Fischer-Iglesias C, Sundberg B, Neuhaus G, et al. Auxin distribution and transport during embryonic pattern formation in wheat [J]. The Plant Journal,2001,26(2):115-129.
    Foley M E, Fennimore S A. Genetic basis for seed dormancy [J]. Seed Science Research,1998,8(2): 173-182.
    Frantz J M, Bugbee B. Anaerobic conditions improve germination of a gibberellic acid deficient rice [J]. Crop Science,2002,42(2):651-654.
    Frey A, Godin B, Bonnet M, et al. Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia [J]. Planta,2004,218(6):958-964.
    Fu X, Richards D E, Fleck B, et al. The Arabidopsis mutant sleepylgar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates [J]. The Plant Cell,2004,16(6):1406-1418.
    Fu X, Richards D E, Ait-Ali T, et al. Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor [J]. The Plant Cell,2002,14(12):3191-3200.
    Fujino K, Sekiguchi H, Matsuda Y, et al. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice [J]. Proc Natl Acad Sci USA,2008, 105(34):12623-12628.
    Gao F, Ren G, Lu X, et al. QTL analysis for resistance to preharvest sprouting in rice (Oryza sativa) [J]. Plant breeding,2008,127(3):268-273.
    Gao W, Clancy J, Han F, et al. Molecular dissection of a dormancy QTL region near the chromosome 7 (5H) L telomere in barley [J]. Theoretical and Applied Genetics,2003,107(3):552-559.
    Geyer R, Koornneef M, Soppe W. A mutation in a TFIIS transcription elongation factor causes reduced seed dormancy in Arabidopsis[C]. In 2nd Int. Soc. Seed Sci. (ISSS) Workshop on Molecular Aspects of Seed Dormancy and Germination, Salamanca,2007, Spain.
    Ghassemian M, Nambara E, Cutler S, et al. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis [J]. The Plant Cell,12(7):1117-1126.
    Gonzalez-Guzman M, Abia D, Salinas J, et al. Two new alleles of the abscisic aldehyde oxidase 3 gene reveal its role in abscisic acid biosynthesis in seeds [J]. Plant physiology,2004,135(1): 325-333.
    Graeber K, Linkies A, Muller K, et al. Cross-species approaches to seed dormancy and germination: conservation and biodiversity of AB A-regulated mechanisms and the Brassicaceae DOG1 genes [J]. Plant Molecular Biology,2010,73(1):67-87.
    Groot S P C, Karssen C M. Gibberellins Regulate Seed-Germination in Tomato by Endosperm Weakening-a Study with Gibberellin-Deficient Mutants [J]. Planta,1987,171(4):525-531.
    Gu X Y, Chen Z X, Foley M E. Inheritance of seed dormancy in weedy rice [J], Crop Science,2003, 43:835-843.
    Gu X Y, Kianian S F, Foley M E. Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa) [J]. Genetics,2004,166(3):1503-1516.
    Gu X Y, Kianian S F, Hareland G A, et al. Genetic analysis of adaptive syndromes interrelated with seed dormancy in weedy rice (Oryza sativa) [J]. Theoretical and Applied Genetics,2005,110(6): 1108-1118.
    Gu X Y, Liu T, Feng J, et al. The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice [J]. Plant molecular biology,2010, 73(1):97-104.
    Gubler F, Hughes T, Waterhouse P, et al. Regulation of dormancy in barley by blue light and after-ripening:effects on abscisic acid and gibberellin metabolism [J]. Plant Physiol,2008, 147(2):886-896.
    Guo L, Zhu L, Xu Y, et al. QTL analysis of seed dormancy in rice(Oryza sativa L.) [J]. Euphytica, 2004,140(3):155-162.
    Hagemann M G, Ciha A J. Environmental X Genotype Effects on Seed Dormancy and after-Ripening in Wheat [J]. Agronomy Journal,1987,79(2):192-196.
    Harper J L. Population biology of plants[M]. London:Academic Press,1977.
    Hayashi M, Hidaka Y. Studies on dormancy and germination of rice seed. VIII The temperature treatment effects upon the seed dormancy and the hull tissue-degeneration in rice seed during the ripening period and the post harvesting [J]. Bull. Fac. Agr. Kagoshima Univ.,1979,29: 21-32.
    Hendricks S B, Taylorson R B. Promotion of Seed Germination by Nitrate, Nitrite, Hydroxylamine, and Ammonium Salts [J]. Plant Physiol,1974,54(3):304-309.
    Hilhorst H W M. A Critical Update on Seed Dormancy.1. Primary Dormancy [J]. Seed Science Research,1995,5(2):61-73.
    Hilhorst H W M. The regulation of secondary dormancy. The membrane hypothesis revisited [J]. Seed Science Research,1998,8(2):77-90.
    Hobo T, Kowyama Y, Hattori T. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription [J]. Proc Natl Acad Sci USA,1999,96(26):15348-15353.
    Holdsworth M J, Bentsink L, Soppe W J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination [J]. New Phytologist,2008,179(1): 33-54.
    Hori K, Sato K, Takeda K. Detection of seed dormancy QTL in multiple mapping populations derived from crosses involving novel barley germplasm [J]. Theoretical and Applied Genetics, 2007,115(6):869-876.
    Hugouvieux V, Kwak J M, Schroeder J I. An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis [J]. Cell,2001,106(4):477-487.
    Hugouvieux V, Murata Y, Young J J, et al. Localization, ion channel regulation, and genetic interactions during abscisic acid signaling of the nuclear mRNA cap-binding protein, ABH1 [J]. Plant physiology,2002,130(3):1276-1287.
    Ikehashi H. Studies on the environmental and varietal differences of germination habits of rice seeds from the special view point to plant breeding (in Japanese) [J]. Bull Nat. Agric. Exp. Stan., 1973,19:1-60.
    Imtiaz M, Ogbonnaya F C, Oman J, et al. Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines [J]. Genetics,2008,178(3):1725-1736.
    Itoh H, Matsuoka M, Steber C M. A role for the ubiquitin-26S-proteasome pathway in gibberellin signaling [J]. Trends in Plant Science,2003,8(10):492-497.
    Jiang L, Cao Y, Wang C, et al. Detection and analysis of QTL for seed dormancy in rice (Oryza sativa L.) using RIL and CSSL population [J]. Acta genetica Sinica,2003,30(5):453-458.
    Jin J, Huang W, Gao J P, et al. Genetic control of rice plant architecture under domestication [J]. Nature Genetics,2008,40(11):1365-1369.
    JING W, JIANG L, ZHANG W W, et al. Mapping QTL for seed dormancy in weedy rice [J]. Acta Agronomica Sinica,2008,34(5):737-742.
    Johnson R R, Wagner R L, Verhey S D, et al. The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences [J]. Plant Physiol,2002,130(2):837-846.
    JonesHeld S, VanDoren M, Lockwood T. Brassinolide application to Lepidium sativum seeds and the effects on seedling growth [J]. Journal of Plant Growth Regulation,1996,15(2):63-67.
    Kan J, Song S. Effects of dehydration, chilling, light, phytohormones and nitric oxide on germination of Pistia stratiotes seeds [J]. Seed Science and Technology,2008,36(1):38-45.
    Karssen C, La ka E. A revision of the hormone balance theory of seed dormancy:Studies on gibberellin and/or abscisic acid-deficient mutants of Arabidopsis thaliana. U:(Bopp M, ed) Plant growth substances 1986, Berlin, Germany:Springer-Verlag.
    Karssen C M, Hilhorst H W M. Effect of chemical environment on seed germination, in:M. Fenner (Ed.), Seeds:The Ecology of Regeneration in Plant Communities, Wallingford:CAB International,1992:327-348
    Karssen C M, Brinkhorstvanderswan D L C, Breekland A E, et al. Induction of Dormancy during Seed Development by Endogenous Abscisic-Acid-Studies on Abscisic-Acid Deficient Genotypes of Arabidopsis thaliana (L) Heynh [J]. Planta,1983,157(2):158-165.
    Karssen C M, Zagorski S, Kepczynski J, et al. Key Role for Endogenous Gibberellins in the Control of Seed-Germination [J]. Annals of Botany,1989,63(1):71-80.
    Kermode A R. Role of abscisic acid in seed dormancy [J]. Journal of Plant Growth Regulation,2005, 24(4):319-344.
    Kim D H, Yamaguchi S, Lim S, et al. SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5 [J]. The Plant Cell Online,2008,20(5):1260-1277.
    Klee H J. Ethylene signal transduction. Moving beyond Arabidopsis [J]. Plant physiology,2004, 135(2):660-667.
    Ko J H, Yang S H, Han K H. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis [J]. The Plant Journal,2006, 47(3):343-355.
    Koornneef M, Karssen C M. Seed dormancy and germination, in:M. Koornneef and C. M. Karssen (Eds.), Arabidopsis, New York:Cold Spring Harbor Laboratory,1994:313-334
    Koornneef M, Reuling G, Karssen C. The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana [J]. Physiologia Plantarum,1984,61(3):377-383.
    Koornneef M, Bentsink L, Hilhorst H. Seed dormancy and germination [J]. Current Opinion in Plant Biology,2002,5(1):33-36.
    Koornneef M, Jorna M, Brinkhorst-Van der Swan D, et al. The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) heynh [J]. Theoretical and Applied Genetics,1982,61(4): 385-393.
    Kucera B, Cohn M A, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination [J]. Seed Science Research,2005,15(04):281-307.
    Kushiro T, Okamoto M, Nakabayashi K, et al. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases:key enzymes in ABA catabolism [J]. The EMBO journal,2004,23(7): 1647-1656.
    Leon-Kloosterziel K M, Alvarez Gil M, Ruijs G J, et al. Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci [J]. The Plant Journal,1996,10(4):655-661.
    Lee S, Cheng H, King K E, et al. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition [J]. Genes & development,2002,16(5):646-658.
    Lee S J, Oh C S, Suh J P, et al. Identification of QTLs for domestication-related and agronomic traits in an Oryza sativa x O. rufipogon BC1F7 population [J]. Plant breeding,2005,124(3):209-219.
    Lefebvre V, North H, Frey A, et al. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy [J]. The Plant Journal,2006,45(3):309-319.
    Leon-Kloosterziel K M, Alvarez Gil M, Ruijs G J, et al. Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci [J]. The Plant Journal,1996,10(4):655-661.
    Leubner-Metzger G. Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways [J]. Planta,2001,213(5):758-763.
    Leubner-Metzger G. Seed after-ripening and over-expression of class I-1,3-glucanase confer maternal effects on tobacco testa rupture and dormancy release [J]. Planta,2002,215(6):959-968.
    Leubner-Metzger G. Functions and regulation of beta-1,3-glucanases during seed germination, dormancy release and after-ripening [J]. Seed Science Research,2003,13(01):17-34.
    Leubner-Metzger G, Petruzzelli L, Waldvogel R, et al. Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I beta-1,3-glucanase during tobacco seed germination [J]. Plant Molecular Biology,1998,38(5):785-795.
    Leung J, Giraudat J. Abscisic acid signal transduction [J]. Annual Review of Plant Biology,1998, 49(1):199-222.
    Li B, Foley M E. Genetic and molecular control of seed dormancy [J]. Trends in Plant Science,1997, 2(10):384-389.
    Li C, Zhou A, Sang T. Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara [J]. New Phytologist,2006,170(1):185-194.
    Li C, Tarr A, Lance R, et al. A major QTL controlling seed dormancy and pre-harvest sprouting/grain alpha-amylase in two-rowed barley(Hordeum yulgare L.) [J]. Aust J Agr Res,2003,54(11/12): 1303-1314.
    Li W, Xu L, Bai X, et al. Quantitative trait loci for seed dormancy in rice [J]. Euphytica, 2010(online).
    Lin S, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines [J]. Theoretical and Applied Genetics, 1998,96(8):997-1003.
    Lincoln S E, Daly M J, Lander E S. Constructing genetic linkage maps with MAPMAKER/EXP Version 3.0:A tutorial and reference manual [J]. A Whitehead Institute for Biomedical Research Technical Report Third Edition,1993.
    Lindgren L O, Stalberg K G, Hoglund A S. Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid [J]. Plant physiology,2003,132(2):779-785.
    Linkies A. Graeber K, Knight C, et al. The evolution of seeds [J]. New Phytologist,2010,186(4): 817-831.
    Liotenberg S, North H, Marion-Poll A. Molecular biology and regulation of abscisic acid biosynthesis in plants [J]. Plant Physiology and Biochemistry,1999,37(5):341-350.
    Liu Y, Koornneef M, Soppe W J J. The absence of histone H2B monoubiquitination in the Arabidopsis hub1(rdo4) mutant reveals a role for chromatin remodeling in seed dormancy [J]. The Plant Cell,2007,19(2):433-444.
    Liu Y, Shi L, Ye N, et al. Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis [J]. New Phytologist,2009,183(4): 1030-1042.
    Lopez-Molina L, Mongrand S, Kinoshita N, et al. AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation [J]. Genes Dev,2003,17(3):410-418.
    Lozano-Juste J, Leon J. Enhanced abscisic acid-mediated responses in nialnia2 noal-2 triple mutant impaired in NIA/NR-and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis [J]. Plant physiology,2010,152(2):891-903.
    Lu C, Fedoroff N. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin [J]. The Plant Cell,2000,12(12): 2351-2365.
    Mares D, Mrva K, Cheong J, et al. A QTL located on chromosome 4A associated with dormancy in white-and red-grained wheats of diverse origin [J]. Theoretical and Applied Genetics,2005, 111(7):1357-1364.
    Marin E, Nussaume L, Quesada A, et al. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana [J]. The EMBO journal,1996,15(10):2331-2342.
    Matilla A J. Ethylene in seed formation and germination [J]. Seed Science Research,2000,10(2): 111-126.
    McCarty D R. Genetic control and integration of maturation and germination pathways in seed development [J]. Annual Review of Plant Biology,1995,46(1):71-93.
    McCarty D R, Hattori T, Carson C B, et al. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator [J]. Cell,1991,66(5):895-905.
    McCouch S, Kochert G, Yu Z H, et al. Molecular mapping of rice chromosomes [J]. Theoretical and Applied Genetics,1988,76(6):815-829.
    McCouch S R, Teytelman L, Xu Y, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) [J]. DNA research,2002,9(6):199-207.
    McGinnis K M, Thomas S G, Soule J D, et al. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase [J]. The Plant Cell,2003,15(5):1120-1130.
    Merlot S, Gosti F, Guerrier D, et al. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway [J]. The Plant Journal,2001, 25(3):295-303.
    Meyer K, Leube M P, Grill E. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana [J]. Science,1994,264(5164):1452-1455.
    Millar A A, Jacobsen J V, Ross J J, et al. Seed dormancy and ABA metabolism in Arabidopsis and barley:the role of ABA 8'-hydroxylase [J]. The Plant Journal,2006,45(6):942-954.
    Miura K, Lin S, Yano M, et al. Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics,2002,104(6):981-986.
    Mok D W S, Mok M C. Cytokinin metabolism and action [J]. Annual Review of Plant Biology,2001, 52(1):89-118.
    Murata N, Los D A. Membrane Fluidity and Temperature Perception [J]. Plant Physiology,1997, 115(3):875-879.
    Nakamura S, Lynch T J, Finkelstein R R. Physical interactions between ABA response loci of Arabidopsis [J]. Plant J,2001,26(6):627-635.
    Nambara E, Marion-Poll A. ABA action and interactions in seeds [J]. Trends in Plant Science,2003, 8(5):213-217.
    Nicolas G, Aldasoro J. Activity of the Pentose Phosphate Pathway and Changes in Nicotinamide Nucleotide Content during Germination of Seeds of Cicer arietinum L [J]. Journal of Experimental Botany,1979,30(6):1163-1170.
    Nikolaeva M. Factors controlling the seed dormancy pattern [J]. The physiology and biochemistry of seed dormancy and germination,1977,51-74.
    Nishimura N, Yoshida T, Kitahata N, et al. ABA-Hypersensitive Germinationl encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed [J]. The Plant Journal,2007,50(6):935-949.
    Nishimura N, Hitomi K, Arvai A S, et al. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1 [J]. Science,2009,326(5958):1373-1379.
    Noda K, Matsuura T, Maekawa M, et al. Chromosomes responsible for sensitivity of embryo to abscisic acid and dormancy in wheat [J]. Euphytica,2002,123(2):203-209.
    Nonogaki H. Seed germination(?)athe biochemical and molecular mechanisms [J]. Breeding science, 2006,56(2):93-105.
    Nyachiro J M, Clarke F R, DePauw R M, et al. The effects of cis-trans ABA on embryo germination and seed dormancy in wheat [J]. Euphytica,2002,126(1):129-133.
    Oberthur L, Blake T K, Dyer W E, et al. Genetic analysis of seed dormancy in barley (Hordeum vulgare L.) [J]. J. Quant. Trait Loci,1995, Available on line at: http://probe.nalusda.gov.8000/otherdocs/jqtl/jqtl1995-05/dormancy.html.
    Ogawa M, Hanada A, Yamauchi Y, et al. Gibberellin biosynthesis and response during Arabidopsis seed germination [J]. Plant Cell,2003,15(7):1591-1604.
    Oh E, Yamaguchi S, Hu J, et al. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds [J]. The Plant Cell,2007,19(4):1192-1208.
    Okamoto M, Kuwahara A, Seo M, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8'-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis [J]. Plant Physiology,2006,141(1):97-107.
    Parcy F, Valon C, Kohara A, et al. The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development [J]. The Plant Cell,1997,9(8):1265-1277.
    Parcy F, Valon C, Raynal M, et al. Regulation of gene expression programs during Arabidopsis seed development:roles of the ABI3 locus and of endogenous abscisic acid [J]. Plant Cell,1994, 6(11):1567-1582.
    Park G G, Park J J, Yoon J, et al. A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSGl), controls seed germination and stress responses in rice [J]. Plant Molecular Biology,2010:1-12.
    Penfield S, Gilday A D, Halliday K J, et al. DELLA-mediated cotyledon expansion breaks coat-imposed seed dormancy [J]. Current biology,2006a,16(23):2366-2370.
    Penfield S, Li Y, Gilday A D, et al. Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm [J]. Plant Cell,2006b, 18(8):1887-1899.
    Perata P, Pozuetaromero J, Akazawa T, et al. Effect of Anoxia on Starch Breakdown in Rice and Wheat Seeds [J]. Planta,1992,188(4):611-618.
    Petruzzelli L, Sturaro M, Mainieri D, et al. Calcium requirement for ethylene-dependent responses involving 1-aminocyclopropane-l-carboxylic acid oxidase in radicle tissues of germinated pea seeds [J]. Plant, Cell & Environment,2003,26(5):661-671.
    Piskurewicz U, Tureckova V, Lacombe E, et al. Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity [J]. EMBO J,2009,28(15): 2259-2271.
    Piskurewicz U, Jikumaru Y, Kinoshita N, et al. The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity [J]. Plant Cell,2008,20(10):2729-2745.
    Prada D, Ullrich S, Molina-Cano J, et al. Genetic control of dormancy in a Triumph/Morex cross in barley [J]. Theoretical and Applied Genetics,2004,109(1):62-70.
    Ramaih S, Paulsen G M, Guedira M. Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat [J]. Functional plant biology,2003,30(9):939-945.
    Rathi S, Baruah A, Chowdhury R, et al. QTL analysis of seed dormancy in indigenous rice of Assam, India [J]. Cereal Research Communications,2011,39(1):137-146.
    Reddy L V, Metzger R J, Ching T M. Effect of Temperature on Seed Dormancy of Wheat [J]. Crop Science,1985,25(3):455-458.
    Ren C W, Kermode A R. Analyses to determine the role of the megagametophyte and other seed tissues in dormancy maintenance of yellow cedar (Chamaecyparis nootkatensis) seeds: morphological, cellular and physiological changes following moist chilling and during germination [J]. Journal of Experimental Botany,1999,50(337):1403-1419.
    Richards D E, King K E, Ait-ali T, et al. How gibberellin regulates plant growth and development:a molecular genetic analysis of gibberellin signaling [J]. Annual Review of Plant Biology,2001, 52(1):67-88.
    Rikiishi K, Maekawa M. Characterization of a novel wheat(Triticum aestivum L.) mutant with reduced seed dormancy [J]. Journal of Cereal Science,2010,51(3):292-298.
    Roberts E H. Temperature and seed germination [J]. Symp Soc Exp Biol,1988,42:109-132.
    Roberts E H. Dormancy in Rice Seed II:The influence of covering structures [J]. Journal of Experimental Botany,1961,12(3):430-445.
    Rohde A, De Rycke R, Beeckman T, et al. ABI3 affects plastid differentiation in dark-grown Arabidopsis seedlings [J]. The Plant Cell,2000,12(1):35-52.
    Romagosa I, Prada D, Moralejo M, et al. Dormancy, ABA content and sensitivity of a barley mutant to ABA application during seed development and after ripening [J]. Journal of experimental botany,2001,52(360):1499-1506.
    Rousselin P, Kraepiel Y, Maldiney R, et al. Characterization of three hormone mutants of Nicotiana plumbaginifolia:evidence for a common ABA deficiency [J]. Theoretical and Applied Genetics, 1992,85(2):213-221.
    Russell L, Larner V, Kurup S, et al. The Arabidopsis COMATOSE locus regulates germination potential [J]. Development, 2000,127(17):3759-3767.
    Saini H S, Consolacion E D, Bassi P K, et al. Control processes in the induction and relief of thermoinhibition of lettuce seed germination:actions of phytochrome and endogenous ethylene [J]. Plant Physiology,1989,90(1):311-315.
    Salon C, Raymond P, Pradet A. Quantification of carbon fluxes through the tricarboxylic acid cycle in early germinating lettuce embryos [J]. Journal of Biological Chemistry,1988,263(25): 12278-12287.
    Sanguinetti C, Dias N E, Simpson A. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels [J]. Biotechniques,1994,17(5):914-921.
    Sawhney R, Naylor J M. Dormancy Studies in Seed of Avena-Fatua.12. Influence of Temperature on Germination Behavior of Non-Dormant Families [J]. Canadian Journal of Botany-Revue Canadienne De Botanique,1980,58(5):578-581.
    Schwartz S H, Tan B C, Gage D A, et al. Specific oxidative cleavage of carotenoids by VP14 of maize [J]. Science,1997,276(5320):1872-1874.
    Schwechheimer C, Bevan M. The regulation of transcription factor activity in plants [J]. Trends in Plant Science,1998,3(10):378-383.
    Schweighofer A, Hirt H, Meskiene I. Plant PP2C phosphatases:emerging functions in stress signaling [J]. Trends in Plant Science,2004,9(5):236-243.
    Seo M, Hanada A, Kuwahara A, et al. Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism [J]. The Plant Journal,2006,48(3):354-366.
    Seshu D, Sorrells M. Genetic studies on seed dormancy in rice [J]. Rice Genetics. IRRI, Philippines, 1986:369-382.
    Shinomura T, Nagatani A, Chory J, et al. The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A [J]. Plant Physiology,1994,104(2):363-371.
    Shinomura T, Nagatani A, Hanzawa H, et al. Action spectra for phytochrome A-and B-specific photoinduction of seed germination in Arabidopsis thaliana [J]. Proc Natl Acad Sci USA,1996, 93(15):8129-8133.
    Shomura A, Izawa T, Ebana K, et al. Deletion in a gene associated with grain size increased yields during rice domestication [J]. Nature Genetics,2008,40(8):1023-1028.
    Smalle J, Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway [J]. Annu. Rev. Plant Biol., 2004,55:555-590.
    Soderman E M, Brocard I M, Lynch T J, et al. Regulation and function of the Arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks [J]. Plant physiology,2000,124(4):1752-1765.
    Steber C M, Cooney S E, McCourt P. Isolation of the GA-response mutant sly1 as a suppressor of ABI1-1 in Arabidopsis thaliana [J]. Genetics,1998,149(2):509-521.
    Stepanova A N, Alonso J M. Ethylene signaling and response:where different regulatory modules meet [J]. Current Opinion in Plant Biology,2009,12(5):548-555.
    Sugimoto K, Takeuchi Y, Ebana K, et al. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice [J]. Proceedings of the National Academy of Sciences,2010, 107(13):5792-5797.
    Sun T, Goodman H M, Ausubel F M. Cloning the Arabidopsis GA1 locus by genomic subtraction [J]. The Plant Cell,1992,4(2):119-128.
    Takahashi N. Inheritance of seed germination and dormancy [J]. Science of the Rice Plant:Genetics. Food and Agriculture. Policy Research Center, Tokyo,1997:348-359.
    Takahashi N, OKA H. A preliminary note on moist storage of dormant wild rice seeds [J]. Ann. Rep. National Institute of Genetics,1957,8:42-43.
    Takahashi N, Miyoshi K. Inhibitory Effects of Oxygen on Seed-Germination as a Specific Trait of Japonica Rice, Oryza Sativa L [J]. Japanese Journal of Breeding,1985,35(4):383-389.
    Takeuchi Y, Lin S, Sasaki T, et al. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice [J]. Theoretical and Applied Genetics,2003,107(7):1174-1180.
    Takeuchi Y, Omigawa Y, Ogasawara M, et al. Effects of Brassinosteroids on Conditioning and Germination of Clover Broomrape (Orobanche Minor) Seeds [J]. Plant Growth Regulation, 1995,16(2):153-160.
    Tamura N, Yoshida T, Tanaka A, et al. Isolation and characterization of high temperature-resistant germination mutants of Arabidopsis thaliana [J]. Plant and cell physiology,2006,47(8): 1081-1094.
    Tan B C, Joseph L M, Deng W T, et al. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family [J]. The Plant Journal,2003,35(1):44-56.
    Teale W D. Paponov I A. Palme K. Auxin in action:signalling, transport and the control of plant growth and development [J]. Nature Reviews Molecular Cell Biology,2006,7(11):847-859.
    Temnykh S, Park W D. Ayres N, et al. Mapping and genome organization of microsatellite sequences in rice(Oryza sativa L.) [J]. TAG Theoretical and Applied Genetics,2000,100(5):697-712.
    Thompson A J, Jackson A C, Parker R A, et al. Abscisic acid biosynthesis in tomato:regulation of zeaxanthin epoxidase and 9-cis-epoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid [J]. Plant Molecular Biology,2000,42(6):833-845.
    Tsuji H. Respiratory activity in rice seedlings germinated under strictly anaerobic conditions [J]. Journal of Plant Research,1972,85(3):207-218.
    Ullrich SE, Hayes PM, Dyer WE, Blake TK, Clancy JA. Quantitative trait locus analysis of seed dormancy in "Steptoe" barley. In:Walker-Simmons MK, Ried JL (eds) Pre-harvest sprouting in cereals 1992. Am Assoc Cereal Chem, St. Paul, Minn,USA,1993,136-145
    Van Der Schaar W, Alonso-Blanco C, Leon-Kloosterziel K M, et al. QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping [J]. Heredity,1997,79: 190-200.
    Vardhini B V, Rao S S R. Effect of brassinosteroids on the seed germination and seedling growth of tomato(Lycopersicon escultentum Mill.) [J]. Journal of Plant Biology,2001,27:303-305.
    Visser T. (1956) The role of seed coats and temperature in after-ripening, germination and respiration of apple seeds. Proc K Ned Akad Wet C,1956,211-222.
    Vleeshouwers L M, Bouwmeester H J. A simulation model for seasonal changes in dormancy and germination of weed seeds [J]. Seed Science Research,2001,11(1):77-92.
    Walker-Simmons M. ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars [J]. Plant Physiology,1987,84(1):61-66.
    Wan J, Wang Y, Ikehashi C. Quantitative trait loci associated with seed dormancy in rice [J]. Crop Science,2005,45(2):712-716.
    Wan J, Nakazaki T, Kawaura K, et al. Identification of marker loci for seed dormancy in rice(Oryza saliva L.) [J]. Crop science,1997,37(6):1759-1763
    Wan J, Jiang L, Tang J, et al. Genetic dissection of the seed dormancy trait in cultivated rice (Oryza sativa L.) [J]. Plant Science,2006,170(4):786-792.
    Wang F, Zhu D, Huang X, et al. Biochemical insights on degradation of Arabidopsis DELLA proteins gained from a cell-free assay system [J]. The Plant Cell,2009,21(8):2378-2390.
    Wang S, Basten C, Zeng Z. (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC.
    White C N, Rivin C J. Gibberellins and seed development in maize. Ⅱ. Gibberellin synthesis inhibition enhances abscisic acid signaling in cultured embryos [J]. Plant physiology,2000, 122(4):1089-1098.
    White C N, Proebsting W M, Hedden P. et al. Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways [J]. Plant physiology,2000,122(4):1081-1088.
    Xie K, Jiang L, Lu B, et al. Identification of QTLs for seed dormancy in rice (Oryza sativa L.) [J]. Plant breeding,2010 (online).
    Yan X F, Cao M. Effects of Light Treatment on the Germination of Pometia tomentosa (Sapindaceae) Seeds [J]. Acta Botanica Yunnanica,2008,30(2):183-189.
    Xiong L, Zhu J K. Regulation of abscisic acid biosynthesis [J]. Plant physiology,2003,133(1): 29-36.
    Xiong L, Ishitani M, Lee H, et al. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress-and osmotic stress-responsive gene expression [J]. The Plant Cell Online,2001,13(9):2063-2083.
    Xue W, Xing Y, Weng X, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice [J]. Nature Genetics,2008,40(6):761-767.
    Yamaguchi S, Kamiya Y, Nambara E. Regulation of ABA and GA levels during seed development and germination in Arabidopsis [M],2007.
    Yamaguchi S, Smith M W, Brown R G S, et al. Phytochrome regulation and differential expression of gibberellin 3 beta-hydroxylase genes in germinating Arabidopsis seeds [J]. Plant Cell,1998, 10(12):2115-2126.
    Yamauchi Y, Ogawa M, Kuwahara A, et al. Activation of Gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds [J]. Plant Cell, 2004,16(2):367-378.
    Ye H, Foley M E, Gu X Y. New seed dormancy loci detected from weedy rice-derived advanced populations with major QTL alleles removed from the background [J]. Plant Science, 2010(online).
    Yogeesha H S, Upreti K K, Padmini K, et al. Mechanism of seed dormancy in eggplant (Solanum melongena L.) [J]. Seed Science and Technology,2006,34(2):319-325.
    Zentella R, Zhang Z L, Park M, et al. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis [J]. The Plant Cell Online,2007,19(10):3037-3057.
    Zhang X, Garreton V, Chua N H. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation [J]. Genes & development,2005,19(13):1532-1543.
    Zhang X Q, Li C, Tay A, et al. A new PCR-based marker on chromosome 4AL for resistance to pre-harvest sprouting in wheat (Triticum aestivum L.) [J]. Mol Breeding,2008,22(2):227-236.
    中山包.发芽生理学[M].马云彬[译].农业出版社,1988:157-171.
    王松凤,贾育红,江玲等.控制水稻种子休眠和抽穗期的数量基因位点[J].南京农业大学学报,2006,29(1):1-6.
    王爱国,关云凌,刘淑娴.氧和二氧化碳对水稻萌发的影响[J].植物生理学通讯,1981,(2):20-24.
    甘阳英,李绍华,宋松泉等.不同种源的葡萄种子休眠及其解除的研究[J].生物多样性,2008,16(6):570-577.
    何保良,王林辉,胡英等.打破紫云英种子休眠方法初探[J].作物研究,2007,21(2):126-127.
    周元.滇青冈种子的萌发[J].植物生理学通讯,2003,39(4):325-326.
    胡小文,武艳培,王彦荣等.豆科种子休眠破除方法初探[J].西北植物学报,2009,29(3):568-573.
    唐九友,江玲,王春明等.水稻种子休眠性QTL定位及其对干热处理的响应[J].中国农业科学,2004,37(12):1791-1796.
    徐秀梅,张新华,王汉杰.Co60-γ射线辐照对马蔺种子萌发的影响[J].南京林业大学学报(自然科学版),2003,27(1):55-58.
    徐盛春,沈晓贤,王世恒等.丝瓜种子破除休眠的研究[J].种子,2006,25(1):41-42.
    曹雅君,江玲,王春明等.利用重组自交系群体检测水稻种子休眠性数量性状位点[J].南京农业大学学报,2003,26(3):110-112.
    熊丹,陈发菊,梁宏伟等.珍稀濒危植物连香树种子萌发的研究[J].福建林业科技,2007,34(1):36-39.
    刘杰,刘公社,齐冬梅等.聚乙二醇处理对羊草种子萌发及活性氧代谢的影响[J].草业学报,2002,11(1):59-64.
    刘丽莉,冯涛,严明理等.几种破除美洲商陆种子休眠的方法[J].植物生理学通讯,2007,43(4):795-796.
    孙婷,刘鹏,徐根娣.栝楼种子休眠特性分析[J].中国农业科学,2008,41(12):4273-7280.
    张文.外源一氧化氮促进小麦种子萌发及其信号作用机制研究[D].南京:南京农业大学,2005.
    张晓洁,刘勤红,隋洁等.棉花种子休眠的影响因素分析[J].中国农学通报,2009,25(8):188-190.
    杨浚,陆建飞,俞炳杲.水稻穗发芽与籽粒内可溶性糖和α-淀粉酶活性的品种差异[J].南京农业大学学报,1991,14(1):17-21.
    许桂芳,刘明久,席世丽等.破除红蓼种子休眠研究初报[J].种子,2005,24(1):24-25.
    邓志军,宋松泉.ABA对黑黄檀种子萌发的抑制作用以及其他植物激素对ABA的拮抗作用[J].云南植物研究,2008,30(04):440-446.
    郑健,郭守华,宋瑜等.臭椿种子萌发最适条件研究[J].西北植物学报,2007,27(5):859-863.
    韩建国.实用牧草种子学[M].北京:中国农业大学出版社,1997.