基于高光谱图像技术的设施栽培作物营养元素亏缺诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代农业的快速发展,我国设施农业种植面积已达到330万公顷,居世界第一。由于设施栽培作物生长周期短、产出量大、需肥量多,从而要求土壤肥力供给具有高消耗、高补充的特点,生产中设施栽培作物很容易出现氮、磷、钾等营养元素亏缺状况,严重影响了作物的产量和经济效益。快速、准确的诊断作物营养元素亏缺对提高作物产量、增加农民收入、发展现代农业具有极其重要的意义。为了克服现有设施栽培作物营养元素亏缺诊断方法的不足,本研究尝试采用高光谱图像技术代替叶片光谱分析技术和计算机图像技术来表征营养元素亏缺引起的作物内部组分信息和外部形态特征,期望得到一种设施栽培作物营养元素亏缺诊断新方法。
     本文的主要研究工作如下:
     (1)营养元素亏缺样本培育。在温室大棚中以无土栽培方式培育了氮(N)、磷(P)、钾(K)、镁(Mg)元素亏缺及对照组黄瓜植株;分别采用凯氏定氮法、分光光度计法、原子吸收法分析了缺N组、缺P组、缺K组、缺Mg组和对照组黄瓜植株中N、P、K和Mg元素含量的分布规律。结果表明:N、P、K和Mg元素含量在黄瓜植株新叶、中叶、老叶中呈递减趋势;与对照组叶片相比较,缺N组、缺P组、缺K组和缺Mg组植株老叶的N、P、K、Mg元素含量下降明显,说明缺N组、缺P组、缺K组和缺Mg组中的黄瓜植株进入了各自对应的营养元素亏缺状态,营养元素亏缺植株的成功培育为后续研究奠定了坚实的基础。
     (2)样本缺素症状及其分布规律初步分析。采集缺N组、缺P组、缺K组、缺Mg组和对照组黄瓜植株每个节点上的黄瓜叶片作为分析样本,采用高效液相色谱技术(HPLC)检测样本的叶绿素、叶黄素和β胡萝卜素含量,采用彩色相机拍摄样本的图像信息,通过分析N、P、K和Mg元素亏缺样本的色素含量变化和外观特征,研究了不同营养元素亏缺症状及其在作物植株及作物叶片中的分布规律。结果表明:N元素亏缺植株的老叶叶绿素含量降低,叶面整体退绿;P元素亏缺植株老叶叶绿素没有明显变化,但是在老叶叶脉附近出现水渍斑;K元素亏缺植株老叶叶缘处的叶绿素含量降低;Mg元素亏缺植株老叶叶脉间的叶绿素含量降低;缺素症状及其分布规律的分析结果为解决如何采集具有代表性的缺素样本、采用什么技术在样本的哪些区域提取何种缺素特征等元素亏缺诊断中的关键问题指明了方向。
     (3)叶绿素含量叶面分布图检测。提取120片黄瓜叶片的可见-近红外高光谱图像光谱信息,采用区间偏最小二乘法(iPLS)、联合区间偏最小二乘法(SiPLS)、遗传算法-区间偏最小二乘法(GA-iPLS)、遗传算法-模拟退火算法-区间偏最小二乘法(GA-SA-iPLS)优选了与叶绿素含量相关的特征区间(分别为第10、11、13、17、18区间),利用主成分分析(PCA)和独立分量分析(ICA)提取了入选区间的光谱特征,并将光谱特征与HPLC检测得到的叶绿素含量值进行关联,建立了叶片高光谱图像信号与叶绿素含量之间的对应关系(Rp=0.8769, RMSEP=2.42mg/g);依次将高光谱图像中每个像素点的光谱代入叶绿素含量回归模型中计算出每个像素点对应的叶绿素含量值,得到了叶片叶绿素含量的叶面分布图。该叶绿素含量分布图解决了化学分析方法、光谱分析法难以检测整个叶面上叶绿素含量分布的难题。
     (4)基于叶绿素含量叶面分布的N、K和Mg元素亏缺诊断。检测了对照组叶片、N元素亏缺叶片、K元素亏缺叶片和Mg元素亏缺叶片的叶绿素含量叶面分布图;根据叶绿素含量叶面分布规律提出了N、K和Mg元素亏缺诊断新方法,对N、K和Mg元素亏缺诊断率分别为97%、90%、90%。新方法克服了化学诊断方法速度慢、破坏检测对象的缺点,弥补了光谱诊断法重现性差、准确度低及信息获取不全面的不足。
     (5)基于近红外高光谱图像的P元素亏缺诊断。采集了对照组叶片、P元素亏缺叶片的近红外高光谱图像,分别采用PCA和ICA提取了近红外高光谱图像的特征图像;结果表明第1独立分量图像能够有效的表征P元素亏缺引起的缺素症状,同时近红外高光谱图像结合ICA能够提取肉眼不可见的轻微P元素亏缺症状。采用该方法对30片P元素亏缺叶片和30片对照组叶片进行了诊断,诊断率为98%。
     (6)设施栽培作物营养元素亏缺的数据库软件开发。该软件能够详细记录作物的种类、品种、元素亏缺种类、元素亏缺症状图片及光谱等信息。为判别作物缺素情况的数字化信息描述做了开创性的工作。
     本研究提供了新的设施栽培作物营养元素亏缺无损诊断方法,研究成果对提高我国设施栽培技术水平有着积极的意义。
With the rapid development of modern agriculture, China has the world's largest area of facility agriculture, with a total of 3.3 million ha. As the establishment planting crop's short growth cycle, large yield and fertilizer requirements, leads to high-cost and fast-replenish in soil fertility. This used to cause nitrogen (N), phosphorus (P) and magnesium (K) deficiencies in the growth of cultivated crops, affect the yield and economic profits. Fast and accurate diagnostics of nutrient deficiency in cultivated crops has very important significance of increasing yield and the income of framers, the development of modern agriculture. In order to overcome the disadvantages of existing methods for diagnostics of nutrient deficiency in cultivated crops, hyper-spectral imaging technology was used to characterize physiological and morphological symptoms resulting from nutrient deficiency. We hope to obtain a new method for diagnostics of nutrient deficiency in cultivated crops. The main research works in this paper has been summed as following:
     (1) Cultivation of nutrient deficient samples. N, P, K, Mg deficient mini-cucumber plants and control plants were grown under non-soil conditions. Kjeldahl method, spectrophotometer method and atomic absorption spectrometry were used to determine N, P, K and Mg concentrations of mini-cucumber plants in N, P, K, Mg deficient and control groups. Results showed that:N, P, K and Mg concentrations for new, middle and old leaves were in a decreasing order. In comparison with N, P, K and Mg concentration of older leaves in control group, N, P, K and Mg concentration of older leaves in nutrient deficient groups decline markedly. This indicated plants in N, P, K and Mg deficient groups entered into nutrient deficient states. The successful cultivation of nutrient deficient samples laid a good foundation for further analysis.
     (2) Analysis of nutrient deficient symptoms and its distribution. Leaves at every single node in plant of N, P, K, Mg deficient and control groups were used as analytical samples. Chlorophyll, lutein and carotene concentrations of leaf sample were determined by high performance liquid chromatography (HPLC); image information was recorded by a color camera, then the nutrient deficient symptoms and its distribution in whole plant and leaf were analyzed. Results showed that:N deficiency caused to chlorophyll decreased in the whole older leaves, P deficiency did not change the leaf chlorophyll content, but resulting in the occurrence of small chlorotic spots, K deficiency caused to chlorophyll decreased in edge of older leaves, Mg deficiency caused to chlorophyll decreased between vein of older leaves. The analytical result figured out how to collect analytical sample, which technology to be used, and what kind of deficient symptoms to be extracted for further analysis.
     (3) Determination of chlorophyll concentration distribution map on mini-cucumber leaf. Spectra of 120 cucumber hyper-spectral images were extracted; interval partial least-squares (iPLS), synergy interval partial least-squares (siPLS), genetic algorithm interval partial least-squares (GA-iPLS) and genetic algorithm- simulated annealing algorithm-interval partial least-squares (GA-SA-iPLS) were used to select the efficient wavelength regions for chlorophyll concentrations (No.10,11,13,17,18), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) were used to extract information from the selected wavelength regions, then the optimal chlorophyll calibration model was obtained (Rp=0.8769, RMSEP=2.42mg/g), spectral of every pixel in hyper-spectral images were computed and chlorophyll content of every pixel was obtained according to the calibration model. Finally, the chlorophyll distribution map was estimated. In comparison with chemical and spectral methods, the hyper-spectral technology could determine the chlorophyll concentration in the whole leaf.
     (4) Diagnostics of N, K and Mg deficiencies base on chlorophyll concentration distribution map. Chlorophyll concentration distribution map of N, K, Mg deficient and control leaves were determined. According to their chlorophyll concentration distribution maps, new diagnostics methods for N, K, and Mg deficiencies were proposed, the diagnostic rate for N, K, and Mg deficiencies were 97%,90% and 90%; respectively. The hyper-spectral diagnostic method overcomes the disadvantages of chemical and spectral diagnostic methods.
     (5) Diagnostics of P deficiency base on near infrared hyper-spectral image. Leave in P deficient and control group were used to collect near infrared hyper-spectral image; PCA and ICA were used to extract characteristic images. Results showed that the first ICA image could be used to extract P deficient symptoms; furthermore, this method could diagnose P deficient symptoms prior to the occurrence of responses to P deficiency that can be observed visually.
     (6) Development of nutrient deficient database soft for cultivated crops. This soft could record the kind of crop, varieties, kind of deficient nutrient, deficient image and spectra. It could be used for digital description of symptoms caused by nutrient deficiencies.
     In this study, new methods for non-destrctive diagnostics of nutrient elements deficiencies are proposed, and there is also of great significant in improve the level of facility agriculture in China.
引文
[1]廖红,严小龙.高级植物营养学.第一版.北京:科学出版社,2003
    [2]尚书旗,董佑福,史岩.设施栽培工程技术.第一版.北京:中国农业出版社,1999
    [3]谢小玉.设施农艺学.第一版.重庆:西南师范大学出版社,2010
    [4]徐磊.我国蔬菜设施栽培发展现状、问题及对策[J].长江蔬菜.2009(17):1-4
    [5]吴存瑞,奚佳有,邹吉兰.国外设施农业发展趋势[J].农业科技与装备.2010(06):122-123
    [6]柳永辉.农作物营养失调的形态诊断[J].河南农业.2007(17):40
    [7]丘星初.柑桔营养的化学诊断方法——全量氮磷钾钙镁的速测[J].中国柑桔.1981(01):17-23
    [8]冯茂松,张健,钟宇.四川巨桉人工林大中量营养元素DRIS诊断[J].四川农业大学学报.2009(01):55-59
    [9]佘纲哲.作物营养诊断新法——酶学诊断法[J].河南农林科技.1980(08):40
    [10]范有庭,茅国夫.花卉营养缺乏症的形态诊断及防治措施[J].农业科技通讯.2005(04):23
    [11]王树文,姜士贵.小麦缺素营养形态诊断要点[J].安徽农业.2000(02):23
    [12]徐秀银.蚕豆营养生长期缺钾形态诊断初报[J].浙江农业科学2010(02):265-267
    [13]王振宇.浅谈苹果树的形态营养诊断分析[J].现代农村科技.2009(07):23
    [14]王振学,付士同.棚室黄瓜生理性病害外部形态诊断及综合防治技术措施[J].农业工程技术(温室园艺).2011(12):46-47
    [15]张丽霞,彭建明,马洁.植物营养缺素研究进展[J].中国农学通报.2010(08):157-163
    [16]刘芷宇.植物营养诊断的回顾与展望[J].土壤.1990(04):173-176
    [17]张占兴,白淑芳,王治荣.DRIS法在小麦施肥诊断中的运用研究[J].河南农业科学.1990(09):5-7
    [18]李旭辉,李瑛,刘军,张朝阳.DRIS在关中地区冬小麦施肥中的应用研究[J].植物营养与肥料学报.2005(02):174-178
    [19]王春枝,李东晶,齐宝利,刘凤芹,韩智,王学密,李永权.基于DRIS法的南果梨“红叶病”果园营养状况诊断[J].中国农学通报.2008(05):261-264
    [20]曹秀华,李树真,王健.玉米缺锌酶学诊断的初步探讨[J].西北农林科技大学学报(自然科学版).1983(02):69-73
    [21]Shibayama M., Morinaga S., Inoue Y. Detection of water status in rice paddies using high resolution field spectra of visible to mid-infrared ranges.1993:519-521.
    [22]Tarpley L., Reddy K. R., Sassenrath-Cole G. F. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration[J]. Crop Science. 2002(6):1814-1819
    [23]YUTAKA SASAKI, TSUGUO OKAMOTO, KENJI IMO, TOORU TORII. Generating of Distinction Parameter for Automatic Diagnosis of Plant Disease by GP[J]. Journal of the Japanese Society of Agricultural Machinery.1999(6):73-80
    [24]Gitelson Anatoly A., Gritz Yuri, Merzlyak Mark N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal Of Plant Physiology. 2003(3):271-282
    [25]Sims Daniel A., Gamon John A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing Of Environment.2002(2-3):337-354
    [26]Netto Alena Torres, Campostrini Eliemar, Oliveira Jurandi Gon鏰lves De, Bressan-Smith Ricardo Enrique. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves[J]. Scientia Horticulturae. 2005(2):199-209
    [27]Chang Scott X., Robison Daniel J. Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter [J]. Forest Ecology And Management.2003(3):331-338
    [28]Li Jin Wen, Yang Jing Ping, Fei Pin Pin, Song Jun Lan, Li Dong Sheng, Ge Chang Shui, Chen Wen Yue. Responses of rice leaf thickness, SPAD readings and chlorophyll a/b ratios to different nitrogen supply rates in paddy field[J]. Field Crops Research. 2009(3):426-432
    [29]McMurtrey Ⅲ J. E., Chappelle E. W., Kim M. S., Meisinger J. J., Corp L. A. Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements[J]. Remote Sensing of EnvironmentFluorescence Measurements of Vegetation.1994(1):36-44
    [30]SASAKI YUTAKA, OKAMOTO TSUGUO, IMO KENJI, TORII TOORU. Automatic Diagnosis of Plant Disease. Recognition between Healthy and Diseased Leaf[J]. Journal of the Japanese Society of Agricultural Machinery.1999(2):119-126
    [31]Graeff Simone, Claupein Wilhelm. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements[J]. European Journal Of Agronomy. 2003(4):611-618
    [32]Marian Wiwart, Gabriel Fordonski, Krystyna Zuk-Golaszewska, Elzbieta Suchowilska. Early diagnostics of macronutrient deficiencies in three legume species by color image analysis[J]. Computers And Electronics In Agriculture.2009(1):125-132
    [33]Peterson David L., Aber John D., Matson Pamela A., Card Don H., Swanberg Nancy, Wessman Carol, Spanner Michael. Remote sensing of forest canopy and leaf biochemical contents[J]. Remote Sensing of EnvironmentImaging Spectrometry. 1988(1):85-108
    [34]Tomer M. D., Burkart M. R. Long-term effects of nitrogen fertilizer use on ground water nitrate in two small watersheds[J]. Journal Of Environmental Quality. 2003(6):2158-2171
    [35]Goel P. K., Prasher S. O., Landry J. A., Patel R. M., Bonnell R. B., Viau A. A., Miller J. R. Potential of airborne hyperspectral remote sensing to detect nitrogen deficiency and weed infestation in corn[J]. Computers And Electronics In Agriculture. 2003(2):99-124
    [36]Serrano Lydia, Penuelas Josep, Ustin Susan L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data:Decomposing biochemical from structural signals[J]. Remote Sensing Of Environment.2002(2-3):355-364
    [37]王磊,白由路,杨俐苹.春玉米磷素营养的光谱响应及诊断[J].植物营养与肥料学报.2007(05):802-808
    [38]王磊,白由路,卢艳丽,王贺,杨俐苹.基于光谱分析的玉米氮素营养诊断[J].植物营养与肥料学报.2011(02):333-340
    [39]王磊,白由路.基于光谱理论的作物营养诊断研究进展[J].植物营养与肥料学报.2006(06):902-912
    [40]王磊,白由路,卢艳丽,王贺.不同形式的光谱参量对春玉米氮素营养诊断的 比较[J].农业工程学报.2010(02):218-223
    [41]梁惠平,刘湘南.玉米氮营养指数的高光谱计算模型[J].农业工程学报.2010(01):250-255
    [42]张金恒,王珂,王人潮,郑洪福,周斌.水稻叶片反射光谱诊断氮素营养敏感波段的研究[J].浙江大学学报(农业与生命科学版).2004(03):106-112
    [43]张金恒.基于连续统去除法的水稻氮素营养光谱诊断[J].植物生态学报.2006(01):78-82
    [44]贺冬仙,胡娟秀.基于叶片光谱透过特性的植物氮素测定[J].农业工程学报.2011(04):214-218
    [45]李晓利,刘明博,楼佳,唐延林.水稻叶片氮素营养光谱诊断模型研究(英文)[J]. Agricultural Science & Technology.2011(02):168-170
    [46]孙钦平,贾良良,芮玉奎,陈新平,张福锁.应用可见光光谱进行夏玉米氮营养诊断[J].光谱学与光谱分析.2009(02):432-435
    [47]周启发,王人潮.水稻氮素营养水平与光谱特性的关系[J].浙江农业大学学报.1993(S 1):42-47
    [48]田永超,朱艳,姚霞,刘小军,曹卫星.基于光谱信息的作物氮素营养无损监测技术[J].生态学杂志.2007(09):1454-1463
    [49]吴雪梅,毛罕平,李天强.基于小波变换的番茄缺素识别研究[J].计算机应用与软件.2008(07):28-30
    [50]吴雪梅,毛罕平.计算机视觉描述缺素番茄叶片颜色变化的研究[J].农机化研究.2004(05):212-214
    [51]徐贵力,毛罕平,李萍萍.缺素叶片彩色图像颜色特征提取的研究[J].农业工程学报.2002(04):150-154
    [52]徐贵力,毛罕平,李萍萍.差分百分率直方图法提取缺素叶片纹理特征[J].农业机械学报.2003(02):76-79
    [53]毛罕平,徐贵力,李萍萍.基于计算机视觉的番茄营养元素亏缺的识别[J].农业机械学报.2003(02):73-75
    [54]毛罕平,徐贵力,李萍萍.基于遗传算法的蔬菜缺素叶片图像特征选择研究[J].江苏大学学报(自然科学版).2003(02):1-5
    [55]毛罕平,徐贵力,李萍萍.番茄缺素叶片的图像特征提取和优化选择研究[J]. 农业工程学报.2003(02):133-136
    [56]毛罕平,吴雪梅,李萍萍.基于计算机视觉的番茄缺素神经网络识别[J].农业工程学报.2005(08):106-109
    [57]祝锦霞,邓劲松,石媛媛,陈祝炉,韩凝,王珂.基于水稻扫描叶片图像特征的氮素营养诊断研究[J].光谱学与光谱分析.2009(08):2171-2175
    [58]王连君,邢宇.数字图像技术在草莓氮素营养诊断中的应用研究[J].华南农业大学学报.2010(02):19-21
    [59]李朝东,崔国贤,谢宁,丁莎莎,陈兵兵,白玉超.应用数字图像技术诊断苎麻氮素营养的研究简报[J].植物营养与肥料学报.2011(03):767-772
    [60]王晓静,张炎,李磐,侯秀玲,冯固.地面数字图像技术在棉花氮素营养诊断中的初步研究[J].棉花学报.2007(02):106-113
    [61]张立周,王殿武,张玉铭,程一松,李红军,胡春胜.数字图像技术在夏玉米氮素营养诊断中的应用[J].中国生态农业学报.2010(06):1340-1344
    [62]李红军,张立周,陈曦鸣,张玉铭,程一松,胡春胜.应用数字图像进行小麦氮素营养诊断中图像分析方法的研究[J].中国生态农业学报.2011(01):155-159
    [63]张立周,侯晓宇,张玉铭,李红军,程一松,胡春胜.数字图像诊断技术在冬小麦氮素营养诊断中的应用[J].中国生态农业学报.2011(05):1168-1174
    [64]杨邦杰,裴志远.农作物长势的定义与遥感监测[J].农业工程学报.1999(03):214-218
    [65]曹卫星,朱艳,田永超,姚霞,刘小军.数字农作技术研究的若干进展与发展方向[J].中国农业科学.2006(02):281-288
    [66]赵春江,郭晓维,张其德,康书江.不同穗型冬小麦叶片荧光诱变及光谱特性[J].中国农业科学.1999(02):45-48
    [67]焦雯珺,闵庆文,林煜,朱清科,张建军.植物氮素营养诊断的进展与展望[J].中国农学通报.2006(12):351-355
    [68]谭昌伟,周清波,齐腊,庄恒扬.水稻氮素营养高光谱遥感诊断模型[J].应用生态学报.2008(06):1261-1268
    [69]贾良良,寿丽娜,李斐,陈新平,张福锁.遥感技术在植物氮营养诊断和推荐施肥中的应用之研究进展[J].中国农学通报.2007(12):396-401
    [70]陈鹏飞,孙九林,王纪华,赵春江.基于遥感的作物氮素营养诊断技术:现状与趋势[J].中国科学:信息科学.2010(S1):21-37
    [71]洪添胜,李震,吴春胤,刘敏娟,乔军.高光谱图像技术在水果品质无损检测中的应用[J].农业工程学报.2007(11):280-285
    [72]Gaston Edurne, Frias Jesus M., Cullen Patrick J., ODonnell Colm P., Gowenb Aoife A. visible-near infrared hyperspectral imaging for the identification and discrimination of brown blotch disease on mushroom (Agaricus bisporus) caps[J]. Journal Of Near Infrared Spectroscopy.2010(5):341-353
    [73]Cen Haiyan, Lu Renfu. Optimization of the hyperspectral imaging-based spatially-resolved system for measuring the optical properties of biological materials[J]. Optics Express.2010(16):17412-17432
    [74]Del Fiore A., Reverberi M., Ricelli A., Pinzari F., Serranti S., Fabbri A. A., Bonifazi G., Fanelli C. Early detection of toxigenic fungi on maize by hyperspectral imaging analysis[J]. International Journal Of Food Microbiology.2010(1):64-71
    [75]Schlerf Martin, Atzberger Clement, Hill Joachim, Buddenbaum Henning, Werner Willy, Schiiler Gebhard. Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy [J]. International Journal of Applied Earth Observation and Geoinformation.2010(1):17-26
    [76]Schlerf Martin, Atzberger Clement. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data[J]. Remote Sensing Of Environment.2006(3):281-294
    [77]Jones Trevor G., Coops Nicholas C., Sharma Tar a. Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada[J]. Remote Sensing Of Environment.2010(12):2841-2852
    [78]Kruse Fred A. Mapping surface mineralogy using imaging spectrometry[J]. GeomorphologyGeospatial Technologies and Geomorphological Mapping Proceedings of the 41st Annual Binghamton Geomorphology Symposium.2012(1):41-56
    [79]Bell Julianne H., Bowen Brenda Beitler, Martini Brigette A. Imaging spectroscopy of jarosite cement in the Jurassic Navajo Sandstone[J]. Remote Sensing Of Environment.2010(10):2259-2270
    [80]Sandidge Juanita C., Holyer Ronald J. Coastal Bathymetry from Hyperspectral Observations of Water Radiance[J]. Remote Sensing Of Environment.1998(3):341-352
    [81]Roberts Dar A., Quattrochi Dale A., Hulley Glynn C., Hook Simon J., Green Robert O. Synergies between VSWIR and TIR data for the urban environment:An evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI) Decadal Survey mission[J]. Remote Sensing of EnvironmentRemote Sensing of Urban Environments.2012(0):83-101
    [82]Xu W., Wooster M. J., Grimmond C. S. B. Modelling of urban sensible heat flux at multiple spatial scales:A demonstration using airborne hyperspectral imagery of Shanghai and a temperature-emissivity separation approach[J]. Remote Sensing Of Environment.2008(9):3493-3510
    [83]Kokaly Raymond F., Rockwell Barnaby W., Haire Sandra L., King Trude V. V. Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing[J]. Remote Sensing Of Environment.2007(3):305-325
    [84]Potter Christopher, Li Shuang, Huang Shengli, Crabtree Robert L. Analysis of sapling density regeneration in Yellowstone National Park with hyperspectral remote sensing data[J]. Remote Sensing Of Environment.2012(0):61-68
    [85]Andrew Margaret E., Ustin Susan L. The role of environmental context in mapping invasive plants with hyperspectral image data[J]. Remote Sensing Of Environment. 2008(12):4301-4317
    [86]Zou Xiao Bo, Zhao Jie Wen, Malcolm Povey J. W., Mel Holmes, Mao Hanpin. Variables selection methods in near-infrared spectroscopy[J]. Analytica Chimica Acta. 2010(1-2):14-32
    [87]安娜,须晖,孙周平,李天来,韩国强.雾培番茄不同营养液配方的生产效果比较[J].沈阳农业大学学报.2006(3):495-497
    [88]Charles R. Caldwell, Steven J. Britz. Effect of supplemental ultraviolet radiation on the carotenoid and chlorophyll composition of green house-grown leaf lettuce (Lactuca sativa L.) cultivars[J]. Journal of Food Composition and Analysis.2006:637-644
    [89]刘艳红,李明,张永梅.两种计算机图像分割技术对比研究[J].山西农业大学学报(自然科学版).2008(02):231-233
    [90]蔡健荣,王建黑,黄星奕,陈全胜.高光谱图像技术检测柑橘果锈[J].光电工程.2009(06):26-30
    [91]陈全胜,张燕华,万新民,蔡健荣,赵杰文.基于高光谱成像技术的猪肉嫩度 检测研究[J].光学学报.2010(09):2602-2607
    [92]石吉勇,邹小波,赵杰文,殷晓平.基于GA-ICA和高光谱图像技术的黄瓜叶叶绿素检测[J].江苏大学学报(自然科学版).2011(02):134-139
    [93]石吉勇,邹小波,赵杰文,殷晓平.高光谱图像技术检测黄瓜叶片的叶绿素叶面分布[J].分析化学.2011(02):243-247
    [94]郭晔任玉林邮春亭逯家辉.近红外漫反射光谱的主成分分析[J].光谱学与光谱分析.1996(06):31-35
    [95]任玉林,张滨,郭晔,任瑞雪.主成分分析——近红外漫反射光谱法对去痛片的非破坏性分析[J].计算机与应用化学.1997(03):191-196
    [96]李彦周,闵顺耕,刘霞.主成分分析在近红外定量分析校正集样本优选中的应用[J].分析化学.2007(09):1331-1334
    [97]晓宇亩心,刘洪.主分量分析和独立分量分析方法的比较研究[J].石油物探.2006(05):441-446
    [98]王刚,胡德文.独立分量分析对相关信号源的盲辨识性能分析[J].计算机工程与应用.2005(04):23-25
    [99]梁端丹,韩政,郝家甲.独立分量分析及其应用研究[J].现代电子技术.2008(03):17-20
    [100]余淑萍,杨铁军.独立分量分析及其应用[J].计算机系统应用.2009(09):156-158
    [101]王怀文.基于独立分量分析的盲分离算法研究[J].现代电子技术.2010(23):88-91
    [102]张军英,刘利平.基于部分独立分量分析的盲源分离[J].西安电子科技大学学报.2004(03):334-337
    [103]Yunpeng Cui, Guijun Hu, Guoying Diao. Mode Group Diversity Multiplexing communication system based on FastICA algorithm[J]. Optical Fiber Technology. 2011(1):31-35
    [104]Immanuel J. Jasper Raj, Prabhu V., Christopheraj V. Jane, Sugumar D., Vanathi P. T. Separation Of Maternal And Fetal ECG Signals From The Mixed Source Signal Using FASTICA[J]. Procedia EngineeringInternational Conference on Communication Technology and System Design 2011.2012(0):356-363
    [105]Min Zhang, Mu Zhu, Wenjie Ma. Implementation of FastICA on DSP for Blind Source Separation[J]. Procedia Engineering2012 International Workshop on Information and Electronics Engineering.2012(0):4228-4233
    [106]Reyhani Nima, Ylipaavalniemi Jarkko, Vigario Ricardo, Oja Erkki. Consistency and asymptotic normality of FastICA and bootstrap FastICA[J]. Signal ProcessingLatent Variable Analysis and Signal Separation.2012(8):1767-1778
    [107]戴荣继,佟斌,黄春,王蕾.HPLC测定饮用水中藻类叶绿素含量[J].北京理工大学学报.2006(01):87-89
    [108]王林,朱惠贤,章新,吴献花,胡秋芬.高效液相色谱法测定螺旋藻中几种色素的研究[J].特产研究.2005(02):57-60
    [109]袁建平,张义明,史贤明,龚贤弟,陈峰.高效液相色谱法测定藻类中的类胡萝卜素和叶绿素[J].色谱.1997(02):133-135
    [110]唐蕾,陈蕴,王武.银杏叶中叶绿素衍生物的反相高效液相色谱分析[J].植物生理学通讯.2006(02):265-267
    [111]宋开山,张柏,王宗明,刘焕军,段洪涛.大豆叶绿素含量高光谱反演模型研究[J].农业工程学报.2006(08):16-21
    [112]汤旭光,宋开山,刘殿伟,王宗明,张柏,杜嘉,曾丽红,姜广甲,王远东.基于可见/近红外反射光谱的大豆叶绿素含量估算方法比较[J].光谱学与光谱分析.2011(02):371-374
    [113]姚建松,杨海清,何勇.基于可见-近红外光谱技术的油菜叶片叶绿素含量无损检测研究[J].浙江大学学报(农业与生命科学版).2009(04):433-438
    [114]蒋焕煜,应义斌.尖椒叶片叶绿素含量的近红外检测分析实验研究[J].光谱学与光谱分析.2007(03):499-502
    [115]易时来,何绍兰,邓烈,谢让金,陈仲新,任建强.温洲蜜柑叶片光谱反射率与叶绿素含量的相关性[J].西南大学学报(自然科学版).2007(03):90-93
    [116]付秋娟,王树声,陈爱国,梁小芳.鲜烟叶中质体色素的近红外分析研究[J].分析科学学报.2007(01):85-87
    [117]宋开山,张柏,王宗明,李方,刘焕军.小波分析在大豆叶绿素含量高光谱反演中的应用[J].中国农学通报.2006(09):101-108
    [118]Song Shalei, Gong Wei, Zhu Bo, Huang Xin. Wavelength selection and spectral discrimination for paddy rice, with laboratory measurements of hyperspectral leaf reflectance[J]. Isprs Journal Of Photogrammetry And Remote Sensing.2011(5):672-682
    [119]陈斌,王豪,林松,赵杰文.基于相关系数法与遗传算法的啤酒酒精度近红外光谱分析[J].农业工程学报.2005(07):99-102
    [120]武晓莉,李艳君,吴铁军.基于选择性模型组合的三维荧光光谱水质分析方法[J].光谱学与光谱分析.2010(04):996-1001
    [121]辛荣,唐延林.紫外光谱法预测烤烟烟叶中的全氮[J].光谱学与光谱分析.2009(05):1367-1370
    [122]申艳,张晓平,梁爱珍,时秀焕,范如芹,杨学明.多元散射校正和逐步回归法建立黑土有机碳近红外光谱定量模型[J].农业系统科学与综合研究.2010(02):174-180
    [123]吴迪,吴洪喜,蔡景波,黄振华,何勇.基于无信息变量消除法和连续投影算法的可见-近红外光谱技术白虾种分类方法研究[J].红外与毫米波学报.2009(06):423-427
    [124]张巧杰,熊鸣,祁鲲.无信息变量消除法在糙米直链淀粉波长选择中的应用[J].农机化研究.2010(11):202-205
    [125]李鹏飞,王加华,曹楠宁,韩东海.BiPLS结合GA优选可见/近红外光谱MLR变量[J].光谱学与光谱分析.2009(10):2637-2641
    [126]邹小波,赵杰文.用遗传算法快速提取近红外光谱特征区域和特征波长[J].光学学报.2007(07):1316-1321
    [127]石吉勇,邹小波,赵杰文,殷晓平.基于GA-ICA和高光谱图像技术的黄瓜叶叶绿素检测[J].江苏大学学报(自然科学版).2011(02):134-139
    [128]邹小波,赵杰文.用遗传算法快速提取近红外光谱特征区域和特征波长[J].光学学报.2007(07):1316-1321
    [129]Zou X. B., Zhao J. W., Huang X. Y., Li Y. X. Use of FT-NIR spectrometry in non-invasive measurements of soluble solid contents (SSC) of 'Fuji' apple based on different PLS models[J]. Chemometrics And Intelligent Laboratory Systems. 2007(1):43-51
    [130]Borin A., Poppi R. J. Application of mid infrared spectroscopy and iPLS for the quantification of contaminants in lubricating oil[J]. Vib. Spectrosc.2005(1):27-32
    [131]N(?)rgaard L., Saudland A., Wagner J., Nielsen J. P., L. Munck S. B. Engelsen. Interval partial least-squares regression (iPLS):a comparative chemometric study with an example from near-infrared spectroscopy[J]. Applied Spectroscopy.2000(3):413-419
    [132]Wu Di, He Yong, Nie Pengcheng, Cao Fang, Bao Yidan. Hybrid variable selection in visible and near-infrared spectral analysis for non-invasive quality determination of grape juice[J]. Analytica Chimica Acta.2010(1-2):229-237
    [133]Wang Xiaofei, Bao Yanfei, Liu Guili, Li Gang, Lin Ling. Study on the Best Analysis Spectral Section of NIR to Detect Alcohol Concentration Based on SiPLS[J]. Procedia Engineering2012 International Workshop on Information and Electronics Engineering.2012(0):2285-2290
    [134]Abrahamsson Christoffer, Johansson Jonas, Sparen Anders, Lindgren Fredrik. Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets[J]. Chemometrics And Intelligent Laboratory Systems. 2003(1-2):3-12
    [135]Tewari Jagdish C., Dixit Vivechana, Cho Byoung-Kwan, Malik Kamal A. Determination of origin and sugars of citrus fruits using genetic algorithm, correspondence analysis and partial least square combined with fiber optic NIR spectroscopy [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2008(3):1119-1127
    [136]Valente Marc, Leardi Riccardo, Self Guy, Luciano Giorgio, Pain Jean Pierre. Multivariate calibration of mango firmness using vis/NIR spectroscopy and acoustic impulse method[J]. Journal Of Food Engineering.2009(1):7-13
    [137]Ying Yibin, Liu Yande. Nondestructive measurement of internal quality in pear using genetic algorithms and FT-NIR spectroscopy [J]. Journal Of Food Engineering. 2008(2):206-213
    [138]Wang Yan, Xiang Bingren. Radial basis function network calibration model for near-infrared spectra in wavelet domain using a genetic algorithm[J]. Analytica Chimica Acta.2007(1):55-65
    [139]Smith Brandye M., Gemperline Paul J. Wavelength selection and optimization of pattern recognition methods using the genetic algorithm[J]. Analytica Chimica Acta. 2000(2):167-177
    [140]Kalivas John H., Roberts Nancy, Sutter Jon M. Global optimization by simulated annealing with wavelength selection for ultraviolet-visible spectrophotometry[J]. Analytical Chemistry.1989(18):2024-2030
    [141]Swierenga H., de Groot P. J., de Weijer A. P., Derksen M. W. J., Buydens L. M. C. Improvement of PLS model transferability by robust wavelength selection[J]. Chemometrics And Intelligent Laboratory Systems.1998(2):237-248
    [142]Kirkpatrick S., Gelatt C. D., Vecchi M. P. Optimization by simulated annealing[J]. Science.1983(4598):671-680
    [143]李会玲,汪振华,王基维.基于模拟退火的遗传优化算法在TSP问题中的应用[J].热处理技术与装备.2007(06):51-55
    [144]黄春林,李新,卢玲.基于模拟退火算法的植被参数遥感反演[J1.遥感技术与应用.2006(04):271-276
    [145]项宝卫,余雪芬,骆兆文.模拟退火算法在优化中的研究进展[J].台州学院学报.2005(06):6-9