牛奶中有害元素测定及形态分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛奶中所含的各种营养元素,与人体营养需求模式最为相似,且易于消化吸收。牛奶是人们日常不可缺少的营养品之一,因此分析牛奶中微量元素非常重要,这不仅因为微量元素可指示环境污染状况,也是有毒金属进入人体的重要途径。
     电感耦合等离子体光谱(ICP-OES/MS)以其检测限低、精密度高、选择性好、基体效应小、线性范围宽和多元素同时测定等优点得到了广泛的应用。但是随着科学的发展仅靠ICP-OES/MS常规检测已不能满足研究要求,将ICP-OES/MS与其它分析手段联用起来可以在一定程度上将两者优点结合起来,进而提高分析性能,满足分析要求。
     作为原子光谱/质谱分析中的进样技术之一的氢化物发生法(HG),由于其采用化学反应实现了待测组分与大量基体分离,一方面使其测定可在无基体光谱干扰下进行,另一方面样品以气体的方式引入,进样效率大幅度的提高,大大提高了分析的灵敏度,已成为强有力的分析工具之一。氢化物发生与ICP-OES联用技术扩展了ICP-OES对氢化物形成元素的检测能力,可使氢化物形成元素的检出限改善1~2个数量级,并且几乎消除了干扰,从而开辟了解决复杂基体样品分析新途径。
     毛细管电泳(CE)具有分离效率高、分析速度快、分析模式多、试剂模式多、试剂用量少、应用范围广、易于自动化等优点,成为复杂体系中成分分析的重要分析方法之一。将CE-ICP-OES联用技术结合了CE分离效能高和ICP-OES具有多元素同时测定和检出限低,线性范围宽等优点,为复杂样品的元素形态分析提供了一种强有力的分析手段。
     本论文将ICP-OES与氢化物发生和毛细管电泳联用应用于牛奶中有害元素测定、铅烷发生机理和铝形态分析中,论文的主要内容及研究结果如下:
     1.建立了简单、快速的微波消解-氢化物发生-电感耦合等离子体光发射光谱法同时测定牛奶中的砷、硒、锑和铋。牛奶样品经微波消解、赶酸后,在沸水浴中用6 mol/L盐酸预还原硒40 min,在室温下用盐酸羟胺预还原砷和锑。用酒石酸和柠檬酸消除牛奶样品中共存元素的干扰。砷、硒、锑和铋的检出限分别为0.24μg/L,0.12μg/L,0.06μg/L和0.02μg/L;样品的平均相对标准偏差分别为5.0%、5.7%、4.3%和3.8%。
     2.为了阐明在Pb(II)-NaBH4-K3Fe(CN)6体系中铅烷发生机理,研究在K3Fe(CN)6参与下Pb(II)和NaBH4反应的中间产物。产生的铅烷用连续流动氢化物发生-电感耦合等离子体光发射光谱法检测。基于实验结果,机理可描述如下:1) Pb(II)和NaBH4反应生成铅烷和黑色单质铅沉淀;2)此黑色铅被K3Fe(CN)6氧化并形成Pb2[Fe(CN)6]络合物,Pb2[Fe(CN)6]进一步与NaBH4反应生成黑色铅和更多的铅烷;3)进行下一轮循环反应,黑色铅不断产生和不断被K3Fe(CN)6氧化形成Pb2[Fe(CN)6]络合物。总之,在Pb(II)-NaBH4-K3Fe(CN)6体系中,黑色单质铅和Pb2[Fe(CN)6]络合物是产生铅烷的关键中间产物。
     3.把毛细管电泳-电感耦合等离子体光发射光谱联用技术应用于牛奶中铝的形态分析。牛奶中主要有六种形态的铝存在,通过标准铝和柠檬酸铝迁移时间来定位表征牛奶中游离态铝和柠檬酸铝的形态峰,其迁移时间的相对标准偏差小于3%;用峰面积来定量牛奶中柠檬酸铝的含量分别为0.17 mg/L,其相对标准偏差小于5%。采用以上联用技术对牛奶样品中的柠檬酸铝进行加标回收实验,其回收率为96.4%~100.7%,检出限为37μg/L。
The various nutrients in milk are the most similar to human nutritional model. The elemental analysis of milk is important because of an indicator of environmental contamination and a significant pathway for toxic metal intake and a source of essential nutrients for humans.
     Inductively coupled plasma optical emission spectrometry/mass(ICP-OES/MS) is an powerful multi-elements trace analysis technology. It offers extending good advantages in terms of low detection limit, high precision, good selectivity, little matrix effect, wide linear range and simultaneous multi-elements determination, so it is widely used. But the routine determination of ICP-OES/MS couldn’t meet the research demand with scientific development. The hyphenation of ICP-OES/MS with analytical instruments else would combine advantages of them to a certain extent and ulteriorly improves analytical capability.
     Hydride generation(HG) combined with modern atomic spectrometric detection has become one of the most powerful analytical tools for some elements determination because it has adopted chemical reaction and realized awaiting measuring component separated from a large number of matrix. It makes determination go on in a situation that there is no any basic spectrum interference. HG-ICP-OES enhance detection power of ICP-OES to hydride–forming elements. The detection limits of hydride-forming elements can be improved by one or two orders of magnitude over conventional nebulizer, and nearly elimination interference. Therefore, it provides a new way to solve complex matrix samples analysis.
     Capillary electrophoresis (CE) has many advantages: high efficiency, quick analysis speed, many analysis modes, little reagent consumption, wide application, easy automation, etc. It become the important components analysis method in a complex system. CE coupled with ICP-OES has the individual advantages of capillary electrophoresis and inductively coupling plasma spectrometry, it realized the combination of efficient separation and element alternative measurement. It was considered as a powerful analytical method.
     In this paper, the research has been carried on hyphenating of inductively coupled plasma optical emission spectrometry with hydride generation and capillary electrophoresis. The determination for hydride elements, mechanism of plumbane generation and speciation analysis of aluminum have been studied. The main contents and researched results of the paper are as follows:
     1. A simple and fast analytical method has been developed for the determination of As, Se, Sb and Bi in milk by microwave digestion hydride generation inductively coupled plasma optical emission spectrometry. Milk were firstly pre-reduced with 6 mol/L HCl for 40 min in a boiled water for Se determination after they were digested in microwave oven, and then were driven away acid and pre-reduced by hydroxylamine hydrochloride for determination of As and Sb. Interferences of concomitant elements were eliminated by tartaric acid and citric acid in the samples. The detection limits(3σ) were 0.24, 0.12, 0.06 and 0.02μg/L for As, Se, Sb and Bi, respectively. The average relative standard deviations were 5.0%, 5.7%, 4.3% and 3.8%, respectively.
     2. To clarify the mechanisms of the generation of plumbane in the Pb(II)-NaBH4-K3Fe(CN)6 system , the intermediates produced through the reaction of lead(II) and NaBH4 in the presence of K3Fe(CN)6 were studied. The plumbane generated was measured by a continuous flow hydride generator-inductively coupled plasma-optical emission spectrometer. Based on the experimental results, the mechanisms can be depicted in the following steps: 1) plumbane and black lead sediment (black Pb) were formed through the reaction of lead(Ⅱ) and NaBH4 ; 2) the black Pb was oxidized by K3Fe(CN)6 to form the Pb2[Fe(CN)6] complex which was then further reacted with NaBH4 to form more plumbane and black Pb; 3) another round started, i.e. the black Pb thus produced continued to be oxidized by K3Fe(CN)6 to form more Pb2[Fe(CN)6] complex to generate more plumbane. In short, the black Pb and the Pb2[Fe(CN)6] complex were the key intermediate products for the generation of plumbane in the Pb(II)-NaBH4-K3Fe(CN)6 system.
     3. The speciation of aluminum in milk has been developed by capillary electrophoresis-inductively coupled plasma optical emission spectrometry. The forms of aluminum in milk have six species. The free aluminum and aluminum citrate were identified by spiked the standard of free aluminum and aluminum citrate. The concentration of aluminum citrate quantified by peaks area was 0.17 mg/L in milk. The relative standard deviation of migration time and concentration for aluminum species were less than 3% and 5%, respectively. The recovery and detection limit of aluminum citrate was in the range of 96.4% to 100.7% and 37μg/L, respectively.
引文
[1] Walter Holak.. Anal. Chem., 1969, 41(12): 1712-1713.
    [2] Robert S. Braman, Lewis L. Justen, Craig C. Foreback. Anal. Chem., 1972, 44(13): 2195-2199.
    [3] Kingsley G. R. , Schaffert R .R. Anal. Chem., 1951, 23(5): 914-919.
    [4] Kahn H. L., Schallis J., At. Absorp. Newsl., 1968, :55.
    [5] Robbins W. B., Caruso J. Anal. Chem., 1979, 51(8): 839A-899A.
    [6] Bushein I. S., Headrudge J. B. Talanta, 1982, 29(6): 519-520.
    [7] Yan D., Yan Z., Cheng G. S., Li Anmo. Talanta, 1984, 31(2): 133-134.
    [8] Cacho J. Beltranán I., Nerin C. J. Anal. At. Spectrom., 1989, 4: 661.
    [9] Sturgeon R. E., Liu J., Boyko V. J., et al. Anal. Chem, 1996, 56: 1883.
    [10] Matou?ek T. Sturgeon R. E.. J. Anal. Atom. Spectrom., 2003, 18: 487.
    [11] Landi S., Fagioli F.. Anal. Chim. Acta, 1994, 198: 363.
    [12] Luna A. S., Sturgeon R. E., Campos R. C.. Anal. Chem, 2000, 72: 3523.
    [13] Feng Y. L., Lam J. W., Sturgeon R. E.. Analyst, 2001, 126: 1833.
    [14] Panichev N, Sturgeon R. E. Anal. Chem, 1998, 70: 1670.
    [15] Pollock E. N., West. S., J. At. Absorp. Newsl., 1972, 11: 104.
    [16] Dalton E. E., Malanoski A, J. At. Absorp. Newsl., 1971, 10: 92.
    [17] Scnaefer G.. W., Emilius M., J. Am. Chem. Soc., 1954, 76: 1203.
    [18] Braman R. S., Justen L. L., Foreback C. C. Anal. Chem., 1972, 44(10): 2195-2199.
    [19] D’Ulivo A.. Spectrochemica Acta Part B, 2004, 59: 793-825.
    [20] Rigin V., J. Zh. Anal. Khim., 1978, 33(10): 1966-1971.
    [21] Rigin V., J. Zh. Anal. Khim, 1979, 34(8): 1966-1971.
    [22] Thompson M., Pahlaranpour B., Walton S. J., Kirbright G. F., Analyst, 1978, 103(3): 568.
    [23] Janghorbani M., Bill Ting T. G.. Anal. Chem., 1989, 61(6/7): 701-708.
    [24] Polvell M. J., Boomer D. W., Mc Vicars R. J., Anal. Chem., 1986, 58(13): 2864-2867.
    [25] Santosa Sri. Juari, Hiroshige S, Tamaka S, J. Anal. At. Spectrom., 1997, 12(4): 409-415.
    [26] Buckley W. T., Budae J. J., Gidfrey D. V.., Anal. Chem., 1992, 64(7): 724-729.
    [27] Rayman M. P, Abou-Shokra F. R., Ward N. I. J. Anal. At. Spectrom., 1996, 11(1): 61-68.
    [28] Beauchemin. J. Anal. At. Spectrom., 1998, 13(1): 1-5.
    [29] Qiu. D. R., Vabswcasteele C., vermeiren K., Dams R.. Spectrochim. Acta, 1990, 45B(4-5): 439-451.
    [30] Aizpum F. B., Valdes C., Hevia Y. T., Fernandez M. R., Capma A. San-Medel. Talanta, 1992, 39(11): 1517-1523.
    [31] Feng Y. L., Cao J. P.. Anal. Chim. Acta, 1994, 293(1/2): 211-218.
    [32] 孔令仙,吴廷照. 用于 ICP-AES 分析的简易连续进样氢化物发生装置[J].分析试验室,1985, 4(7): 43-46.
    [33] 金同顺,贝源,陈逸君,李忠,戴乐美,田签卿.分析化学,1996, 24(3): 360-363.
    [34] 丁健华,陈世忠,廖振华,熊松.分析科学学报,2000, 16(4): 282-285.
    [35] 吴列平,袁玄晖.岩矿测试,1999, 18(3): 220-224.
    [36] 傅昀,王文桂,谢克金等.分析化学,1998, 26(4): 431-434.
    [37] 甄荣乔,吴廷照.理化检验-化学分册,1988, 24(3): 144-146.
    [38] Ding W. W., Sturgeon R. E.. Anal. Chem., 1997, 69(3): 527-531.
    [39] Wolnik K. A., Frixke F. L., Ham M. H.. Anal. Chem., 1981, 53(7): 1030-1035.
    [40] Huang Benli, Zhang Z., Zeng X.. Spectrochem. Acta. 1987, 42B(1-2): 129-137.
    [41] 陈治江,邱德仁,张骏,郭宁.理化检验-化学分册,1992, 28(6): 335-336.
    [42] Zhang L. S., Combs S. M.. J. Anal. At. Spectrom., 1996, 11(11): 1043-1048.
    [43] Zhang L. S., Combs S. M.. J. Anal. At. Spectrom., 1996, 11(11): 1049-1055.
    [44] Christoph Moor, Joseph W. H. Lam, Ralph E. Sturgeon. J. Anal. At. Spectrom., 2000, 15(2): 143-149.
    [45] Tian X. D., Zhuang Z. X., B. Chen, X. R. Wang. Analyst, 1998, 123(4): 627-632.
    [46] Lin Y., Wang D., Yuan P., J. Anal. At. Spectrom. 1992, 7(2): 287-291.
    [47] Brockmann A., Nonn C. Colloch, J. Anal. At. Spectrom., 1993, 8(3): 397-401.
    [48] Ladorda F., Bolea E., Castello J. R. J. Anal. At. Spectrom., 2000, 15(1): 103-107.
    [49] Schaumloffel D., Neodhart B., Fresenius J.. Anal. Chem., 1996, 354(7-8): 866-869.
    [50] Rube?ka I., Mik?ovsky M., Huka M.. At. Absorption Newslett. 1975, 14(1): 28.
    [51] Ward D. A., Biechler D. G. At. Absorption Newslett. 1975, 14(1): 29-31.
    [52] Fuller C. W. At. Absorption Newslett. 1976, 15(3): 73-74.
    [53] 郭小伟, 王升章. 双毛细管喷雾器—一种新型的适用于原子吸收分析的喷雾器[J].分析化学.1981, 9(3): 258-263.
    [54] 戴金续, 张文琴, 郑凯清, 郭小伟.双毛细管喷雾器氢化物-火焰原子吸收法测定地质样品中砷、锑、铋、汞[J].冶金分析.1988, 8(4): 10-13.
    [55] 戴金续, 郭小伟.双毛细管喷雾器氢化物-火焰原子吸收法测定地质样品中痕量硒和碲.岩矿测试.1990, 9(2): 107-110.
    [56] 尹学博, 江 焱, 严秀平, 何锡文. 毛细管电泳-原子荧光在线联用新技术及其在形态分析中的应用[J].高等学校化学学报,2004,25,(4): 618-621.
    [57] Deng B. Y., Feng J. R., Meng J.. Speciation of inorganic selenium using capillary electrophoresis–inductively coupled plasma-atomic emission spectrometry with on-line hydride generation[J]. Analytica Chimica Acta, 2007, 583, 92-97.
    [58] 冯金荣,孟 君,邓必阳.毛细管电泳氢化物发生等离子体原子发射光谱联用的接口设计[J].分析化学,2007, 35(6): 861-864.
    [59] 邓必阳,黄惠芝,谢建新.氢化物连续发生电感耦合等离子体原子发射法测定高纯铟中砷锑锡[J].理化检验-化学分册,2006, 42: 347-348, 351.
    [60] Carmen Moscoso-Pérez, Jorge Moreda-Pi?eiro, Purificación López-Mahía, Soledad Muniategui-Lorenzo, Esther Fernández-Fernández, Darío Prada-Rodríguez. Analytica Chimica Acta, 2004, 526: 185–192.
    [61] Henryk Matusiewicz, Mariusz ?lachciński. Microchemical Journal, 2007, 86: 102-111.
    [62] 但德忠主编.分析测试中的现代微波制样技术[M].成都:四川大学出版社,2003: 14-49.
    [63] Abu-Samra A, Morris J S, Koirtyohann1 S R. Anal. Chem., 1975, 47: 1475-1477.
    [64] Jin Qin han, Liang Feng, Zhang Han qi. Trends in Analytical Chemistry,1999,18(7): 479.
    [65] 郎春燕,汪模辉,罗方若.理化检验(化学分册),1989, 25(5):315-317.
    [66] 苏建晖,张胜举,张林田,蔡颖,陈冠武. 检验检疫科学,2006, 16(3): 13-15.
    [67] P. Cava-Montesinos, M. L. Cervera, A. Pastor, M. de la Guardia. Analytica Chimica Acta 2003, 481: 291-300.
    [68] A. Ikem, A. Nwankwoala, S. Odueyungbo, K. Nyavor, N. Egiebor. Food Chemistry, 2002, 77: 439-447.
    [69] Ataro A., McCrindle, R. I., Botha, B. M., McCrindle, C. M. E., Ndibewu, P. P.. Food Chemistry, 2008, 3: 23.
    [70] 李书祯.必需元素与健康[M].北京,轻工业出版社,1988: 5.
    [71] A. Sroor,N. Walley E1-Dine,A. E1-Shershaby, A. S. Abdel-Haleem. Major and traceelemental analysis in milk powder by inductively coupled plasma-optical emission spectrometry(ICP-OES) and instrumental neutron activation analysis(INAA)[J]. J. Environmental Science, 2003, 15(4): 570-576.
    [72] 栾芳, 冯艳茹, 商孟香, 姜玲, 宣宇,王金凤.火焰原子吸收光谱法测定7 种乳制品中微量元素及乳酸的含量[J]. 黑龙江医药科学,2006, 29(4): 14-15.
    [73] 何聿忠,林文业,罗建慧,等.塞曼原子吸收光谱法测定母乳牛奶中铜锌铁钙镁[J]. 广东微量元素科学,1995, 2(5): 69-71.
    [74] 苏建晖,张胜举,张林田,蔡颖,陈冠武.高压消解法一次消解测定奶粉中1 1种金属元素[J].检验检疫科学,2006, 16(3): 13-15.
    [75] 李光,李春野,宋黎军,李建新,赵士权.电感耦合等离子体发射光谱法测定奶粉中的9种元素[J].卫生研究,2006, 35(2): 225-227.
    [76] 斯钦,刘颖,巴图.驼奶中氨基酸和人体必需微量金属元素的测定[J].宁夏大学学报(自然科学版),1993, 20(1): 68-69.
    [77] Ikem A., Nwankwoala A., Odueyungbo S., Nyavor K., Egiebor N.. Levels of 26 elements in infant formula from USA, UK, and Nigeria by microwave digestion and ICP-OES[J]. Food Chemistry, 2002, 77: 439-447.
    [78] 刘 临,王敦林,金文兴,易艳萍.江西省宜春市市场鲜牛奶品质分析[J].广东微量元素科学,2006, 13(6): 40-43.
    [79] óscar M. N., Raquel D. G., Adela B. B., Pilar B. B, José A. C., José M. F.. Selenium speciation in cow milk obtained after supplementation with different selenium forms to the cow feed using liquid chromatography coupled with hydride generation-atomic fluorescence spectrometry[J]. Talanta, 2007, 71(4): 1587-1593.
    [80] Eleni C. P., Athanasios C. P., Peter F. S.. Selenium content in selected foods from the Greek market and estimation of the daily intake[J]. Science of The Total Environment, 2006, 372(1): 100-108.
    [81] Eva R. T., ángel M. R., Miguel G.. Multicommutation hydride generation atomic fluorescence determination of inorganic tellurium species in milk[J]. Food Chemistry, 2005, 91(1): 181-189.
    [82] J. L. Gómez-Ariza, V. Bernal-Daza, M. J. Villegas-Portero. Comparative study of the instrumental couplings of high performance liquid chromatography withmicrowave-assisted digestion hydride generation atomic fluorescence spectrometry and inductively coupled plasma mass spectrometry for chiral speciation of selenomethionine in breast and formula milk[J]. Analytica Chimica Acta, 2004, 520 (1-2): 229-235.
    [83] Patricia C. M., Eva R. T., ángel M. R., M. Luisa C., Miguel G.. Cold vapour atomic fluorescence determination of mercury in milk by slurry sampling using multicommutation[J]. Analytica Chimica Acta, 2004, 506(2): 145-153.
    [84] Patricia C. M., M. Luisa C., Agustín P., Miguel G.. Determination of As, Sb, Se, Te and Bi in milk by slurry sampling hydride generation atomic fluorescence spectrometry[J]. Talanta, 2004, 62(1): 173-182.
    [85] W. L. Jolly. J. Am. Chem. Soc., 1961, 83(2): 335-337.
    [86] Pollock E. N, West S. J. At. Absorp. Newsl., 1973, 12(1): 6-8.
    [87] Thompson K. C., Thomerson. Analyst, 1974, 99(1182): 595-601.
    [88] Fleming H. D., Ide R. G.. Anal. Chim. Acta, 1976, 83(1): 67-82.
    [89] Vijan P. N., Wood G. R.. Analyst, 1976, 101(1209): 966-973.
    [90] 神和夫, 多贺光彦. 分析化学(日), 1978, (12): 271.
    [91] 陶锐,周宏刚.氢化物发生-原子吸收分光光度法测定食品中铅[J].分析化学,1985, 13(4): 283-285.
    [92] Jinxiang Li, Yongming Liu, Tifzheng Lin. Anal. Chim. Acta, 1990, 231(1): 151-155.
    [93] Zhang S., Han H., Ni Z.. Anal. Chim. Acta, 1989, 221(1): 85-90.
    [94] 陶锐.氢化物发生-原子吸收分光光度法测定微量铅的进展[J].预防医学情报杂志,1985, 1(4): 209-213.
    [95] 陈恒武,戚文彬. 原子吸收分光光度法测定微量铅的进展[J ].光谱学与光谱 分析,1994, 14(2): 113-120.
    [96] Hengwu Chen, Fulong Tang, Chang Gu, Ian D. Brindle. Talanta, 1993, 40(8): 1147-1155.
    [97] 王光健,鲁长豪.用氢化物发生原子吸收光谱法测定食品中铅[J].华西医大学报,1986, 12(2): 135-138.
    [98] 张佩瑜,胡志勇.铅的氢化物原子吸收光谱法测定食品中铅的测定[J].分析化学,1987, 15(5): 404-408.
    [99] 邱德仁,陈治江,罗晓雯.氢化物发生的碱性模式[J].光谱学与光谱分析,1994, 14(1): 77-79.
    [100] 邹艳,杨芃原,陈治江,金富霞,邱德仁.铅烷发生的酸性模式与碱性模式的对比研究[J].复旦学报(自然科学版),2001, 40(4): 360-363.
    [101] 魏纪中,林帆,王新省.流动注射-氢化物发生-原子吸收光谱分析中氧化剂对铅增敏作用的研究[J].光谱学与光谱分析,1992, 12(3): 75-82.
    [102] A. D’Ulivo, P. Papoff. Talanta, 1985, 32(5): 383-386.
    [103] 邹艳,金富霞,陈治江,邱德仁,杨芃原.铅烷发生反应的非新生态氢机理[J].光谱学与光谱分析,2005, 10: 1720-1723.
    [104] 孙汉文,锁然,张德强,吕运开.同时测定中草药中痕量铅和汞的氢化物原子荧光法[J].分析测试学报,2002, 21(3): 67-69.
    [105] Basolo F, Pearson R. G. 无机反应机理, 溶液中金属络合物的研究[M]. 第2 版. 陈荣悌,姚允斌译. 北京:科学出版社,1987: 280.
    [106] Nerin C., Olavide S., Cacho J., et al. Water Air Soil pollut, 1989, 44(3-4): 339-345.
    [107] Madrid Y., Meseguer J., Bonilla M., et al. Anal. Chim. Acta, 1990, 237, (1): 181-188.
    [108] 邹艳,陈治江,金富霞,等.有机酸在重铬酸钾铅烷发生体系中的作用[J].分析化学,1996, 27(6): 653-656.
    [109] 孙汗文,锁然.氢化物原子荧光法同时测定试剂盐酸中痕量锡铅[J].理化检验化学分册,2002, 38(10): 506-508.
    [110] Sutton K., Sutton R. M .C., Caruso J. A., J. Chromatogr A. 1997, 789(1): 85.
    [111] Deng B. Y., Chan W. T., J. Chromatogr. A, 2000, 891: 139-148.
    [112] 杨小弟,毕树平.环境中铝-有机配合物的分析研究进展[J].无机化学学报,2001,17(2): 168-180.
    [113] Yang X. D., Tang Z. Y., Bi S. P., Yang G. S., Hu J.. Potentiometric and Multi-NMR Studies of Aluminum(III) Complex with L-Glutamate in Acidic Aqueous Solutions[J]. Anal . Sci., 2003 , 19: 133-138.
    [114] Zhang F. P., Yang L., Bi S. P., Liu J., Liu F., Wang X. L., Yang X. D., Gan N., Yu T., Li H. Z., Yang T. M.. Neurotransmitter dopamine applied in electrochemical determination of aluminum in drinking waters and biological samples[J]. J. Inorg. Biochem.,2001, 87: 105-113.
    [115] Sposito G. The Environmental Chemistry of Aluminum[M]. 2nd. ed., CRC Press, Inc. Boca Raton, Florida, 1996: 87.
    [116] Levsen K., Preiss A., Godejohann M.. Application of high-performance liquid chromatography coupled to nuclear magnetic resonance and high-performance liquid chromatography coupled to mass spectrometry to complex environmental samples[J]. Trac Trends in Anal. Chem., 2000, 19(1): 27-48.
    [117] 庄峙厦,杨成隆,李波,杨芃原,王小如. 热喷雾作为电感耦合等离子体原子发射光谱的进样技术[J].高等学校化学学报, 1997, 18: 1939-1943.
    [118] Clarke N., Danielsson L-G, A. Sparen. Analytical methodology for the determination of aluminium fractions in natural fresh waters [J]. Pure and Appl. Chem., 1996, 68(8): 1597-1638.
    [119] 陈刚,陈瑜,毕树平,邹公伟. 色谱在环境/生物样品中铝形态分析中的应用进展[J].无机化学学报,1998, 14(2): 127-132.
    [120] Driscoll C. T., Baker J. P., Bisogni J. J., Schofield C. L.. Nature, 1980, 284: 1375-1379.
    [121] 干宁,毕树平,邹公伟,魏宗波.离子交换/8-羟基喹啉荧光法分别测定天然水中的无机和有机单核铝[J].分析化学,2000, 28(11):1375-1379.
    [122] Bi S. P., Tang W., Gan N., Ye L., Liu J., Chen G., Dai L. M., Cao M., Chen Y. J. Anal. Lett., 2000, 33: 677-689.
    [123] 干宁,毕树平,魏宗波,谭涌霞. 酸性媒染紫-示波计时电位法测定天然水和饮用水中铝[J].分析化学,2001, 29: 1181-1185.
    [124] Wang X. L., Lei J. P., Bi S. P., Bi S. P., Gan N., Wei Z. B.. Determination of the speciation of aluminum(III) in natural waters by adsorption stripping voltammetry and complexation with AlIII–solochrome violet RS[J]. Anal. Chim. Acta, 2001, 449: 35-39.
    [125] Bi S. P., Wang X.L., Ye L., Gan N., Zou G.W., Liang H.Z., Dai L., Cao M., Chen Y.J.. Trace analysis of aluminum in natural waters with rubeanic acid by adsorption chronopotentiometry[J]. Talanta, 1999, 50(5): 1011-1017.
    [126] Liu J., Wang X. L., Chen G., Gan N., Bi S. P.. Speciation of aluminium(III) in natural waters using differential pulse voltammetry with a Pyrocatechol Violet-modified electrode[J]. Analyst, 2001, 126: 1404-1408.
    [127] Wang C. Y., Xia P., Shuping Bi, Peiqin Hong, Tingjun Lao. Studies on the potentiometric titration curves of aluminium salt solutions and its species conversion in the hydrolysis-polymerization course[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects2006, xxx: xxx–xxx.
    [128] Pyrzyńska K., Gu?er S., Bulska E.. Flow-injection speciation of aluminium[J]. Water Res., 2000, 34(2): 359-365.
    [129] 陈捷,吴一微,胡斌,江祖成.用离子交换/ICP-AES 联用技术研究溶液中配合铝的形态及分布[J].高等学校化学学报,2003, 24(6): 1000-1004.
    [130] Bantan T., Milacǐ? R., Pihlar B. Possibilities for speciation of Al–citrate and other negatively charged Al complexes by anion-exchange FPLC–ICP-AES[J]. Talanta, 1998, 46(1): 227-235.
    [131] Shen Y. H., Dempsey B. A. Synthesis and speciation of polyaluminum chloride for water treatment[J]. Environment International, 1998, 24(8): 899-910.
    [132] K. N. Exall, G. W. vanLoon. Effects of raw water conditions on solution-state aluminum speciation during coagulant dilution[J]. Water Res., 2003, 37: 3341-3350.
    [133] Martell A. E., Motekatis R. J.. Determination and Use of Stability Constants, 2nd ed., VCH Publishers, New York, 1992.
    [134] 毕树平,都思丹,Correll D. L.温度,平衡常数和络合配体对地表水中铝形态分布影响的微机模拟[J].南京大学学报, 1997, 33: 42-54.
    [135] S. P. Bi. Investigation of the factors influencing aluminium speciation in natural water equilibria with the mineral phase gibbsite[J]. Analyst, 1995, 120, 2033-2039.
    [136] Vreysen S., Maes A.. Influence of pH on the aluminum speciation in freeze-dried poly (hydroxo aluminum) intercalated bentonites[J]. Applied Clay Science, 2006, 33: 260-268.
    [137] 田肖丹,庄峙厦,陈宾,王小如.岩矿测试,1999, 3(18): 165-170.
    [138] 叶美英,殷学锋,方肇伦.毛细管电泳和电感耦合等离子体质谱接口技术进展.光谱学与光谱分析[J],2003, 23(1): 89-93.
    [139] 康建珍,段太成,刘杰,陈杭亭,曾宪津.毛细管电泳-电感耦合等离子质谱联用的接口设计.分析化学[J].2004, 32(2): 262-266.
    [140] 李保会,余莉萍,严秀平.光谱学与光谱分析,2005, 25(8): 1336-1338.
    [141] Y .Y. Chan, W. T. Chan, J. Chromatogr. A, 1999, 853:141-149.
    [142] 康建珍,段太成,刘 杰,曾宪津,陈杭亭.毛细管电泳-电感耦合等离子体质谱在痕量元素形态分析中的应用[J].分析化学,2003, 31(11): 1385-1392.
    [143] 尹学博,江炎,严秀平,何锡文.毛细管电泳-原子荧光在线联用新技术及其在形态分析中的应用[J].高等学校化学学报,2004, 25(4): 618-621.
    [144] 邓必阳,曾楚杰,陈荣达.毛细管电泳电感耦合等离子体原子发射光谱法分析铁的形态[J].光谱学与光谱分析,2005, 25(11): 1868-1871.
    [145] Biyang Deng, Wing-Tat Chan. Electrophoresis, 2001, 22: 2186-2191.
    [146] J. A. Day, S. S. Kannamkumarath, E. G. Yanes, M. M. Bay?n, J. A. Caruso, J. Anal. Atomic. Spectrom. 2002, 17: 27.
    [147] Baoguo Sun, Miroslav Macka, Paul R. Journal of Chromatography A, 2004, 1039: 201-208.
    [148] Feng Li, Dong-Dong Wang, Xiu-Ping Yan. Electrophoresis 2005, 26: 2261-2268.
    [149] Soundos Saleh, Georg Hempel. Electrophoresis 2006, 27(12): 2439-2443.
    [150] Fumihiko Kitagawa, Kazutaka Shiomi, Koji Otsuka.. Electrophoresis, 2006, 27(11), 2233-2239.
    [151] Y. S. Fung, K. M. Lau. Journal of Chromatography A, 2006, 1118: 144-150.
    [152] Kasia Polec-Pawlak, Jan K. Abramski etal. Electrophoresis 2006, 27: 1128-1135.
    [153] Yan Li, Yan Jiang, Xiu-Ping Yan. Anal. Chem., 2006, 78(17): 6115-6120.
    [154] Biyang Deng, Jinrong Feng, Jun Meng. Analytica Chimica Acta, 2007, 583: 92-97.
    [155] Jennifer C. Stern, Jeroen E. Sonke, Vincent J. M.Salters. Chemical Geology, 2007, 246: 170-180.
    [156] Silvia Suárez-Luque, Inés Mato, José F. Huidobro, Jesús Simal-Lozano. International Dairy Journal, 2007, 17: 896-901.
    [157] Bernhard Michalke, Achim Berthele, Panos Mistriotis, Maria Ochsenkühn-Petropoulou, Stefan Halbach. Journal of Trace Elements in Medicine and Biology, 2007, 21, S1: 4-9.
    [158] Yan Li, Xue-Bo Yin and Xiu-Ping Yan. Analytica Chimica Acta, 2008.
    [159] Aurélien Pitois, Laura Aldave de Las Heras, Maria Betti. International Journal of Mass Spectrometry, 2008.
    [160] Biyang Deng, Xianfeng Li, Pingchuan Zhu, Xiangshu Xu, Qiumei Xu, Yanhui Kang. Electrophoresis, 2008, 29: 1534-1539.
    [1] 刘士军编.人体所需的蛋白质?维生素?矿物质全典[M].哈尔滨:哈尔滨出版社,2006:310-311.
    [2] 李素梅主编.微量养素与健康[M].北京:化学工业出版社,2003:148.
    [3] 中华人民共和国卫生部,中国国家标准化管理委员会发布. 食品中污染物限量 GB2762-2005 [S],2005-10-01实施。
    [9] 张效伟,张召香,宋琦,杨月英,高丽艳,莫正波,刘平.对喷式氢化物发生原子荧光光谱法同时测定烟叶中痕量砷和锑[J].分析化学,2006,34(10):1448-1450.
    [5] Montserrat Filella, Nelson Belzile, Yu-Wei Chen. Antimony in the environnment: a review focused on natural waters I. Occurrence [J]. Earth-Science Reviews, 2002, 57: 125-176.
    [6] 朱玲,高向阳,王金鹏.微波高压快速消解-紫外分光光度法测定南阳彩色小麦中的微量元素硒[J].安徽农业科学,2006,34(23):6093-6095,6097.
    [7] 陈文宾,马卫兴,许兴友, 李善忠.2, 4-二氯苯基荧光酮体系分光光度法测定微量铋[J].分析试验室,2005,24(7):10-12.
    [8] S. Cabredo, J. Galbán, J. Sanz. Simultaneous determination of arsenic, antimony, selenium and tin by gas phase molecular absorption spectrometry after two step hydride generation and preconcentration in a cold trap[J]. Talanta, 1998, 46: 631-638.
    [9] M. Walcerz, E. Bulska, A. Hulanicki. Study of some interfering processes in the arsenic, antimony and selenium determination by hydride generation atomic absorption spectrometry[J]. Freseniuns’ Joumal of Analytical Chemistry, 1993, 346: 622-626.
    [10] Hui-Ming Liu, Shi-Yang Chen, Pin-Hsuan Chang, Suh-Jen Jane Tsai. Determination of bismuth, selenium and tellurium in nickel-based alloys and pure copper by flow-injection hydride generation atomic absorption spectrometry—with ascorbic acid prereduction and cupferron chelation–extraction[J]. Analytica Chimica Acta, 2002, 459(1): 161-168.
    [11] A. Matsumoto, T. Shiozaki, T. Nakahara. Simultaneous determination of bismuth and tellurium in steels by high power nitrogen microwave induced plasma atomic emission spectrometry coupled with the hydride generation technique[J]. Analytical Bioanalytical Chemistry, 2004, 379: 90-95.
    [12] Peihong Qiu, Changchun Ai, Li Lin, Jianzhang Wu, Faqing Ye. Simultaneous determination of selenium and arsenic contents in different extracts of Radix Astragali by enhancementeffect of ethanol in hydride generation-inductively coupled plasma-atomic emission spectrometry[J]. Microchemical Journal, 2007, 87: 1-5.
    [13] Helmar Wiltsche, Isaac B. Brenner, Guenter Knappa, Karl Prattes. Simultaneous determination of As, Bi, Se, Sn and Te in high alloy steels—re-evaluation of hydride generation inductively coupled plasma atomic emission spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2007, 22: 1083–1088.
    [14] Patricia Cava-Montesinos, M. Luisa Cervera, Agustín Pastor, Miguel de la Guardia. Hydride generation atomic fluorescence spectrometric determination of ultratraces of selenium and tellurium in cow milk[J]. Analytica Chimica Acta, 2003, 481: 291-300.
    [15] Patricia Cava-Montesinos, M. Luisa Cervera, Agustín Pastor, Miguel de la Guardia. Determination of As, Sb, Se, Te and Bi in milk by slurry sampling hydride generation atomic fluorescence spectrometry[J]. Talanta, 2004, 62: 175-184.
    [16] Juris Meija, Zoltan Mester and Alessandro D’Ulivo. Mass spectrometric separation and quantitation of overlapping isotopologues. Deuterium Containing Hydrides of As, Sb, Bi, Sn, and Ge[J]. American Society Mass Spectrometry, 2007, 18: 337-345.
    [17] L. Abrankó, Z. Stefánka, P. Fodor. Possibilities and limits of the simultaneous determination of As, Bi, Ge, Sb, Se, and Sn by flow injection–hydride generation–inductively coupled plasma–time-of-flight mass spectrometry (FI–HG–ICP–TOFMS)[J]. Analytica Chimica Acta, 2003, 493: 13-21.
    [18] 李冰,吴列平,尹明,王小如.乙醇增强氢化物发生电感耦合等离子体质谱法测定砷锑铋硒和碲的研究[J].岩矿测试,1999,18(2):101-110.
    [19] 邓必阳,黄惠芝,谢建新.氢化物连续发生电感耦合等离子体原子发射法测定高纯铟中砷锑锡[J].理化检验-化学分册,2006,42:347-348,351.
    [20] Carmen Moscoso-Pérez, Jorge Moreda-Pi?eiro, Purificación López-Mahía, Soledad Muniategui-Lorenzo, Esther Fernández-Fernández, Darío Prada-Rodríguez. Hydride generation atomic fluorescence spectrometric determination of As, Bi, Sb, Se(IV) and Te(IV) in aqua regia extracts from atmospheric particulate matter using multivariate optimization[J]. Analytica Chimica Acta, 2004, 526: 185-192.
    [21] Henryk Matusiewicz, Mariusz ?lachciński. Simultaneous determination of hydrie forming (As, Bi, Ge, Sb, Se, Sn) and Hg and non-hydride forming (Ca, Fe, Mg, Mn, Zn) elementsin sonicate slurries of analytical samples by microwave induced plasma optical emission spectrometry with dual-mode sample introduction system[J]. Microchemical Journal, 2007, 86: 102-111.
    [22] M. Thompson, B. Pahlavanpour, S. J. Walton, G. F. Kirkbright. Simultaneous determination of trace concentration of As, Sb, Bi, Se and Te in aquous solution by intruduction of the gaseous hydride into an inductively coupled plasma source for emission spectrometry. Part I. Preliminary Studies[J ]. A nalyst, 1978, 103(3): 568-579.
    [23] Santosa S. J., Mokudai H., Tanaka S.. Automated continuous-flow hydride generation with inductively coupled plasma mass spectrometric detection for the determination of trace amounts of selenium(Ⅳ), and total antimony, arsenic and germanium in sea-water[J]. J. Anal Atom Spectrom.1997, 12(4): 409-415.
    [24] 吴辛友,袁胜铨,翟金铣. 分析试剂的提纯与配制手册[M]. 北京:冶金工业出版社,1989.
    [25] Henryk Matusiewicz, Mariusz ?lachci?ski. Simultaneous determination of hydride forming elements (As, Sb, Se, Sn) and Hg in sonicate slurries of biological and enviromental reference mataerials by hydride generation microwave induced plasma optical emission spectrometry (SS-HG-MIP-OES) [J]. Microchemical Journal, 2006, 82: 78-85.
    [26] 邓勃主编.应用原子吸收与原子荧光光谱法[M].北京:化学工业出版社,2006:91-93.
    [27] A. Caballo-López, M. D. Luque de Castro. Slurry sampling-Microwave assisted leaching prior to hydride generation-pervaporation-atomic fluorescence detection for the determination of extractable Arsentic in soil[J]. Analytical Chemistry, 2003, 75(9): 2011-2017.
    [28] Danton D. Nygaard, Joe H. Lowry. Sample digestion procedures for simultaneous determination of arsenic, antimony, and selenium by inductively coupled argon plasma emission spectrometry with hydride generation[J]. Analytical chemistry, 1982, 54: 803-807.
    [1] A. Kabata-Pendias, H. Pendias, Trace elements in soils and plants, CRC Press, Boca Raton, FL, 1984: 154-166.
    [2] T. Nakahara. Applications of hydride generation techniques in atomic absorption, atomic fluorescence and plasma atomic emission spectroscopy[J]. Progress in Analytical Atomic Spectroscopy. 1983, 6: 163-223.
    [3] 邓必阳,黄惠芝,谢建新.氢化物连续发生电感耦合等离子体原子发射法测定高纯铟中砷锑锡[J].理化检验-化学分册,2006,42:347-348,351.
    [4] Shuyu Chen, Zhifeng Zhang, Huaming Yu, Wenqi Liu, Mei Sun. Determination of trace lead by hydride generation–inductively coupled plasma–mass spectrometry[J]. Anal. Chim. Acta, 2002, 463: 177–188.
    [5] J.F. Tyson, R.I. Ellis, G. Carnrick, F. Fernandez. Flow injection hydride generation electrothermal atomic absorption spectrometry with in-atomizer trapping for the determination of lead in calcium supplements[J]. Talanta, 2000, 52: 403–410.
    [6] Aysel Berkkan, Nusret Ertas. Determination of lead in dialysis concentrates using flow injection hydride generation atomic absorption spectrometry[J]. Talanta, 2004, 64: 423–427.
    [7] Qiu De-ren. Recent advances in fundamental studies of hydride generation[J]. Trends in analytical chemistry. 1995, 74(2): 76-82.
    [8] W.B. Robbins, J.A. Caruso. Development of hydride generationmethods for atomic spectroscopic analysis[J]. Anal. Chem, 1979, 51: 889A–894A.
    [9] J. Dědina, D. L. Tsalev. Hydride Generation Atomic Absorption Spectrometry[M], Wiley, Chichester, 1995: 182–245.
    [10] Alessandro D’Ulivo. Chemical vapor generation by tetrahydroborate(III) and other borane complexes in aqueous media A critical discussion of fundamental processes and mechanisms involved in reagent decomposition and hydride formation (Review)[J]. Spectrochimica Acta B, 2004, 59: 793– 825.
    [13] 陈恒武,戚文彬.氢化物发生法测定铅的进展[J].光谱学与光谱分析,1994,14(2): 113-120.
    [14] H. D. Fleming, R. G. Ide. Determination of volatile hydride-formingmetals in steel by atomic absorption spectrometry[J]. Anal. Chim. Acta, 1976, 83(1): 67-821.
    [15] P. N. Vijan, G. R. Wood. Siem-automated determination of lead by hydrides generation and atomic - absorp tion spectrophometry [ J ]. Analyst, 1976, 101(1209): 966 - 9731
    [16] 神和夫,多贺光彦. Sensitivety enhancement effect by the combined use of dichromate hydrogen peroxodisulfate or potassium permangante with sodium borohydride in atomic absorp tion spectrometry of lead[J]. 分析化学(日), 1978, (12): 271.
    [17] 陶锐,周宏刚.氢化物发生-原子吸收分光光度法测定食品中铅[J].分析化学, 1985, 13(4): 283-285.
    [18] Zhang Shu-Zhen, Han Heng-Bin, Ni Zhe-Ming. Detemination of lead by hydride genetation atomic absorption spectrometry in the present of nitroso-R salt[J]. Anal. Chim. Acta, 1989, 221: 85-90.
    [19] Jinxiang Li, Yongming Liu, Tiezheng Lin. Determination of lead by hydride generation atomic absorption spectrometry Partl. A new medium for generating hydride[J]. Anal. Chim. Acta, 1990, 231: 151-155.
    [20] Hengwu Chen, Fulong Tang, Chang Gu, Ian D. Brindle. The influence of chelating reagents on plumbane generation: determination of lead in the presence of PAN-S[J]. Talanta, 1993, 40(8): 1147-1155.
    [21] 高舸,陶锐.氢化物发生—原子荧光光谱法测定铅的研究进展[J]. 中国卫生检验杂志,2005,15(4):509-512.
    [22] 王光健,鲁长豪.用氢化物发生原子吸收光谱法测定食品中铅[J].华西医大学报,1986,12(2):135-138.
    [23] 邹艳,金富霞,陈治江,邱德仁,杨芃原.铅烷发生反应的非新生态氢机理[J].光谱学与光谱分析,2005(10),1720-1723.
    [24] C. Nerin, S. Olavide, J. Cacho, A. Garnica. Determination of lead in airborne particulate by hudride generation[J]. Water, Air, & Soil Pollution, 44(3-4): 339-345.
    [25] Jing Liang, Qiuquan Wang, Benli Huang. Concentrations of Hazardous Heavy Metals in Environmental Samples Collected in Xiamen, China, as Determined by Vapor Generation Non-dispersive Atomic Fluorescence Spectrometry[J]. Analytical Sciences, 2004, 20(1): 85.
    [26] 张佩瑜,胡志勇.铅的氢化物原子吸收光谱法研究及地球化学样品中铅的测定[J].分析化学,1987,15(2):404-408.
    [27] A. D’Ulivo, P. Papoff. Non-dispersive atomic-fluorescence spectrometric determination oflead by the hydride-genreration technique[J]. Talanta, 1985, 32(5): 383-386.
    [28] Y. Madrid, J. Meseguer, M. Bonilla, C. Cámara. Lead hydride generation in a lactic acid-potassium dichromate medium and its application to the determination of lead in fish, vegetable and drink samples[J]. Aanalytica Chimica Acta, 1990, 237: 181-187.
    [29] 谢建新,邓必阳,杨秀芳. 流动注射-氢化物发生原子发射光谱法测定板蓝根中的有害元素[J]. 分析科学学报,2004, 20(5): 480-482.
    [30] 孙汉文,锁然,张德强,吕运开. 同时测定中草药中痕量铅和汞的氢化物原子荧光法[J]. 分析测试学报,2002,21(3):67-69.
    [31] Basolo F, Pearson R. G. 无机反应机理, 溶液中金属络合物的研究[M]. 第2 版. 陈荣悌,姚允斌译. 北京:科学出版社,1987:280.
    [32] 阎军,胡文祥主编.分析样品制备[M].北京:解放军出版社,2003:312.
    [33] Willam L. Jolly. The preparation of the volatile hydrides of groups Ⅳ-A and Ⅴ-A by means of aqueous hydroborate[J]. J. Am. Chem. Soc., 1961, 83(2): 335-337.
    [34] Donald J. Pietrzyk, Clyde W. Frank. Analytical Chemistry (second edition)[M]. New York San francisco London: Academic Press, 1979:216-264.
    [35] 操时杰责任编辑,中南矿冶学院分析化学教研室等编著.化学分析手册(第一版)[M].北京:科学出版社,1982:571-589.
    [1] 李素梅主编. 微量元素与健康[M].北京:化学工业出版社,2003,10: 245-252.
    [2] 胡斌,江祖成编著.色谱-原子光谱/质谱联用技术及形态分析[M].科学出版社,北京:2005,10-11.
    [3] Z.Rengel. Aluminium cycling in the soil-plant-animal-human continuum[J]. BioMetals, 2004, 17: 669-689.
    [4] Robert A. Yokel, Marieangela Wilson, Wesley R. Harris, Andrew P. Halestrap. Aluminum citrate uptake by immortalized brain endothelial cells: implications for its blood–brain barrier transport[J]. Brain Research, 2002, 930: 101-110.
    [5] 钟炳南,钟晓东,钟晓旻,陈秀雄编著.人体平衡保健 100 答:教你吃出的健康与美丽[M]. 广东:广东科技出版社,2005,1:39-40.
    [6] 贾丽,陈曦,王小如,徐木生,杨芃原.毛细管电泳在形态分析中的应用[J].色谱,1998,16(5):402-405.
    [7] Juliette Tria, Edward C.V. Butler, Paul R. Haddad, Andrew R. Bowie. Determination of aluminium in natural water samples[J]. Analytica Chimica Acta, 2007, 588, 153-165.
    [8] 尹学博,何锡文,李妍,严秀平.毛细管电泳用于形态分析[J].分析化学,2003,31(3):364-370.
    [9] Bi, S.P., An, S.Q., Liu, F.. A practical application of Driscoll’s equation for predicting the acid-neutralizing capacity in acidic natural waters equilibria with the mineral phase gibbsite[J]. Environment International, 2001, 26: 327-333.
    [10] Ozsoy, T., Saydam, A.C.. Iron speciation in precipitation in the North-Eastern Mediterranean and its relationship with Sahara dust[J]. Journal of Atmospheric Chemistry, 2001, 40: 41-76.
    [11] Krystyna Pyrzyńska, Seref Gu?er, Ewa Bulska. Flow-injection speciation of aluminium[J]. War. Res., 2000, 34(2): 359-365.
    [12] Gilles Guibaud, Cécile Gauthier. Aluminium speciation in the Vienne river on its upstream catchment (Limousin region, France)[J]. J. Inorganic Biochemistry, 2005, 99: 1817-1821.
    [13] Hans-Christian Teien, Brit Salbu, Frode Kroglund, Lene S?rlie Heier, Bj?rn Olav Rosseland. The influence of colloidal material on aluminium speciation and estimated acid neutralising capacity (ANC)[J]. Applied Geochemistry, 2007, 22: 1202-1208.
    [14] S. P. Bi, S. Q. An, M. Yang, T. Chen. Dynamics of aluminum speciation in forest-well drainage waters from the Rhode River watershed, Maryland[J]. Environment International, 2001, 377-380.
    [15] Bikkes, M., Polyak, K., Hlavay, J.. Fractionation of elements by particle size and chemical bonding from aerosols followed by ETAAS determination[J]. Journal of Analytical Atomic Spectrometry, 2001, 16: 74-81.
    [16] 练鸿振,康玉芬,艾尔肯·牙森,毕树平,李丹妮,梅思竹,吴小江,陶仙聪,陈逸珺,戴乐美,干宁,田笠卿.荧光分光光度法分析天然水中铝形态的研究[J].光谱学与光谱分析,2004,24(11): 1391-1394.
    [17] 干宁,雷建平,毕树平.染料-示波计时电位法测定天然水中的不同形态铝[J].应用化学,2003,20(2):103-106.
    [18] 罗明标,毕树平.阳离子交换树脂分离-铝试剂分光光度法测定土壤中铝形态[J].分析科学学报,2004,20(2):113-116.
    [19] 陈捷,吴一微,胡斌,江祖成.用离子交换/ICP-AES 联用技术研究溶液中配合铝的形态及分布[J].高等学校化学学报,2003,24(6):1000-1004.
    [20] Sema B. Erdemo?lu, Krystyna Pyrzyniska, ?eref Gü?er. Speciation of aluminum in tea infusion by ion-exchange resins and flame AAS detection[J]. Analytica Chimica Acta, 2000, 411: 81-89.
    [21] Glen F. Van Landeghem, Marc E. De Broe, Patrick C. D’Haese. Al and Si: Their Speciation, Distribution, and Toxicity[J]. Clinical Biochemistry, 1998, 31(5): 385-397.
    [22] Megumi Hamano Nagaoka, Tamio Maitani. Ejects of sialic acid residues of transferrin on the binding with aluminum and iron studied by HPLC/high-resolution ICP-MS[J]. Biochimica et Biophysica Acta 2001, 1526: 175-182.
    [23] Fei Zheng, Bin Hu. Novel bimodal porous N-(2-aminoethyl)-3- aminopropyltrimethoxysilane-silica monolithic capillary microextraction and its application to the fractionation of aluminum in rainwater and fruit juice by electrothermal vaporization inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B, 2008, 639-18.
    [24] Powell K. J. Application of flow injection analysis adsorption-elution protocols for aluminium fractionation[J]. Analyst, 1998, 123, 797-802.
    [25] 侯晋,周钰明.毛细管电泳法用于化妆品中铝形态分析的研究[J].精细化学品与工业化学,中国化学会第九届全国应用化学年会论文集,267-271.
    [26] Ruohua Zhu, Wim Th. Kok. Determination of trace metal ions by capillary electrophoresis with fluorescence detection based on post-column complexation with 8-hydroxyquinoline-5-sulphonic acid[J]. Analytica Chimica Acta, 1998, 371: 269-277.
    [27] E. W. J. Hooijschuur, Ch.E. Kientz, J. Dijksrnan, U. A. Th. Brinkrnan. Potential ofMicrocolumn Liquid Chromatography and Capillary Electrophoresis with Flame Photometric Detection for Determination of Polar Phosphorus-Containing Pesticides[J]. Chromatographia, 2001, 54, 5/6.
    [28] Nian Wu, William J. Horvath, Peng Sun, Carmen W. Huie. Speciation of aluminum using capillary zone electrophoresis with indirect UV detection[J]. Journal of chromatography A, 1993, 635(2): 307-312.
    [29] Deng B Y, Chan WT. Simple interface for capillary electrophoresis-inductively coupled plasma atomic emission spectrometry. J. Chromatogr. A [J], 2000, 891:139-148.
    [30] 阎军,胡文祥主编.分析样品制备[M].北京:解放军出版社,2003,310-316.
    [31] Akio Morita, Osamu Yanagisawa, Satoshi Takatsu, Setsuko Maeda, Syuntaro Hiradate. Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis (L.) Kuntze)[J]. Phytochemistry, 2007, xxx, xxx-xxx.
    [32] 武汉大学主编.分析化学(第四版)[M].北京:高等教育出版社,2003,324-329.
    [33] Donald A. Palmer, J. L. S. Bell. Reply to the Comment by L.-O. ?hman on “Aluminum speciation and equilibria in aqueous solution: IV. A potentiometric study of aluminum acetate complexation in acidic NaCl brines to 150°C ”[J]. Geochimica et Cosmochimica Acta, 1995, 59(22): 4781-4784.
    [34] A. E.马特耳,M.卡耳文著.王夔,吴炳辅,白明彰,田冰式译.金属螯合物化学[M].北京:科学出版社,1964,145-153.