复杂产品多级制造系统生产计划与调度集成优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂产品是客户需求复杂、产品组成复杂、产品技术复杂、制造流程复杂、试验维护复杂、项目管理复杂、工作环境复杂的一类产品。复杂产品由原材料加工为产品或半成品的过程,通常是在多级制造系统(Multistage Manufacturing System, MMS)内完成的。多级制造系统的各级子系统可以实现加工、装配或其他能够增值的制造过程,由工作单元、车间、分厂或企业组成。在复杂产品多级制造系统中,各级系统之间一般关系复杂、生产种类繁多、产品结构复杂、信息交流频繁。其生产计划及生产管理十分复杂,因此研究多级制造系统生产计划与调度集成优化非常重要。
     本文以复杂产品多级制造系统为研究对象,提出以生产计划与调度集成优化研究为核心,以产品标准时间计算研究和制造资源与任务集成建模研究为辅的多级制造系统生产计划与调度集成优化关键技术的研究。主要工作有:
     (1)针对多级制造系统生产计划与调度集成优化过程中所需要的大量准确的产品工时信息,提出预处理研究:复杂产品多级制造系统产品标准时间计算研究。在分析当前标准时间和工时计算研究现状和不足的基础上,提出了基于基元操作(Primitive Operation, PO)的人工作业标准时间计算研究以及基于设备类型和基元操作的产品标准时间计算方法。
     (2)针对多级制造系统生产计划与调度集成优化过程中所需要的复杂的制造资源信息,提出预处理研究:复杂产品多级制造系统制造资源与任务集成建模研究。针对制造资源模型描述底层化和制造资源信息集成度低的问题,提出了制造资源的能力制造单元(Capacity Manufacturing Unit, CMU)和基于CMU的制造资源与任务集成模型(Manufacturing Resource and Task Integrated Model, MRTIM)。
     提出的复杂产品多级制造系统产品标准时间计算方法能够比较准确、快捷地制定产品工时,MRTIM模型把制造资源、任务、工时、人员配置等多种信息集成在同一个模型框架内并建立起了映射关系,从而为生产计划与调度集成优化提供快速、准确的信息支持。在预处理研究的基础上,提出本文的核心研究内容:
     (3)复杂产品多级制造系统的生产计划与调度集成优化(Integrated Optimization of Production Planning and Scheduling, IOPPS)建模研究。针对串行生产计划和调度存在的计划与调度割裂、计划难以响应调度过程中的变化、变化不能及时反馈的问题,提出了生产计划与调度集成优化研究。针对多级制造系统的典型子系统,提出了柔性作业车间和置换流水车间的生产计划与调度集成优化完备建模问题定义及其基于多种目标和约束的多产品生产计划与调度集成优化完备模型;针对生产关系复杂、计划与调度信息交互频繁的多级制造系统,提出了多级制造系统生产计划与调度集成优化建模问题的定义,建立了考虑各级系统之间生产衔接等问题的多级制造系统生产计划与调度集成优化完备模型。解决了串行生产计划和调度存在的问题和多层次结构产品的生产计划与调度综合优化建模问题,实现了多级制造系统及其单级子系统中生产计划与调度的同时优化。
     (4)复杂产品多级制造系统的生产计划与调度集成优化模型求解算法研究。针对生产计划与调度集成优化完备模型难于求解的问题,采用全空间(Full Space)启发式求解方式来求解此问题。提出了改进离散微粒群优化(Modified Discrete Particle Swarm Optimization, MDPSO)算法和基于并行MDPSO的文化算法(Cultural Algorithm based on MDPSO, CA-MDPSO)。在经典微粒群优化算法(Particle Swarm Optimization, PSO)基础上,对其编码方式、解码方式、进化方式进行相应的改进,提出改进的离散微粒群优化(MDPSO)算法来解决生产计划与调度集成优化问题,仿真和算法比较实验结果证明了算法的有效性;将提出的MDPSO进化算法嵌入到文化算法的进化框架中,提出基于并行MDPSO的文化算法(CA-MDPSO)来解决多级制造系统生产计划与调度集成优化问题,仿真和算法比较实验结果证明了算法的有效性。解决了多级制造系统及其单级子系统生产计划与调度集成优化完备模型的求解问题,在新兴智能优化算法改进及其在生产计划与调度集成优化领域的应用研究方面有所贡献。
     (5)为了对提出的方法和模型进行系统实现和验证,设计了基于网络运行的复杂产品多级制造系统生产计划与调度集成优化的原型系统,实现了产品标准时间实时计算、调用,制造资源与任务集成建模、查找,生产计划与调度集成优化的建模、求解等功能,完整地对论文的核心思想进行了验证和系统实现。
     本文的研究成果在一定程度上丰富了复杂产品多级制造系统生产计划与调度集成优化关键技术的研究,从产品的标准时间建立、制造资源与任务信息的明晰化到车间生产计划与调度集成优化工作的开展,构成了一个有机的整体。提出的关键技术不仅在理论方面有所突破,而且可以有效提升制造企业的竞争力,达到在不增加或少增加投入的情况下,提高企业生产力、资源利用率和决策管理能力的目的。
Complex products are a kind of product which has complicated demand, production technology, manufacturing process, system maintenance, project management and work environment. The process from raw materials to products or semi-finished products for complex products is usually completed in the multistage manufacturing system. The subsystems of multistage manufacturing system may be the work unit, workshops of an enterprise or the enterprises of an enterprise union, which can achieve the machining, assembly and other value adding manufacturing process. In the complex products multistage manufacturing system, the production relationship among subsystems is complex, the production type is various, the processing object is changing constantly and the information communication is frequent. Therefore, its production planning and management is very complicated and integrated optimization of production planning and scheduling of multistage manufacturing system for complex products seems very important.
     In this dissertation, we focused on integrated optimization of production planning and scheduling study, the product man-hour calculation study and manufacturing resource modeling study. The main study is summarized as follows:
     (1) To provide the abundant and accurate product man-hour for integrated optimization of production planning and scheduling of the multistage manufacturing system, the product standard time calculation study was presented as the pretreatment study for integrated optimization of production planning and scheduling. After the analysis on the current standard time and man-hour calculation study, the manual standard time calculation based on primitive operation(PO) and the product standard time calculation based on primitive operation and equipment type were presented.
     (2) To provide the complex manufacturing resource and task information for integrated optimization of production planning and scheduling of the multistage manufacturing system, the manufacturing resource and task integrated modeling study was presented as the pretreatment study for integrated optimization of production planning and scheduling. In order to solve the manufacturing resource description and integration, the Capacity Manufacturing Unit(CMU) and the Manufacturing Resource and Task Integrated Model(MRTIM) based on CMU were proposed.
     The proposed standard time calculation method can calculate product standard time accurately and rapidly, and the MRTIM can integrate the manufacturing resource, task, man-hour and person configuration in a frame and construct the mapping relationship. They provide a strong support for production planning and scheduling rapidly and accuratedly. On the basis of pretreatments study, the core research content of this dissertation were proposed.
     (3) The integrated optimization of production planning and scheduling modeling study on complex products multistage manufacturing system. In the traditional serial production planning and scheduling, the production planning and scheduling are dissevered, and the plan cannot respond the changes in the scheduling process, the changes in the scheduling process cannot be fed back to plan. In order to solve this problem, the integrated optimization of production planning and scheduling study was presented. Firstly, the classical subsystems integrated optimization of production planning and scheduling definition and detailed model of the multistage manufacturing subsystem were proposed, such as Flexible Jobshop and Permutation Flowshop; Then the multistage manufacturing system integrated optimization of production planning and scheduling model was presented, which considered the complex production relation among subsystems and the frequent communication between production planning and scheduling. Therefore, the modeling study achieves the simultaneous optimization of production planning and scheduling, and the defect of serial production planning and scheduling is overcome and the integrated optimization of production planning and scheduling for multiproduct is solved.
     (4) The algorithm study of integrated optimization of production planning and scheduling detailed model for complex products multistage manufacturing system. To solve the multistage manufacturing system integrated optimization of production planning and scheduling model in full space, the Modified Discrete Particle Swarm Optimization(MDPSO) algorithm and the Cultural Algorithm based on MDPSO(CA-MDPSO) were presented. MDPSO algorithm has unique encoding and decoding mode and modified evolutionary approach compared with classical Particle Swarm Optimization(PSO). CA-MDPSO is the combination of MDPSO algorithm, Cultural algorithm and Genetic algorithm and possesses two-level evolution frame. The experiment and comparison with other classical algorithms verifies the validity of the presented algorithms. This section solved the integrated optimization of production planning and scheduling model and improved the new intelligent optimization algorithms and extended their application in integrated optimization of production planning and scheduling domain.
     (5) The prototype system of complex products multistage manufacturing system integrated optimization of production planning and scheduling based on network was designed, which verified the presented theory and methods inextenso, such as product standard time calculation and search, manufacturing resource and task modeling and resource search and integrated optimization of production planning and scheduling.
     The research makes some contributions in key techniques of multistage manufacturing system integrated optimization of production planning and scheduling study. From the product basic standard time establishment, the vitrification of manufacturing resource and the implement of integrated optimization of production planning and scheduling, the presented research form an organic whole. The presented key technology not only make a breakthrough in the theory study, but also can effectively enhance the competitiveness of manufacturing enterprises, and improve the enterprise productivity, resource utilization and management capacity with no investment or less investment consequently.
引文
[1]陈功玉,李钢.多级制造系统的最优化模型及其应用[J].运筹与管理,1997,6(3):80-85.
    [2] George C. Hadjinicola, Andreas C. Soteriou. Reducing the cost of defects in multistage production systems: A budget allocation perspective [J]. European Journal of Operational Research, 2003, 145(3): 621-634.
    [3] Charalambous C., Hindi K.S. Applying GAs to complex problems: the case of scheduling multi-stage intermittent manufacturing systems[C]. Genetic Algorithms In Engineering Systems: Innovations And Applications, Second International Conference On. Glasgow, UK, 1997: 467-471.
    [4] Nagaraj P., Selladurai V. Analysis of optimum batch size in multistage, multifacility and multiproduct manufacturing systems [J]. International Journal of Advanced Manufacturing Technology, 2002, 19(2): 117-124.
    [5] S. Almutaway, M. Savsar,K. Al-Rashdan. Optimum machine selection in multistage manufacturing systems [J]. International Journal of Production Research, 2005, 43(6): 1109-1126.
    [6] Wu S.Y. Optimal policy for set-up time reduction in a multistage production-inventory system [J]. International Journal of Systems Science, 2002, 33(7): 551-556.
    [7] Ben Daya M, Rahim A. Optimal lot-sizing, quality improvement and inspection errors for multistage production systems [J]. International Journal of Production Research, 2003, 41(1): 65-79.
    [8] Chiu H.N., Chang J.H., Lee C.H. Lot streaming models with a limited number of capacitated transporters in multistage batch production systems [J]. Computers & Operations Research, 2004, 31(12): 2003-2020.
    [9] M.A. Hoque, S.K. Goyal. On lot streaming in multistage production systems [J]. International Journal of Production Economics, 2005, 95(2): 195-202.
    [10] Sarker B.R., Jamal A.M.M., Mondal S. Optimal batch sizing in a multi-stage production system with rework consideration [J]. European Journal of Operational Research, 2008, 184(3): 915-929.
    [11]徐和平,王德国,孙林岩.多阶段制造系统的生产计划与调度综合模型[J].兰州理工大学学报, 2004,30(3):127-129.
    [12] Heping Xu, Jianhua Wang, Linyan Sun, Jifeng Chen. An Integrated Planning/scheduling Model for Multi-stage Manufacturing System[J]. International Journal of Information Technology, 2006, 12(7):91-96.
    [13]黄海军,徐刚.多阶段制造系统调度模型与资源价格研究[J].北京航空航天大学学报, 1998,24(5):579-583.
    [14] Huang HaiJun, Xu Gang. Aggregate scheduling and network solving of multi-stage and multi-item manufacturing systems [J]. European Journal of Operational Research, 1998, 105(1): 52-65.
    [15] Shiyu Zhou, Yong Chen, Jianjun Shi. Statistical estimation and testing for variationroot-cause identification of multistage manufacturing Processes[J]. Automation Science and Engineering, IEEE Transactions on , 2004, 1(1):73- 83.
    [16]杜世昌,奚立峰,潘尔顺.串并联混合式多阶段制造系统产品质量建模与控制[J].计算机集成制造系统, 2006,12(7):1068-1073.
    [17]杜世昌,奚立峰,潘尔顺.多阶段制造系统中尺寸偏差建模与控制[J].上海交通大学学报, 2006, 40(4):583-587.
    [18]黄卫来,张子刚,栾芳,马辉民.多阶段生产系统最优生产批量和原材料订购决策模型[J].应用数学与计算数学学报, 1997, 11(2):18-28.
    [19]孙继文,奚立峰,杜世昌.面向多工位制造系统可诊断性的传感器布置优化[J].计算机集成制造系统, 2007, 13(12):2441-2445.
    [20] Nico Dellaert,Ton de Kok. Integrating resource and production decisions in a simple multi-stage assembly system [J]. International Journal of Production Economics, 2004, 90(3): 281-294.
    [21]张晓东,严洪森.多级车间生产计划和调度的集成优化[J].机械工程学报, 2005, 41(09): 98-105.
    [22] Alessandro Alle, Lazaros G. Papageorgiou, Jose M. Pinto. A mathematical programming approach for cyclic production and cleaning scheduling of multistage continuous plants[J]. Computers & Chemical Engineering, 2004, 28(1-2):3-15.
    [23] Holt C., Modiglinai F., Simon H.A. A Linear Decision Rule for Production and Employment Scheduling[J]. Management Science, 1955, 2(1):1-30.
    [24] Christos T. Maravelias, Charles Sung. Integration of production planning and scheduling: Overview, challenges and opportunities[J].Computers & Chemical Engineering, 2009, 33(12):1919-1930.
    [25] Harjunkoski I., Grossmann I. E. Decomposition techniques for multistage scheduling problems using mixed-integer and constraint programming methods[J]. Computers & Chemical Engineering, 2002, 26(11): 1533-1552.
    [26] Jain V., Grossmann I. E. Algorithms for hybrid MILP/CP models for a class of optimization problems[J]. INFORMS Journal on Computing, 2001,13(4):258-276.
    [27] Maravelias C. T. A decomposition framework for the scheduling of singleand multi-stage processes[J]. Computers & Chemical Engineering, 2006, 30(3):407-420.
    [28] Romero J., Badell M., Bagajewicz M., Puigjaner L. Integrating budgeting models into scheduling and planning models for the chemical batch industry[J]. Industrial and Engineering Chemistry Research, 2003, 42(24):6125-6134.
    [29] Wilkinson S. J., Shah N., Pantelides C. C. Aggregate modeling of multipurpose plant operation[J]. Computers & Chemical Engineering, 1995, 19(S1):583-588.
    [30] J. Váncza, T. Kis, A. Kovács. Aggregation-the key to integrating production planning and scheduling[J]. CIRP Annals-Manufacturing Technology, 2004, 53(1):377-380.
    [31] Birewar D. B., Grossmann I. E. Simultaneous production planning and scheduling in multiproduct batch plants[J]. Industrial and Engineering Chemistry Research, 1990, 29(4):570-580.
    [32] Sukoyo Matsuoka S., Muraki M. Production planning formulti-site batch plants with the MILP method[J]. Journal of the Japan Petroleum Institute, 2004, 47(5):318-325.
    [33] Wellons M. C., Reklaitis G. V. Scheduling of multipurpose batch chemical plants. 2.Multiple-product campaign formation and production planning[J]. Industrial and Engineering Chemistry Research, 1991, 30(4):688-705.
    [34] Henriques E. Towards the integration of process and production planning: An optimization model for cutting parameters[J]. International Journal of Advanced Manufacturing Technology, 2006, 28(1-2):117-128.
    [35] Erdirik-Dogan M., Grossmann I. E. Planning models for parallel batch reactors with sequence-dependent changeovers[J]. AIChE Journal, 2007, 53(9):2284-2300.
    [36] Wan X., Pekny J. F., Reklaitis G. V. Simulation-based optimization with surrogate models-Application to supply chain management[J]. Computers&Chemical Engineering, 2006, 29(6):1317-1328.
    [37] Sung C., Maravelias C. T. An attainable region approach for production planning of multi-product processes[J]. AIChE Journal, 2007, 53(5):1298-1315.
    [38] McKay K. N., Safayeni F. R., Buzacott J. A. A review of hierarchical production planning and its applicability for modern manufacturing[J]. Production Planning & Control, 1995, 6(5):384-394.
    [39] Subrahmanyam S., Pekny J. F., Reklaitis G. V. Decomposition approaches to batch plant design and planning[J]. Industrial and Engineering Chemistry Research, 1996, 35(6):1866-1876.
    [40] Bassett M. H., Pekny J. F., Reklaitis G. V. Decomposition techniques for the solution of large-scale scheduling problems[J]. AIChE Journal, 1996, 42(12):3373-3387.
    [41] Dimitriadis A. D., Shah N., Pantelides C. C. RTN-based rolling horizon algorithms for medium term scheduling of multipurpose plants[J]. Computers & Chemical Engineering, 1997, 21(S1):S1061-S1066.
    [42] Yan H. S., Xia Q. F., Zhu M. R., Liu X. L., Guo Z. M. Integrated production planning and scheduling on automobile assembly lines[J]. IIE Transactions, 2003, 35(8):711-725.
    [43] Sand G., Engell S. Modeling and solving real-time scheduling problems by stochastic integer programming[J]. Computers & Chemical Engineering, 2004, 28(6-7):1087-1103.
    [44] Kelly J. D., Zyngier D. Hierarchical decomposition heuristic for scheduling: Coordinated reasoning for decentralized and distributed decision-making problems[J]. Computers & Chemical Engineering, 2008, 32(11):2684-2705.
    [45] Stefansson H., Shah N., Jensson P. Multiscale planning and scheduling in the secondary pharmaceutical industry[J]. AIChE Journal, 2006, 52(12):4133-4149.
    [46] Erdirik-Dogan M., Grossmann I. E. A decomposition method for the simultaneous planning and scheduling of single-stage continuous multiproduct plants[J]. Industrial and Engineering Chemistry Research, 2007, 45(1):1-42.
    [47] Dan Wu, Marianthi Ierapetritou. Hierarchical approach for production planning and scheduling under uncertainty[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(11):1129-1140.
    [48] Hooker J. N., Ottosson G., Thorsteinsson E. S., Kim H. J. On integrating constraint propagation and linear programming for combinatorial optimization[C]. In Proceedings 16th national conference on artificial intelligence (AAAI), Cambridge: The AAAI Press/MIT Press, 1999, 136-141.
    [49] Chu Y., Xia Q. A hybrid algorithm for a class of resource constrained schedulingproblems[J]. Lecture Notes in Computer Science, 2005, 3524: 110-124.
    [50] Maravelias C. T., Grossmann I. E. A hybrid MILP/CP decomposition approach for the short term scheduling of multipurpose batch plants[J]. Computers & Chemical Engineering, 2004, 28(10):1921-1949.
    [51] Roe B., Papageorgiou L. G., Shah N. A hybrid MILP/CLP algorithm for multipurpose batch process scheduling[J]. Computers & Chemical Engineering, 2005, 29(6):1277-1291.
    [52] Martin Hüfner, Thomas Tometzki, Sebastian Engell. Two-Layer Planning and Scheduling of Batch Production Processes Under Uncertainty[J].Computer Aided Chemical Engineering, 2009, 27: 1197-1202.
    [53] Chunpeng Luo, Gang Rong. A Strategy for the Integration of Production Planning and Scheduling in Refineries under Uncertainty[J]. Chinese Journal of Chemical Engineering, 2009, 17(1):113-127.
    [54] Zukui Li, Marianthi G. Ierapetritou. Integrated production planning and scheduling using a decomposition framework[J]. Chemical Engineering Science, 2009, 64(16):3585-3597.
    [55] Bassett M. H., Dave P., Doyle F. J., etc. Perspectives on model-based integration of process operations[J]. Computers & Chemical Engineering, 1996, 20(6-7):821-844.
    [56] Blanco A. M., Masini,G., Petracci N., Bandoni J. A. Operations management of a packaging plant in the fruit industry[J]. Journal of Food Engineering, 2005, 70(3):299-307.
    [57] Kallrath J. Planning and scheduling in the process industry[J]. OR Spectrum, 2002, 24(3):219-250.
    [58] Kelly J. D. Formulating production planning models[J]. Chemical Engineering Program, 2004, 100(1):43-50.
    [59] Papageorgiou L. G., Pantelides C. C. Optimal campaign planning/scheduling of multipurpose batch/semicontinuous plants. 1. Mathematical formulation[J]. Industrial and Engineering Chemistry Research, 1996, 35(2):488-509.
    [60] Conor M. McDonald and Iftekhar A. Karimi. Planning and Scheduling of Parallel Semicontinuous Processes. 1. Production Planning[J]. Industrial & engineering chemistry research. 1997, 36 (7): 2691-2700.
    [61] Iftekhar A. Karimi and Conor M. McDonald. Planning and Scheduling of Parallel Semicontinuous Processes. 2. Short-Term Scheduling[J]. Industrial & engineering chemistry research. 1997, 36 (7):2701-2714.
    [62] Joly M., Moro L. F. L., Pinto J. M. Planning and scheduling for petroleum refineries using mathematical programming[J]. Brazilian Journal of Chemical Engineering, 2002, 19(2):207-228.
    [63] Neiro S. M. S., Pinto J. M. Multiperiod optimization for production planning of petroleum refineries[J]. Chemical Engineering Communications, 2005, 192(1):62-88.
    [64] J.B. Lasserre. An integrated model for job-shop planning and scheduling [J]. Management Science, 1992, 38(8): 1201-1211.
    [65] Haase K., Kimms A. Lot sizing and scheduling with sequence-dependent setup costs and times and efficient rescheduling opportunities [J]. International Journal of Production Economics, 2000, 66(2): 159-169.
    [66] Reklaitis G. V. Overview of planning and scheduling technologies[J]. Latin American Applied Research, 2000, 30(4):285-293.
    [67] Berning G., Brandenburg M., Gursov K., Kussi J. S., Mehta V., Tolle F. J. Integrating collaborative planning and supply chain optimization for the chemical process industry. (I)-Methodology [J]. Computers & Chemical Engineering, 2004, 28(6-7):913-927.
    [68] Yan H.S., Zhang X.D. A Case Study on Integrated Production Planning and Scheduling in a Three-Stage Manufacturing System [J]. Automation Science and Engineering, IEEE Transactions on, 2007, 4(1): 86-92.
    [69]庞哈利.柔性Job shop集成化计划调度模型及其求解算法[J].控制与决策, 2003, 18(1): 34-39.
    [70]张晓东,严洪森.一类Job-shop车间生产计划和调度的集成优化[J].控制与决策, 2003, 18(5): 581-584.
    [71]路致远,严洪森,沈境.基于HGA的冲压车间生产计划与调度的集成优化[J].计算机技术与发展, 2007, 17(3): 179-182.
    [72]尚文利,范玉顺.成批生产计划调度的集成建模与优化[J].计算机集成制造系统, 2005, 11(12): 1663-1667.
    [73]严洪森,夏琦峰,朱呈如.汽车装配车间生产计划与调度的同时优化方法[J].自动化学报, 2002, 28(6): 911-919.
    [74]陈琳,严洪森,刘通,刘霞玲.汽车装配线生产计划与调度的集成优化方法[J].计算机技术与发展, 2009,19(1):134-138.
    [75] Benders, J. F. Partitioning procedures for solving mixed variables programming problems[J]. Numerische Mathematik, 1962, 4:238-252.
    [76] Geofrion A. M. Generalized Benders decomposition[J]. Journal of Optimization Theory and Applications, 1972, 10(4):237-260.
    [77] Everett H. III. Generalized Lagrangemultiplier method for solving problems of optimum allocation of resources[J]. Operations Research, 1963,11(3): 399-417.
    [78] Fisher M. L. The Lagrangean relaxation method for solving integer programming problems[J]. Management Science, 1981, 27(1):1-18.
    [79] Guignard M., Kim S. Lagrangean decomposition: A model yielding stronger Lagrangean bounds[J]. Mathematical Programming, 1987, 39(2):215-228.
    [80] Zukui Li, Marianthi G. Ierapetritou. Production planning and scheduling integration through augmented Lagrangian optimization[J]. Computers & Chemical Engineering, 2010, 34(6):996-1006.
    [81]熊锐,陈浩勋.一种计划与车间调度的集成模型及其拉氏松弛求解法[J].西安电子科技大学学报, 1996, 23(4): 509-516.
    [82] Gokbayrak K., Cassandras C.G. Stochastic optimal control of a hybrid manufacturing system model[C]. Decision and Control, Proceedings of the 38th IEEE Conference on. Phoenix, Arizona USA, 1999: 919-924.
    [83] GrosfeldNir A., Magazine M. Gated MaxWIP: a strategy for controlling multistage production systems [J]. International Journal of Production Research, 2002, 40(1): 2557-2567.
    [84] K. Gokbayrak, O. Selvi. Optimal hybrid control of a two-stage manufacturing system[C]. Proceedings of the 2006 American Control Conference. Minneapolis, Minnesota, USA:2006: 3364-3369.
    [85] Carvalho M.F., Fernandes Cao, Ferreira Pav. Multiproduct multistage production scheduling (MMPS) for manufacturing systems [J]. Production Planning & Control, 1999, 10(7): 671-681.
    [86] Christoforos Charalambous, Turaj Tahmassebi, Khalil Hindi. Modeling multi-stage manufacturing systems for efficient scheduling [J]. European Journal of Operational Research, 2000, 122(2): 329-338.
    [87] Zhang Jihui, Zhao Likuan, Wook Hyun Kwon. Scheduling and optimization for a class of single-stage hybrid manufacturing systems[C]. Robotics and Automation, Proceedings of the IEEE International Conference on. Eeoul Korea, 2001: 3115-3120.
    [88] Kennedy J., Eberhart R. C. Particle Swarm Optimization [C]. Proceedings of IEEE International Conference on Neural Networks. Perth, Australia: IEEE Service Center, Piscataway, NJ, 1995: 1942-1948.
    [89]滕居特,陈国初,顾幸生.分段式微粒群优化算法[J].华东理工大学学报, 2006, 32(4): 462-465.
    [90] Tae-Hyoung Kim, Ichiro Maruta, Toshiharu Sugie. Robust PID controller tuning based on the constrained particle swarm optimization[J]. Automatica, 2008, 44(4):1104-1110.
    [91] Zhihua Cui, Xingjuan Cai, Jianchao Zeng, Guoji Sun. Particle swarm optimization with FUSS and RWS for high dimensional functions[J]. Applied Mathematics and Computation, 2008,205(1):98-108.
    [92] R.A. Thakker, M.B. Patil, K.G. Anil. Parameter extraction for PSP MOSFET model using hierarchical particle swarm optimization[J]. Engineering Applications of Artificial Intelligence, 2009,22 (2):317-328.
    [93] Marcio Schwaab, Evaristo Chalbaud Biscaia Jr., JoséLuiz Monteiro, JoséCarlos Pinto. Nonlinear parameter estimation through particle swarm optimization[J]. Chemical Engineering Science, 2008, 63(6):1542-1552.
    [94] M. Saravanan,S. Mary Raja Slochanal,P. Venkatesh,J. Prince Stephen Abraham. Application of particle swarm optimization technique for optimal location of FACTS devices considering cost of installation and system loadability [J]. Electric Power Systems Research, 2007, 77(3-4): 276-283.
    [95] Kennedy J., Eberhart R. C. A discrete binary version of the particle swarm algorithm[C]. Proceedings of IEEE International Conference on Systems, Man and Cybernetics (SMC '97). Orlando, Fla, USA: IEEE Press, 1997: 4104-4108.
    [96] Liao Chingjong, Tseng Chaotang, Pin Luarn. A discrete version of particle swarm optimization for flowshop scheduling problems [J]. Computers & Operations Research, 2007, 34(10): 3099-3111.
    [97] M. Clerc. Discrete Particle Swarm Optimization, Illustrated by Traveling Salesman Problem [M]. Berlin: Springer-Verlag, 2004: 219-239.
    [98] Pan Quanke, Fatih M., Tasgetiren. A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem [J]. Computers & operations Research, 2007, 35(9): 1-33.
    [99] Lian Zhigang, Gu Xingsheng, Jiao Bin. A novel particle swarm optimization algorithm for permutation flow-shop scheduling to minimize makespan [J]. Chaos, Solitons & Fractals,2008, 35(5): 851-861.
    [100] Lian Zhigang, Jiao Bin, Gu Xingsheng. A similar particle swarm optimization algorithm for job-shop scheduling to minimize makespan [J]. Applied Mathematics and Computation, 2006, 183(2): 1008-1017.
    [101] Ayed Salman, Imtiaz Ahmad, Sabah AI-Madani. Particle swarm optimization for task assignment problem [J]. Microprocessors and Microsystems, 2002, 26:363-371.
    [102] Bin Wu, Wanliang Wang, Yanwei Zhao, Xinli Xu,Fengyu Yang. A Novel Real Number Encoding Method of Particle Swarm Optimization for Vehicle Routing Problem[C]. Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on. 2006: 3271-3275.
    [103] R. G. Reynolds. An introduction to cultural algorithms[C]. Proceedings of 3rd Annual Conference on Evolutionary Programming. 1994: 131-139.
    [104] R. G. Reynolds, C. J. Chung. A self-adaptive approach to representation shifts in cultural algorithms[C]. Proceedings of IEEE International Conference on Evolutionary Computation. New York: IEEE Press, 1996: 94-99.
    [105] Zannoni Elena, Reynolds Robert G. Learning to control the program evolution process with cultural algorithms [J]. Evolutionary Computation, 1997, 5(2): 181-211.
    [106] Fang Gao, Hongwei Liu, Qiang Zhao and Gang Cui. Hybrid Model of Genetic Algorithm and Cultural Algorithms for Optimization Problem[J]. Lecture Notes in Computer Science, 2006, 4247:441-448.
    [107]郭一楠,巩敦卫.双层进化交互式遗传算法的知识提取与利用[J].控制与决策, 2007, 22(12):1329-1335.
    [108] Saleem S M. Knowledge-based solution to dynamic optimization problems using cultural algorithms[D]. USA: Wayne State University, 2001.
    [109] C.J.Chung, R.G.Reynolds. Knowledge-based self-adaptation in evolutionary search [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2000, 14(1): 19-33.
    [110] Becerra R. L.,Coello C. A. C. Solving hard multiobjective optimization problems usingε-constraint with cultured differential evolution[C]. The 9th International Conference on Parallel Problem Solving from Nature,Iceland,2006, 4193:543-552.
    [111] Iacoban R., Reynolds R. G., Brewster J. Cultural swarms: modeling the impact of culture on social interaction and problem solving[C]. IEEE Swarm Intelligence Symposium, 2003:205-211.
    [112] Iacoban R., Reynolds R. G., Brewster J. Cultural swarms:assessing the impact of culture on social interaction and problem solving[C]. IEEE Swarm Intelligence Symposium, 2003:212-219.
    [113] Coelho L. D. S., Mariani V. C. Use of cultural particle swarm optimization for loney’s solenoids design [C]. In: Proc. 12th Biennial IEEE Conference on Electromagnetic Field Computation, Miami, FL, USA, IEEE Computer Society Press, Los Alamitos, 2006:482-482.
    [114] Coelho L. D. S.,Mariani V. C. An efficient particle swarm optimization approach based on cultural algorithm applied to mechanical design[C]. IEEE Congress on Evolutionary Computation, 2006:1099-1104.
    [115]马慧民,叶春明.半导体炉管区批调度问题的粒子群优化算法研究[J].计算机集成制造系统, 2007, 13(6): 1121-1126.
    [116]马慧民,叶春明.基于文化进化的并行粒子群算法[J].计算机工程, 2008, 34(2): 193-195.
    [117]王奕首,艾景波,史彦军,滕弘飞.文化粒子群优化算法[J].大连理工大学学报, 2007,47(4):539-544.
    [118] Robert G. Reynolds, Zbigniew Michalewicz, Michael J. Cavaretta. Using cultural algorithms for constraint handling in GENOCOP[C]. Proceedings of the Fourth Annual Conference on Evolutionary Programming. Cambridge, Massachusetts: MIT Press, 1995: 298-305.
    [119] Chung C., Reynolds R.G. A testbed for solving problems using cultural algorithms[C]. Evolutionary Programming V: Pceedings of the Fifth Annual Conference on Evolutionary Programming. Cambridge, Massachusetts: MIT Press, 1996: 1-13.
    [120] Reynolds R. G., Peng B., Alomari R. S. Cultural evolution of ensemble learning for problem solving[C]. IEEE Congress on Evolutionary Computation, 2006:1119-1126.
    [121]黄海燕,顾幸生,刘漫丹.求解约束优化问题的文化算法研究[J].自动化学报, 2007, 33(10):1115-1120.
    [122] Rechtycky Nestor, Reynolds R.G. Using Algorithms to re-engineer large-scale semantic networks [J]. International Journal of Sofeware Engineering and Knwledge Engineering, 2005, 15(4): 665-693.
    [123] Alami J., Imrani A. E., Bouroumi A. A multipopulation cultural algorithm using fuzzy clustering[J].Applied Soft Computing, 2007, 7(2):506-519.
    [124] N.B. Ho, J.C. Tay. Genace: an efficient cultural algorithm for solving the flexible job-shop problem[C]. 2004 Congress on Evolutionary Computation. Portland, OR, USA: 2004: 1759-1766.
    [125] Revira D.C., Becerra R.A., Coello C.A.C. Cultural algorithms, an alternative heuristic to solve the job shop scheduling problem [J]. Engineering Optimization, 2007, 39(1): 69-85.
    [126]何洋林,叶春明.模糊交货期Flowshop调度文化进化算法研究[J].上海理工大学学报, 2009, 31(1): 99-102.
    [127] S. Kai,Y. Genke. An effective hybrid optimization algorithm for the flow shop scheduling problem[C]. IEEE International Conference on Information Acquisition,2006:1234-1238.
    [128] N. Sellie Clifford. Predetermined motion-time systems and the development and use of standard data [M]. New York: John Wiley & Sons, 1992.
    [129] A. Freivalds, J. Goldberg. Specification of base for variable relaxation allowance [J]. The journal of methods-time measurement, 1988, (14):2-29.
    [130] J. Neter, M. Wasserman, M. H. Kutner, C. J. Nachstheim. Applied linear statistical models [M]. New York: McGraw-Hill, 1996.
    [131] H. Bunch. Study of the causes of man-hour variance of naval shipyard work standards [J]. Journal of Ship Production, 1990, 6(4): 268-272.
    [132] Lee J. K., Kim H. D. Man-hour requirement estimation for assemblies using neural networks[C]. Proceedings of’94 Japan /Korea Joint Conference on Expert Systems. Tokyo, 1994: 203-206.
    [133] J. K. Lee, K. J. Lee,H. K. Park. Developing scheduling systems for Daewoo shipbuilding[J]. European Journal of Operational Research, 1997, 2(2): 380-395.
    [134] Carl R. Lindenmeyer. How to Design and Conduct a computer-Integrated Time Study with Active Element Performance Rating [EB/OL]. http://www.c-four.com, 2001.
    [135] D. Askarany, M. Smith. A critical evaluation of the diffusion of cost and management accounting innovations[C]. International Conference on Management of Innovation and Technology (ICMIT). Singapore, 2000: 59-64.
    [136] Cynthia V. White. Naval shipyard computer-aided time standards[J]. Computers & Industrial Engineering, 1986, 11(1-4):36-39.
    [137] William F. Cunniff. Computerization of time standards on a micro[J].Computers & Industrial Engineering, 1986, 11(1-4):11-15.
    [138] K.S. Kang,T. H. Kim ,I. K. Rhee. The establishment of standard time in die manufacturing process using standard data method[J]. Computers & Industrial Engineering, 1994, 27:539-542.
    [139] Huang ChunNen. Time study on two-echelon supply chain for steel framing construction: Field investigation and networking model simulation [D]. Wisconsin: The University of Wisconsin - Madison, 2003.
    [140] DeSouza, Savio Jose. Design and development of a knowledge-based system for Time and Motion study [D]. Texas: Texas A&M University - Kingsville, 2002.
    [141] Chang Seong Ko, Myung Soo Cha, Jae Jeung Rho. A case study for determining standard time in a multi-pattern and short life-cycle production system [J]. Computers & Industrial Engineering, 2007, 53(2): 321-325.
    [142] Jang Jaejin, Liu C. Richard. Estimating the reduction in labor hours due to a new technology under uncertain demand [J]. International Journal of Production Economics, 1993, 29(2): 211-222.
    [143] Cheng ShunTe, Yao Leehter, Yen JungLiang, Chang WenChi, Lu TaiGen,Lin JeHsiung. Cost analysis and man-hour assessment for the pilot direct load control system in Taipei Metropolitan area [J]. Monthly Journal of Taipower's Engineering, 1998, 598:36-50.
    [144]李鹏,张树生,周竟涛,钱坤.成组技术在计算机辅助工时定额系统中的应用[J].计算机应用, 2003, (23):42-43.
    [145] Bin Liu,Zu-hua Jiang. The man-hour estimation models & its comparison of interim products assembly for shipbuilding [J]. International Journal of Operations Research, 2005, 2(1): 9-14.
    [146]姜晓鹏,王润孝,高琳,曹兰景.计算机辅助工时定额系统中的定额测算模型研究[J].计算机应用研究, 2006, (03):183-185.
    [147]张军辉,张志英,江志斌,毛文芳.船厂起重作业时间测定与分析[J].工业工程与管理, 2006, (01):86-89.
    [148]张吉楠.计算机辅助工时定额测算系统开发与研究[D].西安:西北工业大学, 2003.
    [149]郝景新.板式家具典型作业岗位工时与产能研究[D].南京:南京林业大学, 2006.
    [150]杜茂华,黄亚宇,王学军. CAPP系统中机械加工工时定额系统的开发[J].机械设计, 2006, 23(1): 10-12.
    [151]洪湖鹏,郁鼎文,张玉峰,解开颜.通用化计算机辅助工时系统的研究和开发[J].制造技术与机床, 2001, (9):50-53.
    [152] Douglas P. Landsittel, Lytt I. Gardner, Vincent C. Arena. Identifying Populations at HighRisk for Occupational Back Injury with Neutral Networks [J]. Human and Ecological Risk Assessment, 1998, 4(6): 1337-1352.
    [153] Fan Xiaoping, Liu Yaowu. Alterable-Phase Fuzzy Control Based on Neutral Network [J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8(1): 80-85.
    [154]朱历新,周竞涛,高俊杰.基于神经网络的工时定额技术研究[J].机械科学与技术, 2004, 23(6): 742-747.
    [155]钟宏才,刘建峰.应用神经网络实现中间产品加工工时定额的快速计算[J].华东船舶工业学院学报(自然科学版), 2003, 17(2): 23-28.
    [156]陈民俊,潘斌,刘建峰.应用BP神经网络测算造船作业任务包定额工时[J].中国造船, 2003, 44(2): 1-7.
    [157]刘滨,蒋祖华.船舶装配作业工时智能估算技术[J].上海交通大学学报, 2005, (12):1979-1983.
    [158]董丰收,张振明,贾晓亮,黄利江,刘书暖.基于典型工序的工时定额制定方法[J].机械设计与制造, 2006, (10): 174-176.
    [159] Gun Ho Lee. Rule-based and case-based reasoning approach for internal audit of bank [J]. Knowledge-Based Systems, 2008, 21(2): 140-147.
    [160] Tseng H.E., Chang C.C., Chang S.H. Applying case-based reasoning for product configuration in mass customization environments [J]. Expert Systems with Applications, 2005, 29(4): 913-925.
    [161] Gao Junjie, Deng Guishi. The research of applying domain ontology to case-based reasoning system[C]. Services Systems and Services Management, Proceedings of ICSSSM '05, International Conference on. 2005: 1113-1117.
    [162] Gao Junjie, Deng Guishi. A Semantic Web-Based Case Representation and Retrieval[C]. Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on. 2006: 4335-4339.
    [163]杨宁,王玉,周雄辉.基于事例推理的注塑模加工时间定额的确定方法[J].计算机集成制造系统, 2005, 11(2): 275-279.
    [164]杨青海,祈国宁,黄哲人,郑克勤.基于案例推理和事物特性表的零件工时估算方法[J].机械工程学报, 2007, 43(5): 99-105.
    [165] Perrin O., Godart C. A model to support collaborative work in virtual enterprises [J]. Data & Knowledge Engineering, 2004, 50(1): 63-86.
    [166] D'Amours Sophie, Benoit Montreuil, Pierre Lefrancois, Francois Soumis. Networked manufacturing: the impact of information sharing [J]. Internation Journal of Production Economics, 1999, 58(1): 63-79.
    [167] Martinez M. T., Fouletier P., Park K. H. Virtual enterprise-organisation, evolution and control [J]. International Journal of Production Economics, 2001, 74(1/3): 225-238.
    [168] J. Lee, K. Sian, S.Hong. Enterprise integration with ERP and EAI [J]. Communications of the ACM, 2003, 46:54-60.
    [169] Elkins D. A., Huang N., Alden J. M. Agile manufacturing systems in the automotive industry [J]. International Journal of Production Economics, 2004, 91(3): 201-214.
    [170] Liu Chengying, Wang Xiankui, He Yuchen. Research on manufacturing resource modeling based on the O–O method [J]. Journal of Materials Processing Technology,2003, 139(1-3): 40-43.
    [171] Berio G., Vernadat F. B. New developments in enterprise modelling using CIMOSA [J]. Computers in Industry, 1999, 40(2/3): 99-114.
    [172] Chen Hua, Fang Yadong. Research and realization of manufacturing resource information integration and sharing based on XML technology[C]. Computer and Computational Sciences, 2007. IMSCCS 2007. Second International Multi-Symposiums on. 2007: 454-457.
    [173] Jay Steele, Young-Jun Son, Richard A. Wysk. Resource modeling for the integration of the manufacturing enterprise[J]. Journal of Manufacturing Systems, 2001, 19(6):407-427.
    [174] Yan Cao, Sen Cao, Lina Yang. Modeling and optimal selection of manufacturing resources based on UML and AHP[C]. Computing, Communication, Control, and Management, 2009. CCCM 2009. ISECS International Colloquium on , 2009, 1:62-65.
    [175] Xue D., Sun J., Norrie D. H. An intelligent optimal production scheduling approach using constraint-based search and Agent-based collaboration [J]. Computers in Industry, 2001, 46(2): 209-231.
    [176] Sun J., Xue D. A dynamic reactive scheduling mechanism for responding to changes of production orders and manufacturing resources [J]. Computer in Industry, 2001, 46(2): 189-207.
    [177] L. Ortega. A Java application based on an EXPRESS model for sharing flexible manufacturing resources data[C]. Proceedings of the 8th IEEE International Conference on Emerging Technologies and Factory Automation. Piscataway, N.J., USA: IEEE Press, 2001: 3-11.
    [178] Wang Chinbin, Chen Tsungyi, Chen Yuhmin, Chu Huichuan. Design of a Meta Model for integrating enterprise systems [J]. Computers in Industry, 2005, 56(3): 305-322.
    [179]毛媛,刘杰,李伯虎.基于元模型的复杂系统建模方法研究[J].系统仿真学报, 2004, 14(4): 411-414.
    [180]倪中华,易红,汤文成.基于XML面向工艺设计的制造资源模型[J].计算机集成制造系统, 2002, 8(6): 429-432.
    [181]尚文利,王成恩,张士杰.基于IDEF与UML的系统建模方法[J].计算机集成制造系统, 2004, 10(3): 252-258.
    [182]张大勇,徐晓飞,王刚. UML-XML集成的敏捷虚拟企业资源建模方法[J].中国机械工程, 2003, 14(5): 395-399.
    [183]房亚东,何卫平,杜来红.基于多维度分析的制造资源集成与共享[J].计算机集成制造系统, 2006, 12(7): 1047-1053.
    [184]廖伟智,孙林夫.网络化资源配置中的制造资源模型研究[J].电子科技大学学报, 2005, 34(5): 657-660.
    [185] Tao Fei, Hu Yefa, Ding Yufeng, Sheng Buyun, Song Chunsheng, Zhou Zude. Modelling of manufacturing resource in manufacturing grid based on XML[C]. Industrial Informatics, 2006 IEEE International Conference on. Singapore, 2006: 1261-1266.
    [186]姚倡锋,张定华,卜昆,汪文虎,任军学.基于物理制造单元的网络化制造资源建模及信息集成[J].计算机集成制造系统, 2008, 14(4): 0667-0674.
    [187]梁峰,江志斌,陶俐言.基于元资源的制造资源建模方法研究[J].计算机集成制造系统, 2008, 14(12): 2306-2311.
    [188]阚树林.基础工业工程[M].北京:高等教育出版社, 2005.
    [189]汪应洛.工业工程基础[M].北京:中国科学技术出版社, 2005.
    [190] Benjamin Niebel, Andris Freivalds.方法、标准与作业设计(第11版)[M].王爱虎,鄂明成,叶飞,曾敏刚译.北京:清华大学出版社,2007.
    [191] L.G. Song. Design and implementation of a virtual information system for agile manufacturing [J]. IIE Transaction, 1997, 29(10): 839-857.
    [192]范玉顺等.企业建模理论与方法学导论[M].北京:清华大学出版社, 2001.
    [193]苟凌怡,熊光楞,谢金崇,柴旭东.基于XML的产品信息集成关键技术研究[J].计算机辅助设计与图形学学报, 2002, 14(2): 105-110.
    [194]蔡长韬.基于STEP/XML的集成化工艺信息描述方法研究[J].计算机集成制造系统, 2008, 14(5): 912-917.
    [195] Toshio Kojima, Shigeko Ohtani, Takahiro Ohashi. A manufacturing XML schema definition and its application to a data management system on the shop floor [J]. Robotics and Computer-Integrated Manufacturing, 2008, 24(4): 545-552.
    [196] Eric Pardede, J. Wenny Rahayu, David Taniar. XML data update management in XML-enabled database [J]. Journal of Computer and System Sciences, 2008, 74(2): 170-195.
    [197] K.C. Morris. A framework for XML schema naming and design rules development tools [J]. Computer Standards & Interfaces, 2010, In Press, Corrected Proof (Available online 1 February 2010).
    [198] Tim Bray, Jean Paoli,C. M. Sperberg-McQueen,Eve Maler,Fran?ois Yergeau. Extensible Markup Language (XML) 1.0 (Fifth Edition) [EB/OL]. http://www.w3.org/TR/REC-xml/, 2009.
    [199] FalLside David C., Priscilla Walmsley. XML Schema Part 0: Primer Second Edition [EB/OL]. http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/, 2010.
    [200] Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn. XML Schema Part 1: Structures[EB/OL].http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/, 2010.
    [201] Kaiser Permanente Paul V. Biron, Ashok Malhotra. XML Schema Part 2: Datatypes[EB/OL].http://www.w3.org/TR/xmlschema-2/.http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/, 2010.
    [202] Chandrasekaran S., Ponnambalam S.G., Suresh R.K. A hybrid Discrete Particle Swarm Optimization Algorithm to Solve Flow Shop Scheduling Problems[C]. Cybernetics and Intelligent Systems, 2006 IEEE Conference on. Bangkok: 2006: 1-6.
    [203] Kara Y., Ozcan U., Peker A. Balancing and sequencing mixed-model just-in-time U-lines with multiple objectives [J]. Applied Mathematics and Computation, 2007, 184(2):566-588.
    [204]宋华明,韩玉启,杨慧.多品种混合型装配流水线的平衡设计[J].中国机械工程, 2003, 14(06): 475-479.
    [205] J. Miltenburg. Level schedules for mixed-model assembly lines in just-in-time production systems [J]. Management Science, 1989, 35(2): 192-207.
    [206] C.A.C. Coello, G.T. Pulido, M.S. Lechuga. Handling multiple objectives with particle swarm optimization [J]. Evolutionary Computation, IEEE Transactions on, 2004, 8(3): 256-279.
    [207] Zhang Xiaohua, Meng Hongyun, Jiao Licheng. Intelligent particle swarm optimization in multiobjective optimization[C]. Evolutionary Computation, the 2005 IEEE Congress on. 2005: 714-719.
    [208]马慧民,叶春明,许圣良,张爽.基于粒子群算法的分布式多工厂批量计划问题研究[J].运筹与管理, 2009, 18(3): 123-127.
    [209]柳毅,叶春明.模糊交货期Flow-shop调度问题的改进微粒群算法[J].哈尔滨工业大学学报, 2009, 41(1): 145-148.
    [210] J. C. Bean. Genetic Algorithms and Random Keys for Sequencing and Optimization [J]. ORSA Journal on Computing, 1994, 6(2): 154-160.
    [211]赫然,王永吉,王青等.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报, 2005, 16(12): 2036-2044.