热处理对新型高Cr热作模具钢热疲劳性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先测定了新型高Cr 热作模具钢(HHD 钢)的连续冷却转变曲线(CCT 曲线),并以该曲线为依据研究了不同预处理、不同淬火温度、不同回火温度对新型高Cr 热作模具钢(HHD 钢)组织、热疲劳性能、力学性能等的影响规律与作用机制。设计并优化出具有高寿命的新型高Cr 热作模具钢的强韧化热处理工艺,为指导实际生产奠定理论基础。
    实验结果表明,对新型高Cr 热作模具钢进行优化热处理后,钢中的晶粒组织得到了细化,碳化物的形态、数量和分布得到了改善,获得了大量弥散分布的纳米级碳化物;冲击韧性、硬度都有所提高。采用自约束热疲劳实验方法,经强韧化热处理后的新型高Cr 热作模具钢的抗热疲劳性能要优于8407 钢。在相同的实验条件下,8407 钢的主裂纹长度是新型高Cr 热作模具钢的1.25 倍,循环软化速率是新型高Cr 热作模具钢的3 倍;而且表面龟裂较新型铸造高Cr热作模具钢更加严重。生产实验表明,新型铸造高Cr 热作模具钢与8407 钢和H13 钢相比,具有良好的抗热机械疲劳性、抗氧化性和热稳定性,同时型腔表面热机械疲劳龟裂纹少,而且模具成本较低,深受应用者欢迎。
    研究发现新型高Cr 热作模具钢的热疲劳机制与强韧性有关,热疲劳裂纹萌生主要受强度影响,而扩展主要受韧性影响。同时HHD 钢的热疲劳机制还与氧化密切相关,氧化大大地促进了热疲劳裂纹的萌生与扩展。强韧化热处理通过固溶强化、晶粒细化强化、第二相质点沉淀析出等强化机制,提高了新型高Cr 热作模具钢的强韧性、抗氧化性及回火稳定性,使新型铸造高Cr 热作模具钢具有高于锻造8407 钢及H13 钢的热疲劳抗力。
Nowadays, mould technology has been a more important symbol that canweigh one country’s production ability. Recently, the total amount of mould steelvalues has been 600 ~ 650 hundred million dollars all over the world, and theexpenditure on the mould steel of our nation was about 360 hundred million RMBin 2002. In 2003 the expenditure increased by 25% which was up to 450 hundredmillion RMB. It has been estimated by experts that the increasing extent can be30% in the future, and the automobile and motorcycle will be the most importantparts that may possess about 60% in all expenditure among all of the mould steelmarkets. Thermal fatigue (TF) is a leading failure of hot working die steels. It hasbeen reported that 60~70% failures have been caused by TF among all the failuresof hot working die steels. Therefore, it is of great importance for the developmentof the economy to improve the TF property of hot working die steels. The TFresearch of hot work die steels is a representative orientation in the field of the TFresearch. During the past years, much of the research on the TF of hot work diesteels has been focused on forging die steels, while less work has been carried outon the TF behavior of cast die steels. Especially in the recent years, the studies oncast die materials have been developed widely and rapidly. It is interesting to notethat more and more cast die steels replace forging die steels as die materialsbecause of their shorter produce cycles and lower expense. Therefore, the study onthe TF behavior of cast hot work die steels has not only a theoretic but also apractical value.
    Under the condition of the chemical composition is unchangeable, heattreatment is the best way for change the microstructure of steel. It can improve theperformance of steel with different heating process and cooling manner. This is abasic proof for heat treating process. in a word, the heat treatment is a key
    technology for improving the life of hot work die steel. The new type of high Cr hot work die steels (HHD steel), which is developedby Jilin University, is used as the raw material. Optical microscope (OM), scanningelectron microscopy (SEM), Transmission Electron Microscope(TEM), chemicalcomposition analysis, impact toughness tests, hardness tests and TF tests have beencarried out to study the effects of the strengthening and toughening heat treatmenton the microstructure, mechanical behavior, TF of new type high Cr hot work diesteel and the mechanisms on TF resistance. At the same time, the betterstrengthening and toughening heat treatment technology of HHD steel has beenoptimized, which is used to guide the practical production. The research was emphasized on the effect of optimizing heat treatment on theproperty of HHD steel. By analyzing the experimental data, some conclusions havebeen drawn as follows:(1) The continuous cooling transformation curve (the CCT curve) of HHD steel has been determined for the first time, which provides the important basis for attaining the perfect microstructure in the theoretic studies and practical application. The result showed that experimental steel had good harden ability; the transformation temperature of the various phases was: Ac1-820℃, Ac3-880℃, Ms-310℃and Mf-190℃; the time of the carbide deposition was later, and it deposited until the cooling rate reached to 0.53℃/s (the cooling time was 30 minutes), and the least critical cooling rate was 0.53℃/s in which the steel can obtain all martensite structure.(2) The pretreatment may eliminate effectively the composition segregation phenomenon and reduce the network carbide in the boundary of the grain. At the same time, it may get the finer grains and obtain the uniform high temperature tempering martensite microstructure. Furthermore, the pretreatment can improve the obdurability and the resistance of thermal fatigue (TF) of the HHD steel. After the pretreatment process, the mechanical properties of the HHD steel were improved significantly: compared the samples pretreated with those pretreated by the conventional anneal and applied without pretreatment, the impact toughness of the steel was increased by 19% and 55%, respectively; the hardness of the HHD steel after the pretreatment was 26~28HRC, which ensures the processability; the hardness of the samples tempered was less difference compared with those without pretreatment; however, the optimizing pretreatment TF life was as 1.5 times as the steel without pretreatment. By pretreated with optimizing pretreatment technique, the HHD steel had an optimal TF property and was as 1.4~1.6 time as the forging 8407 steel.
    Analyzing the effect of pretreatment on hardness, impact toughness and TF property, the optimal pretreatment process have been optimized as 1080℃ +880℃.(3) The microstructure of the HHD steel treated by the pretreatment process was lathing martensite after the quenching process. The proper increasing of the quenching temperature was favorable to attain the lathing martensite structure and the sub-structure of the dislocation martensite, which can attain the higher strength and toughness after the temper and improve the resistance of the TF. In the quenching temperature range from 980℃to 1160℃, the quenching hardness increased with the increasing of the quenching temperature. However, the peak hardness value was not found in the chosen quenching temperature range. As the quenching temperature increased, the impact toughness increased firstly and reduced subsequently, and its peak value was obtained near 1080 ℃. Compared with the samples quenched at 1000 ℃and 1160℃, the impact toughness of the sample quenched at 1080 ℃was increased by 39% and 63%, respectively. The TF resistance of the sample quenched at 1080℃was better than the other quenched samples. Compared with the 8407 steel, the length of the main crack of the 8407 steel was as1.25 times as the sample quenched at 1080℃, and the attenuation rate of the hardness was as 3 times as the sample quenched at 1080℃. Based on the research of the effect of the quenching temperature on the hardness, impact toughness and thermal fatigue property of the HHD steel, it can be concluded that its appropriate quenching temperature was oil quench at 1080℃.(4) After the optimizing pretreatment and quenching, the microstructures of the HHD steel were tempering martensite, a small quantity of aretained austenite and quantities of dispersion and nanometer carbide, which makes the steel to obtain not only the higher hardness but also better toughness and TF property. In the temper temperature range from 520℃to 660℃, the temper hardness of the HHD steel decreased with the increasing temper temperature, and “the secondary hard”was found near 570℃; the impact toughness increased firstly and reduced subsequently, and its peak value was obtained near 580 ℃. The TF resistance of the samples tempered at 580℃+560℃was the best of all eight temper samples. Considering the effect of temper temperature on the hardness, impact toughness and TF resistance, it can be concluded that its appropriate temper temperature was 580℃+560℃.(5) It is found that the thermal fatigue crack initiation was mainly influenced by
引文
[1] 李正邦等. 中国高速钢和模具钢的发展建议. [J]. 中国钨业. 1999; 14(5~6): 35~37.
    [2] 杜光华. 模具钢的发展现状. [J]. 特殊钢. 1995; 16(1): 9~14.
    [3] 黄宏义. 模具制造工艺. 机械工业出版社. 1988.
    [4] 马党参, 陈再枝, 刘建华, 陈鹰. 国内模具钢的市场前景及生产现状.[J]. 宽厚板. 2004; 10(1): 1~6.
    [5] 周永泰. 模具工业2003 年经济运行展望. [J]. 模具工业. 2003; 1: 57~58.
    [6] 叶俭, 陆建明. 大型压铸模用钢及其真空热处理工艺. [J]. 金属热处理. 2003; 28(8): 53~58.
    [7] 周永泰. 模具工业在国民经济中的重要地位及其发展趋势. [J]. 模具商情. 2003; 6(62): 2~4.
    [8] 徐进等. 模具钢. 冶金工业出版社. 2002.
    [9] 梁宏钦. 微量元素对新型铸造高Cr 热作模具钢热疲劳性能的影响. 吉林大学硕士学位论文. 吉林大学. 2004.
    [10] 江红. 微观组织对热锻模具钢热疲劳性能的影响. 吉林大学硕士学位论文. 吉林大学. 2001.
    [11] Mitchell J. Lewin. H13 Die Life—Finding the Missing Link Die. [J]. Casting Engineer. 1995; 4: 24~26.
    [12] 叶春生, 范红征, 陈军. 铸造热锻模具钢的发展现状与应用. [J]. 国外金属热处理. 2001; 22 (5): 11~14.
    [13] Drs. David Schwam, John F. Wallance. Improvement of Die Life in Aluminium Die Casting. [J]. Die Casting Engineer. 1995 (2):12.
    [14] A. Srivastava, V. Joshi, R. Shivpuri. Computer modeling and prediction of thermal fatigue cracking in die-casting tooling. [J]. Wear. 2004; (256): 38~43.
    [15] Yucong Wang. A study of PVD coatings and die materials for extended die-casting die life. [J]. Surface and coating technology. 1997; (94-95): 60~63.
    [16] 机械电子工业部. 模具材料与热处理. 机械工业出版社. 1993.
    [17] Guobin Li et al.. Study of the thermal fatigue crack initial life of H13 and H21 steel . [J]. Materials Processing Technology . 1998; (74): 23~26.
    [18] 宁志良等. 压铸模具失效分析. [J]. 哈尔滨理工大学学报. 2001; 6(5): 117~120.
    [19] 刘北兴等. 渗碳及表面增碳对钢冷热疲劳行为的影响. [J]. 金属热处理. 1994; (1): 20~23.
    [20] Lother Kallient Dr, Sturm Dr J C. Simulation aided design for die casting tools. [J]. 1991, Detroit –T: 91~102.
    [21] Lieurade H P, Dias A, Giusti J. Experimental simulation and theoretical modeling of crack initiation and propagation due to thermal cycling. [J]. High Temperature Technology. 1991; 8(2): 137~145.
    [22] Anders Persson et al.. Thermal fatigue cracking of surface engineered hot work tool steels. [J]. surface and coating. 2005; (191): 216-227.
    [23] 樊爱民等. 热处理对热作模具钢热疲劳能力的影响. [J]. 兵器材料科学与工程. 1992; 15(11): 31.
    [24] A. Srivastava, V. Joshi, R. Shivpuri. Computer modeling and prediction of thermal fatigue cracking in die-casting tooling. [J]. Wear. 2004; (256) 38~43.
    [25] 陈京生. 3Cr2W8V 热作模具钢的热处理现状. [J]. 模具工业. 1992; 131(1): 53.
    [26] 杨大伟. 提高压铸模使用寿命的方法. [J]. 特种铸造及有色合金. 1998; (增刊): 15~17.
    [27] 余心宏, 董秋月, 祁海军. 压铸模型腔龟裂失效. [J]. 模具技术. 1998; (2): 84~89.
    [28] 王荣滨. 化油器铜合金压铸模的选材及热处理工艺. [J]. 专用汽车. 1998; (1): 52~56.
    [29] Tylenalten. Progress Reporter On Die Casting Research. [J]. Die Casting Engineer. 1988; (6): 16.
    [30] G. R. Halford et al.. Application of a thermal fatigue life prediction model to high temperature aerospace alloys B1900+Hf and Haynes 188, Advances in fatigue lifetime predictive techniques. [J]. ASTM STP. 1992; 1122:107~119.
    [31] P. Revel, D. Kircher, V. Bogard. Experimental and numerical simulation of a stainless steel coating subjected to thermal fatigue. [J]. Materials Science and Engineering. 2000; A290: 25~32.
    [32] ?ukasz Figiel, Marcin Kaminski. Mechanical and thermal fatigue delamination of curved layered composites. [J]. Computers and Structures. 2003; (81): 1865~1873.
    [33] Aferdita Vevecka et al.. Characteristics of grain boundary migration and sliding during fatigue of high purity lead. [J]. Materials Science and Engineering . 1997; A222: 9~13.
    [34] R. Desmorat. Fast estimation of localized plasticity and damage by energetic methods. [J]. International Journal of Solids and Structures. 2002; (39): 3289~3310.
    [35] 凌超等. 5CrMnMo 与新型热作模具钢热疲劳性能的对比研究. [J]. 广东工学院学报. 1995; (12): 31~35.
    [36] Y.S.Ha, Y.Li, J.H.Liu. Thermal fatigue cracking in steel 5CrMnMo. Acta Metallurgica Sinica (English Edition). 1991; Series A1(4): 55~58.
    [37] A.F.M. Arif, A.K. Sheikh, S.Z. Qamar. A study of die failure mechanisms in aluminum extrusion. [J]. journal of materials processing techmology. 2003; (134): 318~328.
    [38] M. Marchionni, D. J. Boerman. Low cycle fatigue properties of a reduced activation Cr-Mn austenitic stainless steel. [J]. Journal of Nuclear Materials. 1996; (220): 129~134.
    [39] C.M.D. Starling, J.R.T. Branco. Thermal fatigue of hot work tool steel with hard coatings. [J]. Thin Solid Films. 1997; (308–309): 436~442.
    [40] 李荣菊. 几种耐热铸铁的抗氧化性和热疲劳性研究. [J]. 河北工业科技. 2002; 19(3): 4~6。
    [41] G. Bao, R.M. McMeeking. Thermomechanical fatigue cracking in fiber reinforced metal-matrix composites. [J]. Journal of the Mechanics and Physics of Solids. 1995; 43(9): 1433~1460.
    [42] A.G. Evans, F.W. Zok, R.M. McMeeking. Fatigue of ceramic matrix composites. [J]. Acta metal. Mater. 1995; 43(3): 859~875.
    [43] 瞿芝碧. 新型铸造热锻模具钢的强韧化处理. 吉林工业大学硕士论文. 1999.
    [44] 卢吉连. 我国模具钢应用技术现状与发展. [J]. 模具技术. 2000; (6): 90~92.
    [45] 赵宇光等. 悬浮处理对铸造热锻模具钢组织与性能的影响. [J]. 铸造. 1998; (1): 20~23.
    [46] 关庆丰等. 稀土复合变质对新型铸造热锻模具钢组织与性能的影响. [J]. 中国稀土学报. 2002; 20(3): 248~251.
    [47] 机械电子工业部. 模具材料与热处理. 机械工业出版社. 1993.
    [48] Anders Persson et al.. Simulation and evaluation of thermal fatigue cracking of hot work tool steels. [J]. International Journal of Fatigue. 2004; (26): 1095~1107.
    [49] Kovrigin VA, Starokozhev BS, Yurasov SA. Effect of oxidizing processes on crazing of die-casting molds. [J]. Materials Science Heat Treatment.1980; (22): 688.
    [50] He Shiyu et al.. Thermal Fatigue Cracking in Steel 5CrMnMo. [J]. Acta Metallurgica Sinica. 1991; A4(1): 55~58.
    [51] Xie Changsheng, Zhao Jiansheng. An Approach to Developing a Hot-work Die Steel for High Temperature Application. [J]. Mater Sci. Aug. 1990; A124: 1~9.
    [52] 隋鹤龙. 新型铸造高Cr 热作模具钢热疲劳性能的研究. 吉林大学硕士学位论文. 吉林大学. 2000.
    [53] Kang M K. Bainite in steel. ShangHai Science and Technology. Press ShangHai. 1960; 339~380.
    [54] S.S. Manson. Behavior of materials under conditions of thermal stress. National Advisory Commission on Aeronautics(NACA). 1953; TN-2933.
    [55] L.F. Coffin. A study on the effect of cyclic thermal stresses on a ductile metal. Trans Am Soc Mech Eng (ASME) 1954; (76): 931~950.
    [56] 彭其风等. 热交变应力下热模钢的疲劳行为. [J]. 机械工程材料. 1983; 7(5): 18~22.
    [57] 李健等. 3Cr2W8V 钢热疲劳抗力的研究. [J]. 安徽工学院学报. 1982; (1): 17~27.
    [58] M. Schelp, D. Eifler. Evaluation of the HCF-behavior of 42CrMoS4 by means of strain, temperature and electrical measurements. [J]. Materials Science and Engineering. 2001; A319–321: 652~656.
    [59] Petri P. Karenlampi. The effect of material disorder on fatigue damage induced by unidirectional loading. [J]. Engineering Fracture Mechanics. 2004; (71): 719~724.
    [60] 李国彬等. 4Cr5MoSiV1钢和3Cr2W8V钢热疲劳寿命的研究. [J]. 钢铁. 1997; 32(4): 51~54.
    [61] H. Sehitoglu. Thermal-mechanical fatigue life prediction methods. [J]. STP, ASTM. 1992; (1122): 47~76.
    [62] M.Buission, A. Molinrai. On thermalelastic damping in heterogenous material. Thermomechanical Couplings in solids. Edited by H. D. Bui and Q. S. Nguyen, IUTAM. 1987: 55~69.
    [63] 何晋瑞. 金属高温疲劳. 科学出版社. 1988.
    [64] H.Samrout, R. EI Abdi. Fatigue behavior of 28CrMoV5steel under thermomechanical loading. [J]. International Journal of Fatigue. 1998; 8(20): 555~563.
    [65] I. Cemy, V. Linhart et al.. Influence of laser hardening and resulting microstructure on fatigue properties of carbon steels, Journal of Materials Engineering and Performance. [J]. ASTM International. 1998; 3(7): 361~366.
    [66] D.A. Spera, D.F. Mowbray. Thermal fatigue of materials and components. [J]. STP612,ASTM. 1976; PP.1~12.
    [67] D.A. Miller, R.H. Priest. Material response to thermal-mechanical strain cycling, High Temperature Fatigue Properties and Prediction. Applied Science Publishers. 1983; PP.113~176.
    [68] 宋志坤. 金属材料热疲劳寿命的定量研究方法. [J]. 机械工程材料. 1999; 23(5): 4~6.
    [69] G. Murtaza. Empirical corrosion fatigue life prediction models of a high strength steel, [J]. Engineering Fracture Mechanics. 2000; (67): 461~474.
    [70] Murtaza G, Akid R. Modelling short fatigue crack growth in a heat-treated low-alloy steel. [J]. International Journal of Fatigue. 1995; 17(3): 207~214.
    [71] 李代忠. 钢中非金属夹杂物. 科学出版社. 1983.
    [72] 郑治沙, 王中光. 疲劳裂纹前端的位错结构. [J]. 金属学报. 1995; 31(3): 24.
    [73] 刘禹门. 铁素体珠光体钢的疲劳位错结构. [J]. 机械工程学报. 1983; 19(2): 1~8.
    [74] 曾庆祥等. 一种高强度的钢低周疲劳特性及其微观机理的研究. [J]. 西南交通大学学报. 1999; 34(2): 190~195.
    [75] Thielen P N, Fine M E. Cyclic stress strain relations and strain controlled fatigue of 4140 steels. [J]. Acta Metal. 1976; (24): 1~10.
    [76] Akama M, Matsugama S. Plastic deformation behavior of rail under cyclic impact blows. [J]. ISIJ international. 1989; (29): 947~953.
    [77] 刘剑虹, 何世禹, 姚枚. 3Cr2W8V 钢冷热疲劳裂纹长大方式的原位观察. [J]. 金属学报. 1992; 12(28): A292~A295.
    [78] V. Subramnya, Sarma et al.. Low cycle fatigue behavior of low carbon microalloyed steel: microstructural evolution and life assessment. [J]. Materials Science and Technology. 1999; (15): 260~264.
    [79] V. B. Dutta, S. Suresh, R.O. Ritchie. Fatigue crack propagation in dual phase steels: effect of ferrite-martensite microstructures on crack path morphology. [J]. Metall. Trans. 15A: 1193~1207.
    [80] Li Zhonghua, Han Jianguo et al.. Low cycle fatigue investigations and numerical on dual phase steel with different microstructures. [J]. Fatigue Fracture Engineering Materials and Structure. 1990; 13(2): 229~240.
    [81] 杨雪梅. 碳化物对热变形中铬半钢的热疲劳性能的影响. [J]. 特殊钢. 2001; 22(1): 22~24.
    [82] 李晓东等. 4Cr5MoSiV1 钢热疲劳的微观分析. [J]. 理化检验-物理分册. 1993; 6(29): 47~48.
    [83] S.K. Bhambri, V. Singh, G. Jayaraman. The effect of microstructure on stage-Ⅱfatigue crack growth rates in 2.5 Ni-Cr-Mo-V steel. [J]. International Journal of Fatigue. 1989; 11(1): 51~54.
    [84] 周梅阁等. 45Cr2NiMoVSi 钢马氏体贝氏体复合组织的热疲劳性能. [J]. 金属热处理. 1991; (2): 8~12.
    [85] F. Iacoviello, M. Boniardi , G.M. La Vecchia. Fatigue crack propagation in austeno-ferritic duplex stainless steel 22 Cr 5 Ni. [J]. International Journal of Fatigue. 1999; (21): 957~963.
    [86] 方渐儒. 热作模具钢微观组织对热机械疲劳行为的影响. 吉林大学博士研究生毕业论文. 2002.
    [87] A.M. Sherman, R.G. Davies. The effect of martensite content on the fatigue of a dual –phase steel. [J]. International Journal of Fatigue. 1981; (3): 36~40.
    [88] Z.Z. Hu, M.L. Ma, Y.Q. Liu. The effect of austenite on low cycle fatigue in three-phase steel. [J]. International Journal of Fatigue. 1997; 8-9(19): 641~646.
    [89] 梁洪达等. Mn 对热作模具钢4Cr3Mo2NiVNb 热疲劳性能的影响. [J]. 1994; 15(4): 22~25.
    [90] Kazushi HAMADA. Effects of precipitate shape on high temperature strength of Modified 90Cr-1Mo Steels. [J]. ISIJ International. 1995; 35 (1): 86~91.
    [91] Tomohiro Nakano et al.. Effect of alloying elements and surface treatment on corrosion fatigue strength of high-strength suspension coil springs. [J]. JSAE Review. 2001; (22): 337~342.
    [92] A. Gustafson, J. Agren. Modelling of carbo-nitride nucleation in 10% Cr steel. [J]. Acta mater. 1998; 46(1): 81~90.
    [93] Jai Hyun PARK et al.. The Effects of Alloying Elements on Thermal Fatigue and Thermal Shock Resistance of the HSLA Cast Steels. [J]. ISIJ International. 2000; 40 (11): 1164~1169.
    [94] 常立民等. 稀土元素对低铬半钢热疲劳性能的影响. [J]. 中国稀土学报. 2002; 20(1): 85~87.
    [95] Yang Q X, Liao B, Liu J H. Effect of rare earths elements on austenite growth dynamics of steel 60CrMnMo. [J]. Journal of Rare Earths. 1998; 16(3): 274.
    [96] Son Y W, Luo Q S, Chen Q D. Effect of RE-B modification on the strength and toughness of 30CrMn2Si cast steel. [J]. Journal of Material Science. 1994; 29(6):1492.
    [97] 杨庆祥, 王爱荣等. 60CrMoMn 钢热疲劳裂纹生成与长大及稀土的作用. [J]. 中国稀土学报. 1996; 2(14):181~185.
    [98] R.M. Ramage, K.V. Jata, G.J. Shiflet, E.A. Starke. The effect of phase continuity on the fatigue and crack closure behavior of a dual phase steel. Metall. Trans. 1987; 18A: 1291~1298.
    [99] Maddin R. A history of martensite, some thoughts on the early hardening of iron, in martnesite. AS M. International. 1992 ,11~19.
    [100] 徐祖耀. 马氏体相变与马氏体. 第二版, 北京: 科学出版社. 1999, 1.
    [101] 郭可信. 金相史话(3). [J]. 材料科学与工程. 2001; 19(2): 2~8.
    [102] Bullens D K. The metallurgical staff of the Battelle 1Vbmorial Institute, Steel and Its Heat Treatment. 5th Edition,John Wiley&Sons,lbw York, Chapman&Hall Ltd, London,1948.
    [103] 徐祖耀. 材料热处理的进展和瞻望. [J]. 材料热处理学报. 2003; 24(1): 1~14.
    [104] 刘磊. 模具钢强韧化处理. [J]. 模具工业. 1990; (6): 48~53.
    [105] 薄鑫涛, 刑励. 工模具钢预先热处理方法的探讨. [J]. 热处理. 2002; 17(3): 6~10.
    [106] 潘振鹏, 王桂棠, 蔡莲淑, 冯颖璋. 我国高强度热作模具钢的研究和应用. [J]. 特殊钢. 2003; 24(1):1~5.
    [107] 刘以宽等. CH13 钢的予处理及对冲击韧性的影响. [J]. 铸造技术. 1992; (5): 3~5.
    [108] 唐文军等. 高温均匀化对H13 钢强韧性的影响. [J]. 上海金属. 2002; 24(2): 14~17.
    [109] 吴怀成. 冷热兼用的4Cr5MoSiV1 模具钢. [J]. 铸锻热-热处理实践. 1994; (2): 42~44.
    [110] 黄春峰. 国外新型热作模具钢及其热处理工艺. [J]. 模具技术. 2000; (3): 89~93.
    [111] 刘静安. 预处理工艺对4Cr5MoSiV1 钢组织与力学性能的影响. [J].轻合金加工技术. 1 999; (12): 23~26。
    [112] 朱勋等. 预先热处理对4Cr5MoVSi 钢力学性能的影响. [J]. 钢铁. 1994; 29(6): 42~47.
    [113] 瞿芝碧, 蔡俞. 新型铸造热锻模具钢(CHD 钢)的热处理. [J]. 柴油机设计与制造. 2000; 90(10): 72~79.
    [114] 朱心昆等. 预先热处理对H13 钢热疲劳寿命的影响. [J]. 金属热处理. 1996; (9): 19~21.
    [115] 沈俊峰, 沈利群. 提高模具材料疲劳抗力的途径. [J]. 上海金属. 1998; 20(2): 19~22.
    [116] 刘科. 压铸模热处理工艺的改进. [J]. 金属热处理. 1997; (11): 31、35.
    [117] Metals/Alloys/Heat Treating. Foundry Management & Technology . [J]. 1997, A2,No. 4:A2~A4.
    [118] 代立新等. 5CrMnMo 钢模具的复合渗及强韧化处理. [J]. 金属热处理. 1997; (8): 35~37.
    [119] 张存来等. 提高5CrMnMo 锻模热疲劳抗力的热处理工艺改进. [J]. 山西机械. 1995; (4): 20~23.
    [120] 倪洪涛. 用获得板条马氏体提高模具寿命. [J]. 模具工业. 1992: 141(11): 53~54.
    [121] H. Shiyu et al.. Failure mechanism of hot pressing dies and heat treatment. [J]. Heat Treatment of Metals. 1990; 1(5).
    [122] L. Yikuan et al.. The manufacture and application of aluminum alloy casting-die made of steel H13. [J]. Heat Treatment of Metals. 1990; 2(51).
    [123] H. Zhenhua et al.. Comparision between 3Cr2W8V and 4Cr5MoSiV1 steels on strength and toughness. [J]. Heat Treatment of Metals. 1988; 7(24).
    [124] 李香芝等. 新型热锻模具钢4Cr2NiMoV的淬回火工艺的选择及应用. [J]. 钢铁. 1996; 31(2): 43~48.
    [125] 张亿增等. 5CrW2Si 钢的强韧化. [J]. 金属热处理. 1997; (1):36~38.
    [126] 周美君. 新型热作模具钢CH75 的组织与性能. [J]. 热加工工艺. 1994; (4): 41~45.
    [127] 乔学亮等. 热作模具钢CH75 的工艺性能研究. [J]. 热加工工艺. 1994; (1): 13~15.
    [128] 倪献堂. 热锻模用钢及其热处理. [J]. 轴承. 2003: (2):17~19.
    [129] Hans J . Heine. Giving Steel Castings the Heat Treatment. [J]. Foundry Management & Technology. 1997; (3): 39~40.
    [130] 杜志伟等. H13 钢淬火、回火过程中相变的研究. [J]. 包头钢铁学院学报. 2001; 20(1): 34~36.
    [131] 马茂元等. 4Cr3Mo2V 钢淬火组织在回火过程中的变化及对动力学性能的影响. [J]. 钢铁. 1990; 25(9): 40~45.
    [132] 黄春峰. 优质H13 钢的热处理工艺. [J]. 新工艺、新技术、新设备. 1998; (5): 37~39.
    [133] 王荣滨. 提高模具寿命十种强韧化工艺. [J]. 汽车工艺与材料. 1994; (12): 1-5.
    [134] 刘静安. 3Cr2W8V 钢强韧化处理研究. [J]. 金属学报. 1996; 32(9): 985~992.
    [135] 施雯, 刘以宽. QRO90Supreme 热作模具钢的性能. [J]. 金属热处理. 1997; (1): 25~28.
    [136] 姜启川. 新型铸造热锻模钢回火工艺的选择. [J]. 金属热处理. 2000; (1): 34~35.
    [137] 李香芝, 凌超等. 新型热锻模具钢4Cr2NiMoV 的综合性能研究(I)—热处理工艺的选择. [J]. 机械工程材料. 1995; 19(2): 43~~48.
    [138] 李香芝等. 4Cr2NiMoV 热锻模具钢的性能及应用. [J]. 河北工学院学报. 1994; 23(4): 24~30.
    [139] 林丽华, 章国英, 滕清泉等. 金属表面渗层与覆盖层金相组织图谱. 北京: 机械工业出版社. 1998.
    [140] 于长山, 刘喜明. 3Cr2W8V 钢渗硼后热疲劳抗力的研究. [J]. 金属热处理学报. 1997;(12): 53~56.
    [141] C. A. Straede et al.. Wear-Resistant Steel Surfaces Obtained by High Dose Implantation of Carbon. [J]. Materials Science and Engineering. 1991; A139: 150~158.
    [142] L. Palmetshofer et al.. Dry Wear Behaviour of Boron-and -Nitrogen-Implanted Steels. [J]. Materials Science and Engineering. 1989; A114: 173~178.
    [143] Retteisson S et al.. Designing the Hardening Practice for Premium H13 Die Casting Steel. [J]. Heat Treatment of Metals. 1993; (2):49.
    [144] 王荣滨, 海燕. 汽车连杆螺柱热挤压凹模复合强化处理. [J]. 模具工业. 1997; (8): 43~46.
    [145] 吴景祥. 4CrW2Si 热作模具钢热处理工艺研究. [J]. 新乡师范高等专科学校学报. 2002; 16(4): 29~30.
    [146] 吉泽升等. 稀土硼铝共渗在H13 铝挤压模上的应用. [J]. 模具工业. 1997; (6): 46~47.
    [147] 刘湘杰等,低温盐浴中的氮碳钒共渗,[J]. 金属热处理,1998,No.10: 11。
    [148] 楼南金等. 铝型材热挤压模具的硼碳氮共渗处理. [J]. 金属热处理. 1994; (1): 47.
    [149] 刘志兰等. 4Cr5MoSiV1 钢模具离子碳氮氧硫硼五元共渗工艺. [J]. 金属热处理. 1997; (8): 35.
    [150] Pfohl C, Rie K T. Aplication of wear-resistance PACVD coating in aluminum die casting: economical and ecological aspect. [J]. surface and coating technology. 1999; 347~350.
    [151] Heim D, Holler F, Mitterer C. Hard coatings produced by PACVD applied to aluminum die casting. [J]. surface and coating technology. 1999; 530~536.
    [152] 刘北兴, 辛玉武, 李洪涛等. TiN 气相沉积层对3Cr2W8V 钢热疲劳性能的影响. [J]. 材料科学与工艺. 1997; (3): 32~35.
    [153] K. Kulkarni et al.. Thermal cracking behavior of multi-layer LAFAD coatings on nitrided die steels in liquid aluminum processing. [J]. Surface and Coatings Technology. 2002; (149): 171~178.
    [154] M. Pellizzari, A. Molinari, G. Straffelini. Thermal fatigue resistance of plasma duplex-treated tool steel. [J]. Surface and Coatings Technology. 2001; (142-144): 1109~1115.
    [155] 揭晓华. 热处理工艺对3Cr2W8V 钢热疲劳抗力的影响. [J]. 汽车研究与开发. 1996; (2): 36~40.
    [156] 刘昌祺. 模具的热处理和表面硬化技术. 机械工业出版社. 1992.
    [157] 张明珠. YB-70 轧辊钢连续冷却转变曲线的测试与研究. [J]. 一重技术. 2001; (2-3): 106~108.
    [158] Wang KF, Chandrasekar S, Yang HTY. Experimental and computational study of the quenching of carbon steel. [J]. ASME J Manufact Sci Eng. 1997; (119):257~65.
    [159] Jahanian S, Mosleh M. The mathematical modeling of phase transformation of steel during quenching. [J]. J Mater Eng Perform. 1999; (8):75~82.
    [160] S. Serajzadeh, A. Karimi Taheri. A study on austenite decomposition during continuous cooling of a low carbon steel. [J]. Materials and Design. 2004; (25): 673~679.
    [161] 王一民. 50SiMn2MOV 钢的奥氏体连续冷却转变曲线的测定. [J]. 宁夏工学院学报(自然科学版). 1994; 6(1-2): 115~120.
    [162] 王丽莲, 吴怀成. 压铸模坯的预处理. [J]. 热处理. 2001; (3): 25~27.
    [163] 马幼平, 温维新. 新型低合金铸态复相耐磨钢的组织与性能. [J]. 特殊钢. 2002; 23(5): 31~34.
    [164] 刘静安. 轻合金挤压工具与模具下册. 冶金工业出版社. 1990.
    [165] 邹安全, 邓芬燕, 邓沛然. 等温球化退火对H13 钢组织和性能的影响. [J]. 2003; 28(8): 34~35.
    [166] 尹志新等. 循环淬火细化对42CrMo钢组织及疲劳性能的影响. [J]. 钢铁. 2002; 37(10): 52~56.
    [167] 杨光龙, 黄晓琴. 提高3Cr2W8V 钢热挤压模寿命的工艺措施. [J]. 机械工艺师. 2000; (5): 31~32.
    [168] 李志华, 刘西琳. 模具钢固溶循环热处理下的机械性能研究. [J]. 杭州电子工业学院学报. 1997; 17(3): 28~30.
    [169] 解念锁, 陈尚平, 贺志荣. 奥氏体化温度对钢中马氏体组织形态的影响. [J]. 1996; 12(2): 8~12.
    [170] 王敏. 高速钢的组织超细化与超塑性变形力学行为. [J]. 钢铁. 1998; 23(9): 49~51.
    [171] 朱心昆等. 淬火温度对H13 钢性能的影响. [J]. 金属热处理. 1994; 19(8): 28~30.
    [172] 薄鑫涛, 刑励, 陈汉辉. 延长5CrNiMo 钢热锻模寿命的探讨. [J]. 2004; 19(1): 42~44.
    [173] Speich G.R., Dabkowski D.S., Porter L.F., Strength and toughness of Fe210Ni alloys containing C, Cr, Mo, and Co. [J]. Metall Trans. 1973; 4(1): 303.
    [174] 侯旭明. 20Cr11MoVNbNB 钢回火组织与硬度的关系. [J]. 兵器材料科学与工程. 1995; 18(3): 69~72.
    [175] LiX, ShiZ, Zhou F, XiaoZ. A change sin grain size and softening mechanism of die steel during thermal fatigue. [J]. Anhui Inst Technol.1988; 7(2): 78~85.
    [176] 李保成, 赵家萍, 张治民. 45CrNiMoV 钢回火温度讨论. [J]. 热加工技术. 2003; (4): 33~34.
    [177] Malm S, Norstom L A. Material related model for thermal fatigue applied to tool steels in hot-work applications. [J]. Met Sci. 1979; (9): 544~550.
    [178] Norstrom L A, Svensson M, Ohrberg N. Thermal-fatigue behaviour of hot-work tool steels. [J] .Met Technology. 1982; 8(10): 376~381.
    [179] Norstrom L A. A new generation of steel for die casting dies. [J]. Die Casting Engineer. 1982; (9~10):24~27.
    [180] F. Meyer-Olbersleben,N. kasik et al.. The thermal fatigue behavior of the combustor alloys IN617 and HAYNES 230 before and after welding. [J]. Metallurgical and Materials Transactions A. 1999; 30A: 981~989.
    [181] 何世禹, 李瑛, 刘剑虹. 5CrMnMo 钢的冷热疲劳裂纹的研究. [J]. 金属学报. 1990; 26(4):A527~A529.
    [182] 徐金璋. 合金元素和组织对马氏体不锈钢的耐腐蚀性和硬度的影响. [J]. 上海钢研. 2001; (2): 40~44.
    [183] 董俊, 张全慧. 高频淬火1Cr12Ni2W1Mo1V 钢点蚀萌生机理探讨. [J]. 机械强度. 2001; 23(1): 32~34.
    [184] S. Taira,M.Fujino,R.Ohtanl,collaborative study on thermal fatigue properties of high temperature alloys in Japan,Fatigue of Engineering Materials and Structures, 1979, (1): 495-508.
    [185] R.P. Skelton, Crack initiation and growth in simple metal compenents during thermal cycling, in R.P. Skelton (ed.), fatigue at high temperature, Applied science publishers London and New York LTD, 1983.
    [186] 陈蕴博. 热作模具钢的选择与应用. 国防出版社. 1993.
    [187] 刘剑虹. 热作模具钢3Cr2W8V、4Cr5MoSiV1 热疲劳机理的研究. 哈尔滨工业大学硕士学位论文. 1987; 3: 24~25.
    [188] 王庆山. 黑色金属强度-硬度换算经验公式. [J]. 理化检验-物理分册. 1995; 31(2): 39~40.
    [189] 诸武杨, 肖纪美. 热处理对25SiMnCrMo 铸钢断裂力学性能的影响. [J]. 金属热处理. 1979; (6): 18~24.
    [190] YangQX, LiaoB, LiuJH. Effect of rare earths elements on austenite growth dynamics of steel 60CrMnMo. [J]. Journal of Rare Earths. 1998; 16(3): 274.
    [191] Son YW, Luo QS, Chen QD. Effect of RE-B modification on the strength and toughness of 30CrMn2Si cast steel. [J]. Journal of Material Science. 1994; 29(6): 1492.