Zn-Al-Mg-RE涂层与舰船涂料的协同性及其构建的复合涂层的耐蚀机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涉海装备在服役过程中极易受到海水和海洋大气环境的影响而发生严重的腐蚀。传统的有机涂层需要经常进行维护,不能满足人们对涉海装备在服役过程中长时间不维修或少维修的需求。因此,开展针对钢结构表面长效防腐涂层的技术和理论研究,对于解决涉海装备在苛刻海洋环境下的防腐问题具有重要意义。
     本文采用再制造关键技术——高速电弧喷涂技术在Q235钢表面制备Zn-Al-Mg-RE金属涂层,再在涂层表面涂装有机涂层,构建了复合防腐涂层。利用热盐水浸泡试验、铜离子醋酸盐雾加速腐蚀试验、电极电位试验和电化学交流阻抗试验检测了金属涂层和有机涂层之间的协同性;通过SEM、EDAX、XRD、人工缺陷试样常温浸泡试验、电化学交流阻抗试验以及自主研发的装置结合离子色谱仪研究了该复合防腐涂层的耐蚀机理;通过理论计算和试验研究了不同物化性能的腐蚀产物对复合涂层表面有机涂层失效形式的影响;在分析某型舰船和水陆装备典型零部件腐蚀失效形式的基础上,采取该复合防腐涂层对其进行防腐处理,并进行了应用考核。主要得到了以下结论:
     在溶液介质腐蚀环境和盐雾腐蚀环境中,与Al涂层相比,Zn-Al-Mg-RE涂层与有机涂层在腐蚀环境中均具有更好的协同性。在喷涂Al涂层复合防腐涂层界面处,碱性腐蚀产物破坏了有机涂层的结合键,渗透压促使有机涂层剥离,导致鼓泡发生;而在Zn-Al-Mg-RE涂层表面形成的腐蚀产物寿命较长,不易分解,起到了钝化膜的作用。
     电化学交流阻抗试验结果表明:有机涂层中存在微观孔隙或宏观孔隙时有机涂层与Zn-Al-Mg-RE涂层仍然具有较好的协同性。在测试过程,该复合防腐涂层体系的涂层孔隙电阻一直保持在10~7Ωcm~2以上,说明有机涂层对金属涂层一直起到有效的保护作用;在浸泡后期,涂层电容长时间保持恒定,说明Zn-Al-Mg-RE涂层腐蚀产物的存在有效地弥补了有机涂层自身的微观孔隙。当有机涂层中存在宏观孔隙时,腐蚀产物先封闭宏观孔隙附近的微观孔隙,然后封闭新形成的微观孔隙、腐蚀产物与有机涂层之间的微观孔隙以及腐蚀产物之间的微观孔隙。通过这种方式,腐蚀产物在宏观孔隙中形成致密的微观结构,阻止腐蚀介质对界面的破坏。
     本文提出了喷涂Zn-Al-Mg-RE涂层的复合防腐涂层的耐蚀机理——双重自封闭机理。将制备了人工缺陷的试样在5%NaCl溶液中浸泡430小时,发现有机涂层中的人工孔隙被Zn-Al-Mg-RE涂层的腐蚀产物堵塞,通过SEM进一步检测发现人工孔隙中腐蚀产物的微观结构非常致密,由此说明该复合防腐涂层具有向上封闭有机涂层中微观缺陷的作用。自由膜渗透试验结果表明:随着时间的延长,氯离子在Zn-Al-Mg-RE涂层自由膜中的渗透速率逐渐减慢,最后溶液中的氯离子浓度保持恒定不变,说明Zn-Al-Mg-RE涂层的腐蚀产物能够堵塞自身的微观孔隙,阻止腐蚀介质的继续渗透。
     本研究发现了Zn-Al-Mg-RE涂层表面的腐蚀产物中含有纳米晶,并提出了纳米腐蚀产物形成机理。将喷涂了Zn-Al-Mg-RE涂层的试样浸泡于5%的NaCl溶液中30天、120天和210天,通过XRD检测涂层表面腐蚀产物的晶粒度,发现腐蚀产物中存在纳米级的腐蚀产物,纳米级的腐蚀产物能够使腐蚀产物的微观结构变得非常致密,从而说明该复合防腐涂层具有双重自封闭特性的原因是Zn-Al-Mg-RE涂层能够生成纳米级的腐蚀产物。
     本文还得出了渗透压型鼓泡边缘的扩展速率和腐蚀产物体积膨胀型鼓泡的临界弯曲力矩。并通过实验验证了喷涂Al涂层的复合防腐涂层表面有机涂层鼓泡的主要影响因素为渗透压力;而喷涂Zn-Al-Mg-RE涂层的复合防腐涂层表面有机涂层鼓泡的主要影响因素为腐蚀产物生成时的体积膨胀力。
     在某型舰船和水陆装备上的应用研究表明喷涂Zn-Al-Mg-RE涂层的复合防腐涂层具有良好的耐海水腐蚀性能。可在不改变装备原有防护体系的前提下,解决原有体系防护寿命短、效果差、成本高的问题。
The corrosion problems of oceanic equipments serving in marine water and marine atmosphere environment are serious. Conventional organic coatings always need maintenance and don't meet the demand of un-maintenance or less-maintenance at a long time. Therefore, technology and theory studies on long-term anticorrosion coatings against the equipments are of great importance.
     In the paper, high velocity arc spraying technology (HVAS) which is one of the key remanufacturing technologies was used to produce Zn-Al-Mg-RE coating, and then organic coatings were applied on the coating. The synergy effect between the coatings was investigated by immersion testing, chloride copper acetic acid spraying testing (CASS), electrode potential testing and EIS testing. The anticorrosion mechanism of the composite coatings was studied with SEM, EDAX, XRD, immersing samples with artificial defects in 5%NaCl solution, EIS testing and testing combining device which was designed by the author and ion chromatograph. The influence of physicochemical property of corrosion products on failure behavior of the organic coatings was studied on the basis of theory compute and testing. After surveying typical components failure process of some ship and some amphibious equipment, the composite coatings were applied, and anticorrosion property of the composite coatings in real oceanic environment was examined at the same time. Main conclusions were drawn as following:
     Comparing with Al coating, the Zn-Al-Mg-RE coating had better synergy effect with organic coatings both in solution corrosive medium and salt spraying corrosive medium. In the organic coatings/Al coating interface, the adhesion was destroyed by the alkalinous corrosion products and the delamination of organic coatings was accelerated by osmotic pressure, which led to the appearance of blister. While, the life of stable corrosion products that acted as a passivating film on the surface of Zn-Al-Mg-RE coating was longer.
     EIS results indicated that organic coatings had better synergy effect with Zn-Al-Mg-RE coating when there were micro-pores or macro-pores in the organic coatings. The pore resistance of the composite anticorrosion coatings system kept higher than 10~7Ωcm~2 during all the testing, which indicated that the organic coatings protected the metallic coating effectively all the time. The coating capacitance kept constant at a long time at the later stage of testing, which indicated that micro-pores in the organic coatings were remedied by the Zn-Al-Mg-RE coating corrosion products. When there were macro-pores in the organic coatings, micro-pores around macro-pores were preferentially blocked by the corrosion products, then the new micro-pores, the micro-pores between the corrosion products and the organic coatings and in the corrosion products were blocked by the corrosion products. By this way, the microstructure of corrosion products in macro-pores became compact and the destruction of corrosion medium to interface was inhibited.
     The double self-sealing anticorrosion mechanism of the composite anticorrosion coatings was brought forward. After samples with artificial defects immersed in 5%NaCl solution for 430 hours, the artificial defects in the organic coatings were blocked by the Zn-Al-Mg-RE coating corrosion products. The compact microstructure of the corrosion products was observed by SEM. The results showed that the composite coatings had the function of blocking micro-pores in the organic coatings. Free-film permeation testing indicated that the diffusion of chloride ions into the Zn-Al-Mg-RE coating free-film slowed down with time and the chloride ions concentration in the solution kept constant at the later stage of testing, which indicated that the corrosion products of Zn-Al-Mg-RE coating had the function of blocking the micro-pores in the coating and the permeation of corrosion medium was held.
     The nanocrystals in the corrosion products were discovered and the formation mechanism of the corrosion products was brought forward. The samples with Zn-Al-Mg-RE coating were immersed in 5%NaCl solution for 30 days, 120 days and 210 days, and the grain sizes of the corrosion products was calculated from the XRD testing. Results indicated that there were nanometer corrosion products in the corrosion products and microstructure of the corrosion products became much compact, which made it clear that the reason of the composite anticorrosion coatings had double a self-sealing characteristic was ascribed to the formation of the nanometer corrosion products.
     Brim spreading velocity of osmotic pressure blister and critical bending moment of volume expansion blister were computed. The main factor influencing blister of organic coatings on Al coating was osmotic pressure, while, the main factor influencing blister of organic coatings on Zn-Al-Mg-RE coating was volume expansion force during corrosion products generating, which were identified by testing.
     The composite coatings were applied to ships and amphibious equipments. Results showed that the composite coatings protected the equipments effectively. The organic coatings system originally applied on the equipments was not changed and problems such as short life, badly protecting and high cost were settled.
引文
[1]徐滨士,朱绍华,刘世参,马世宁.表面工程与维修[M].北京:机械工业出版社,1996:79-81页
    [2]柯伟.中国腐蚀调查报告[M].北京:化学工业出版社,2003:1-10页
    [3]张忠礼编著.钢结构热喷涂防腐蚀技术[M].北京:化学工业出版社,2004:66-80页
    [4]H.C.Shih,J.W.Hsn,C.N.Sun,S.C.Chung.The lifetime assessment of hot-dip 5%Al-Zn coatings in chloride environments[J].Surface and Coatings Technology.2002,150(1):70-75P
    [5]陈永雄,徐滨士,许一,朱子新,刘燕.热喷涂Zn-Al合金防腐涂层技术的研究进展[J].材料导报,2006,20(4):70-73页
    [6]Lester T,Kingerley D J,Harris S J,Mattews S P.Thermally sprayed composite coatings for enhanced corrosion protection of structures[C].Proceedings of the 15~(th) Int.Thermal Spray Conf.France,1998:49-55P
    [7]Yan Li.Formation of nano-crystalline corrosion products on Zn-Al alloy coating exposed to seawater[J].Corrosion Science.2001.43(9):1793-1800P
    [8]郭建亭,任维丽,周继扬.稀土元素在金属间化合物(铝化物)中的作用[J].材料工程.2002(1):36-43页
    [9]刘燕.Zn-Al-Mg-RE粉芯丝材及其涂层自封闭机理的研究[D].北京:装甲兵工程学院.2005:34-43,52-55页
    [10]J.F.H.van.Eijnsbergen.Duplex systems[M].Amsterdam,Elsevier,1994
    [11]李言涛.喷涂锌铝覆盖层在海洋环境中的腐蚀行为及失效机理[D].中国科学院海洋研究所,1999:1-8页
    [12]J.B.Bajat,et al.The influence of steel surface modification by electrodeposited Zn-Fe alloy on the protective behaviour of an epoxy coating[J].Progree in Organic Coating.2003,47(11):49-54P
    [13]U Rammelt,G Reinhard.Application of electrochemical impedance spectroscopy(EIS)for characterizing the corrosion-protective performance of organic coatings on metals[J].Progress in Organic Coatings,1992,21:205-211P
    [14]D.M.Santagata,P.R.Sere,C.I.Elsner,A.R,Di Sarli,Evaluation of the surface treatment effect on the corrosion performance of paint coated carbon steel,Progress in organic coatings,1998,33(11):44-54P
    [15]Jin Kawakita,Seiji Kuroda,Takeshi Fukushima,Corrosion resistance of HVOF sprayed HastelloyC nickel base alloy in seawater,Corrosion Science 2003,45(12):2819-2835P
    [16]宋玉苏,陈德斌.热喷涂铝封闭涂层性能的研究[J].材料保护,1998,31(6):5-6页
    [17]扣伟,滑红军.热喷锌及封孔涂料的应用[J].腐蚀与防护,1999,20(10):456-457页
    [18]F.Deflorian,S.Rossi,L.Fedrizzi,RL.Bonora,EIS study of organic coating on zinc surface pretreated with environmentally friendly products,Progress in Organic Coating.2005,52(44):271-279P
    [19]V.Barranco,S.Feliu Jr,S.Feliu.EIS study of the corrosion behavior of zinc-based coatings on steel in quiescent 3%NaCI solution.Part 2:coatings covered with an inhibitor-containing lacquer[J].Corrosion Science.2004,46(99):2221-2240P
    [20]S.González,F.Cáceres,et al.Resistance of metallic substrates protected by an organic coating containing aluminum powder[J].Progress in Organic Coatings,2003,46(4):317-323P
    [21]刘斌.有机涂层/基底金属体系腐蚀电化学行为研究[D].沈阳:中国科学院金属研究所,2003:1-5页
    [22]Funke W.Toward a unified view of the mechanism responsible for paint defects by metallic corrosion[J].Ind.Eng.Chem.Prod.Res.Dev.1985,24(3):343-347P
    [23]ZHANG Xian-cheng,XU Bin-shi,WANG Hai-dou et al.Failure behavior of protective organic coatings under corrosive conditions[J].Transactions of nonferrous metals society of China,2004,14(z1):395 -404P
    [24]张显程,巩建鸣,涂善东,孔凡玉.涂层缺陷对涂层失效与基体腐蚀行为的影响[J].材料科学与工程学报,2003,21(6):922-926页
    [25]D.H.van der weijde,E.P.M van westing and J.H.W de wrr.EIS measurements on artificial blisters in organic coatings[J].Electrochimica Acta,1996,41(7):1103-1107P
    [26]刘斌,李瑛,林海湖,曹楚南.防腐蚀涂层失效行为研究进展[J],腐蚀科学与防护技术,2001,13(5):304-305页
    [27]Payer,J.H.Michal,G.M.Processes of blister formation in electrodeposited coatings on steel[J].Society of automotive engineers transactions,1991,100(5):1123-1134P
    [28]Storfer,Stanley J,Yuhas,Stephen A.Jr.Mechanism of blister formation in organic coatings[J],materials performance,1989,28(7):35-41P
    [29]Hansen,Charles M.New developments in corrosion and blister formation in coatings[J],Progress in Organic Coatings,1995,26(2):113-120P
    [30]Pommersheim J M,Nguyen T.Prediction of blistering in coating systems [A].Organic Coatings for Corrosion Control,ACS Symposium Series No.689.Proceedings[C].Washington:American Chemical Society,1998.137-150P
    [31]T.Nguyen and J.B.Hubbard.Unified model for the degradation of organic coatings on steel in a neutral electrolyte[J].Journal of Coating Technology,1996,68(855):45-56P
    [32]Funke,W.Blistering of paint films and filiform corrosion[J].Progress in organic coatings,1981,9(1):29-46P
    [33]Leidheiser H.Jr.Corrosion of Painted Metals-a Review[J].Corrosion,1982,38(7):374-383P
    [34]Appleman B.R.Painting over soluble salts:A perspective[J].Journal of Protective Coatings & Linings.1987,10(4):68-82P
    [35]Touyeras,F.George,B.Cabala,R.Chambaudet,A.Vebrel,J.Study of adherence loss for paint films coated onto polymeric substrates by induced blistering[J]. Journal of Adhesion Science and Technology, 1997, 11 (2):263-279P
    [36] Funke W. Toward a unified view of the mechanism responsible for paint defects by metallic corrosion [J]. Ind Eng Chem Prod Res, 1985, 24(3):343-347P
    [37] R.F.Hamade, D.A.Dillard. Assessing the effects of shear, compression, and peel on the cathodic degradation of elastomer-to-metal adhesive bonds [J].International Journal of Adhesion and Adhesives. 2005,25 (2): 47-163P
    [38] Chuang, T. J. Nguyen, T. Lee,S. Micro-mechanic model for cathodic blister growth in painted steel[J]. Coatings Technology. 1999, 71(895): 75-85P
    [39] Nguyen T, Martin J W. Modes and mechanism of degradation of expoxy-coated reinforcing steel in a marine environment [A]. Durability of Building Materials and Components 7th [C]. London, 1996. 491 -502P
    
    [40] Hare C. H. Non-Osmotically-Induced Blistering Phenomena On Metal[J],Journal of Protective Coatings Linkings, 1998,15(3): 17-34P
    [41] Nguyen T. Hubbard J. B. &McFadden G. B. A mathematically model for the cathodic blistering of organic coatings on steel immersed in electrolytes [J]. Journal of Coatings & Technology, 1991, 794 (63): 43-52P
    [42] Rodriguez, V.S.Leidheiser, H Jr. Cathodic blistering of two alkyd paints[J].Coatings Technology. 1988, 60(757): 45-51P
    [43] Brunt.N.A, Blistering of paint layers as an effect of swelling by water[J],Journal of the Oil and Colour Chemists Association. 1964,47(1): 31-42P
    [44] McCafferty, E. Use of activity coefficients to calculate the equilibrium conditions within a localized corrosion cell on iron [J]. Journal electrochemical society, 1981, 128 (1): 39-44P
    [45] Jones, D. A. Principles and Prevention of Corrosion [M]. USA: Macmillan Publishing Company, 1992
    [46] Martin, J. W. Embree, E. and Tsao, W. non-osmotic defect controlled cathodic disbondment of a coating from a steel substrate[J], Journal of Coatings Technology,1990,62(790):25-33P
    [47]Chuang T J,Nguyen T,Li S.A non-osmotic blister growth model in coating systems[A].Damage and Failure of Interfaces,1 st International Conference[C].Austria,Vienna,1997:203-209P
    [48]孙廷耀.涂层起泡探析[J].涂料工业,1999(3):41-44页
    [49]David Greenfield and David Scantlebury.The Protective Action of Organic Coatings on Steel:A Review[J].The Journal of Corrosion Science and Engineering,2000(3):paper5
    [50]梁春永,陈学广.电弧喷涂技术的研究状况及发展方向[J].金属成形工艺,2003,21(6):58-61页
    [51]张秀会,索双富,等.我国电弧喷涂自动化技术的发展与应用[J].材料保护,2003,36(11):27-28页
    [52]H.D.Steffens,Z.Baniak,M.Wewel.Recent developments in arc spraying [J].IEEE transactions on plasma science.1990,66(18):974-979P
    [53]T.Nakayama.H.Wake.K.Ozawa et al.Electrochemical prevention of marine biofouling on a novel titanium-nitride-coated plate formed by radio-frequency arc spraying[J].Appl Microbiol Biotechnol,1998,50(4):502-508P
    [54]Liu-Ho Chiu,Chun-Chin Chen,Chih-Fu Yang.Improvement of corrosion properties in an aluminum- sprayed AZ31 magnesium alloy by a post-hot pressing and anodizing treatment[J].Surface&Coatings Technology.2005,191(2-3):181-187P
    [55]梁秀兵,高速电弧喷涂技术及其涂层性能研究[D].装甲兵工程学院硕士学位论文,2000
    [56]田保红,高速电弧喷涂Fe_3Al/WC复合涂层高温冲蚀行为研究[D].沈阳:中国科学院金属研究所,2000
    [57]胡军志,高速电弧喷涂抗高温冲蚀磨损涂层性能试验研究[D].北京:装甲兵工程学院,2001
    [58]朱子新,高速电弧喷涂Fe-Al/WC涂层形成机理及高温磨损特性[D].天津:天津大学,2002
    [59]孟凡军,高速电弧喷涂Fe-Al/WC复合涂层高温腐蚀性能研究[D].北京:装甲兵工程学院,2004
    [60]徐维普,高速电弧喷涂Fe-Al/Cr_3C_2复合涂层高温性能研究及应用[D].上海:上海交通大学,2005
    [61]金国,电热爆炸定向喷涂微纳米晶涂层摩擦学性能及其机理研究[D],哈尔滨工程大学,2006
    [62]I.K.Hui.M.Hua.H.C.W.Lau.A parametric investigation of arc spraying process for rapid mould making[J].Int J Adv Manuf Technol,2003,22(11-12):786-795P
    [63]陈永雄,高速电弧喷涂技术及其在再制造工程领域的应用研究[D].北京:装甲兵工程学院,2006
    [64]朱子新,高速电弧喷涂技术基础研究——在装备防护与再制造工程中的应用[D],北京:装甲兵工程学院,2006
    [65]徐滨士,朱绍华等编著.表面工程的理论与技术[M].北京:国防工业出版社,1999:259-267页
    [66]徐滨士,刘世参.表面工程新技术[M].北京:国防工业出版社,2001:79-105页
    [67]徐滨士,张伟.面向21世纪的绿色再制造[J].中国表面工程.1999,12(4):1-4页
    [68]B.S.Xu,S.C.Liu,H.D.Wang.Developing remanufacturing engineering constructing cycle economy and building saving-oriented society[J].Journal of central south university of technology.2005,12(suppl.2):1-6P
    [69]徐滨士,张伟.现代制造科学之21世纪的再制造工程技术及理论研究[C].国家自然科学基金委员会机械学科前沿及优先领域研讨会论文集,广州.1999.12:63-67页
    [70]徐滨士等编著.再制造工程基础及其应用[M].哈尔滨:哈尔滨工业大学出版社,2005
    [71]徐滨士,马世宁,刘世参等.21世纪的再制造工程[J].中国机械工程,2000,11(1-2):36-39页
    [72]徐滨士,朱胜,马世宁,刘世参,梁秀兵.装备再制造工程学科的建设 与发展[J].中国表面工程,2003,16(3):1-6页
    [73]徐滨士,李仁涵,粱秀兵.绿色再制造工程的进展[J].中国表面工程.2001,14(2):1-4页
    [74]Terry Lester,Stuart Milton,Metallized coatings application:An overview of the flame- and arc-spraying processes used for surface finishing[J],Metal Finishing,2005,103(77):35-38P
    [75]Lianyong Xu,Hongyang Jing,Lixing Huo.Young's modulus and stress intensity factor determination of high velocity electric arc sprayed metal-based ceramic coatings[J].Surface and Coatings Technology,2006,201(6,4):2399-2406P
    [76]A.P.Newbery,P.S.Grant,R.A.Neiser.The velocity and temperature of steel droplets during electric arc spraying[J].Surface &Coating Technology,2005,195(1):91-101P
    [77]Milind Kelkar,Joachim Heberlein.Wire-arc spray modeling[J].Plasma chemistry and plasma rocessing,2002,22(1):1-25P
    [78]T.Watanabe,X.Wang,E.Pfender,J.Heberlein.Correlations between electrode phenomena and coating properties in wire arc spraying[J].Thin solid films,1998,316(1-2):169-173P
    [79]Satoshi Kugimaru,Seiki Nishida,Yoshitaka Nishikawa.Development of Zn-11%Al-2%Mg coated steel wire with excellent corrosion resistance and formability[J].Wire Journal International.2004,37(77):60-64P
    [80]HE Zhong-yun,LU Bing-heng,WANG Yi-qing,HONG Jun.An automated arc spray tooling system for rapid die-making of large-sized automobile body panels[J].Front Mech.Eng.China.2006,2(1):209-214P
    [81]H.L.Liao,Y.L.Zhou,R.Bolot et al.Size distribution of particles from individual wires and the effects of nozzle geometry in twin wire arc spraying[J].Surface&Coating Technology.2005,200(7):2123-2130P
    [82]X.Q.Yuan,H.Li,T.Z.Zhao et al.Comparative study of flow characteristics inside plasma torch with different nozzle configurations[J].Plasma chemistry and plasma processing,2004,24(4):585-601P
    [83]许一.保护气氛高速电弧喷涂枪设计及涂层性能研究[D].装甲兵工程学院,2002
    [84]Chen Yongxiong,Zhu Zixin,Liu Yan et al.Configuration optimization of high velocity arc spraying gun[J].Transactions of Nonferrous Metals Society of China,2004,14(z1):100-102P
    [85]秦颢,电弧喷涂丝材在我国的新进展[J].焊接,2001,(12):5-7页
    [86]谢铁兵,电弧喷涂粉芯丝材的新发展及应用[J].表面技术,1999,28(3):30-32页
    [87]马世宁,李新.应急维修技术(续四)——高速电弧喷涂技术[J].中国造船,2003(5):42-44页
    [88]曹楚南,张鉴清,电化学阻抗谱导论[M],科学出版社,北京:2002:153-154页
    [89]A.S.Castela,A.M.Simoes,An impedance model for the estimation of water absorption in organic coatings.Part Ⅰ:A linear dielectric mixture equation [J].Corrosion Science,2003,45(8):1631-1646P
    [90]A.S.Castela,A.M.Simoes,An impedance model for the estimation of water absorption in organic coatings.Part Ⅱ:A complex equation of mixrture[J].Corrosion Science,2003,45(8):1647-1660P.
    [91]C.Corfias,et al.Characterization of protective coatings by electrochemical impedance spectroscopy and a thermostimulated current method:influence of the polymer binder[J].Corrosion Science,2000,42(8):1337-1350P
    [92]C.Liu,Q.Bi,A.Matthews.EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution[J].Corrosion Science,2001,43(10):1953-1961P
    [93]Liu Jianguo,Gong Gaoping,Yan Chuanwei.EIS study of corrosion behaviour of organic coating/Dacromet composite systems[J],Electrochimica Acta,2005,50(16-17):3320-3332P
    [94]V.Barranco,S.Feliu Jr,S.Feliu.EIS study of the corrosion behaviour of zinc-based coatings on steel in quiescent 3%NaCl solution.Part 1:directly exposed coatings[J].Corrosion Science,2004,46(9):2203-2220P.
    [95]A.Conde,J.J.de Damborenea.Electrochemical impedance spectroscopy for studying the degradation of enamel coatings[J].Corrosion Science,2002,44(7):1555-1567P
    [96]A.P.Yadav,A.Nishikata,T.Tsuru.Electrochemical impedance study on galvanized steel corrosion under cyclic wet-dry conditions-influence of time of wetness[J].Corrosion Science,2004,46(1):169-181P
    [97]J.Kittel,N.Celati,M.Keddam,H.Takenouti.New methods for the study of organic coatings by EIS-New insights into attached and free films[J].Progress in Organic Coatings,2001,41(1):93-98P
    [98]C.G..Oliveira,M.G..S.Ferreira.Ranking high-quality paint systems using EIS.Part Ⅰ:intact coatings[J].Corrosion Science,2003,45(1):123-138P
    [99]C.G..Oliveira,M.G..S.Ferreira.Ranking high-quality paint systems using EIS.Part Ⅱ:defective coatings[J]Corrosion Science,2003,45(1):139-147P
    [100]S.Feliu Jr,V.Barranco.Comparative EIS and XPS studies of the protective character of thin lacquer films containing CR or P salts formed on galvanized steel,galvanneal and galfan substrates[J].Electrochimica Acta,2004,49(6):951-964P
    [101]C.Liu,Q.Bi,A.Leyland,A.Matthews.An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5N NaCl aqueous solution:Part Ⅰ.Establishment of equivalent circuits for EIS data modeling[J],Corrosion Science,2003,45(6):1243-1256P
    [102]吴丽蓉,胡学文,许崇武.用EIS快速评估有机涂层防护性能的方法[J].腐蚀科学与防护技术,2000,12(3):182-184页
    [103]G.W.Walter,A review of impedance plot methods used for corrosion performance analysis of painted metals[J],Corrosion Science.1986,26(9):681-703P
    [104]E.P.M.van Westing,G.M.Ferrari,J.H.W.de Wit.The determination of coating performance with impedance measurements-Ⅰ Coating polymer properties[J],Corrosion Science,1993,34(9):1511-1530P
    [105]S.F.Mertens,C.Xhoffer,B.C.De Cooman,E Temmerman,Short-term deterioration of polymer-coated 55%Al-Zn:Part 3-protective mechanism of inhibitor-modified surface[J].Corrosion,1999,55(3):151-156P
    [106]G.Walter,The application of impedance methods to study the effects of water uptake and chloride ion concentration on the degradation of paint films-Ⅰ.Attached films[J].Corrosion Science,1991,32(10):1059-1084P
    [107]U.Rammelt,G.Reinhard.Application of electrochemical impedance spectroscopy(EIS) for characterizing the corrosion-protective performance of organic coatings on metals[J],Progress in Organic Coatings.1992,21(2-3):205-226P
    [108]S.Feliu,J.C.Galv_an,M.Morcillo,The charge transfer reaction in Nyquist diagrams of painted steel[J],Corrosion Science.1990,30(10):989-998P
    [109]A.Amirudin,D.Thierry.Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals[J].Progress in Organic Coatings 1995,26(1):1-28P
    [110]C.Liu,Q.Bi,A.Leyland,A.Matthews.An electrochemical impedance spectroscopy study of the corrosion behavior of PVD coated steels in 0.5N NaCl aqueous solution:Part Ⅱ:EIS interpretation of corrosion behavior[J],Corrosion Science,2003,45(6):1257-1273P
    [111]J.R.Vilche,E.C.Bucharsky,et al.Application of EIS and SEM to evaluate the influence of pigment shape and content in ZRP formulation on the corrosion prevention of naval steel[J].Corrosion Science,2002,44(6):1287-1309P
    [112]R.M.Souto,et al.Comparative EIS study of different Zn-based intermediate metallic layers in coil-coated steels[J].Corrosion Science,2006,48(5):1182-1192P
    [113]张鉴清,孙国庆,曹楚南.评估有机涂层防护性能的EIS数据处理[J],腐蚀科学与防护技术,1994,6(4):318-325页
    [114]陈群尧.涂层及其腐蚀失效机理的研究方向和方法[J],中国腐蚀与防 护学报,1997,17(4):307-311页
    [115]Haruyama S,Asari S,Tsuru T.Corrosion protection by organic coating[J].Journal of Electrochemical Socity,1987,87(2):197-182P
    [116]Mansfeld F,Tsai C H.Determination of coating deterioration with EIS.Ⅰ.Basic relationships[J],Corrosion,1991,47(12):958-963P
    [117]刘小平.涂层防腐蚀的电化学研究[J],涂料工业,1999,29(2):37-41页
    [118]Tsai C H,Mansfeld F.Determination of Coating Deterioration with EIS:Part Ⅱ.Development of a Method for Field Testing of Protective Coatings[J],Corrosion,1993,49(9):726-737P
    [119]孙秋霞.传输线解析有机涂层/金属体系阻抗谱及其应用[D],浙江大学理学院化学系,2004:1-10页
    [120]E.M.Kinsella,J.E.O.Mayne,Ionic conduction in polymer films:Ⅰ influence of electrolyte on resistance[J],Br PolymJ,1969,1(4):173-176P
    [121]J.E.O.Mayne,J.D.Scantlebury,Ionic conduction in polymer films:Ⅱinhomogeneous structure of varnish films[J],Br PolymJ,1970,2:240-243P
    [122]J.R.Scully,D.C.Silvermann and M.W.Kendig,Electrochemical Impedance Analysis and Interpretationp[M],Philadelphia,ASTM,1993:407-415P
    [123]G.P.Bierwagen,D.ETallman,Choice and measurement of crucial aircraft coatings system properties[J],Progress in Organic Coatings,2001,41(4):201-216P
    [124]Yu A Popov,S N Sidorenko.Theory of interaction of metal and alloys with a corrosion environment[M].Britain,Cambridge international science publishing,1998:1-13P
    [125]R.M.Souto,L.Fernandez-Merida,S.Gonzalez,D.J.Scantlebury,Comparative EIS study of different Zn-based intermediate metallic layers in coil-coated steels[J].Corrosion Science,2006,48(5):1182-1192P
    [126]R.M.Souto,L.Fernandez-Merida,S.Gonzalez,D.J.Scantlebury,Comparative EIS study of different Zn-based intermediate metallic layers in coil-coated steels[J].Corrosion Science.2006,48(5):1182-1192P
    [127]B.D.Cullity.Elements of X-ray Diffraction[M].London,Addison-Wesley Publishing Company,1978
    [128]D.G.Kinniburgh,M.L.Jackson,J.K.Syers,Adsorption of alkaline earth,transition,and heavy metal cations by hydrous oxide gels of iron and aluminum[J],Soil Sci.Sic.Ann.J,1976,40(5):796-799P
    [129]E.A.Forbes,A.M.Posner,J.P.Quirk,The specific adsorption of divalent Cd,Co,Cu,Pb and Zn on goethite[J],J.Soil Sci.,1976,27:154-166P
    [130]V.Baran,Hydroxyl ions as a ligand[J],Coord.Chem.Revs,1971,6:65-93P
    [131]H.Grimme,Aluminium induced magnesium deficiency in oats[J],Z.Pflanzenernaehr.Bodenkd.1983,121:58-65P
    [132]Martin-Perez B,Zibara H,Hooton R D,et al.A study of the effect of chloride binding on service life predictions[J].Cement and Concrete Research,2000,30(8):1215-1223P
    [133]Ing J.F.H,双层系统(镀锌加油漆)保护20年[A],第十二届国际热镀锌会议文集[C],1979:158-163页