丝胶蛋白基复合吸水材料的研制及结构性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前广泛使用的聚丙烯酸类高吸水材料生物降解性能差,对生态环境造成危害,同时其原料来源于日益枯竭的石油资源。因此,研究可生物降解吸水材料,对于减少环境污染等具有重要意义。丝胶蛋白是一种天然高分子,一般作为制丝生产的废弃物。丝胶蛋白的氨基酸中含有大量极性基团(女-OH、-COOH、-NH2等),具有较好的亲水性、反应活性和生物降解性。如能将丝胶蛋白变废为宝作为生物资源加以利用,研制丝胶蛋白基可生物降解吸水材料,不仅丰富了吸水材料类型,也为丝胶蛋白资源利用提供了一条新途径。
     本研究以丝胶(Sericin)为原料,丙烯酸(AA)和丙烯酰胺(AM)为单体,分别以过硫酸铵(APS)和N,N,-亚甲基双丙烯酰胺(MBA)为引发剂和交联剂,采用水溶液聚合的方法,合成了具有生物降解性能的Seric in/PAA-AM复合吸水材料。研究了Sericin/PAA-AM复合吸水材料的合成条件如丝胶蛋白用量、单体配比、交联剂用量、引发剂用量、中和度、反应温度、溶液pH等对复合吸水材料吸水性能的影响,在单因素试验的基础上,设计五因素四水平正交试验获得了最适宜的制备条件:反应温度60℃,反应时间2h,丝胶与单体的配比为1:2,AA和AM的配比为2,引发剂用量为单体用量的2%,交联剂用量为单体用量的03%,中和度为70%,pH为7。复合吸水材料的吸收去离子水倍率为483g/g,吸收自来水倍率为296g/g,吸收0.9%NaCl溶液倍率为52g/g。
     考虑到Sericin/PAA-AM复合吸水材料吸水量的不足,尝试把热水沸煮提取的丝胶蛋白再用碱性蛋白酶进一步水解得到不同分子量分布的丝胶溶液,并研究酶解改性处理条件对丝胶蛋白分子量分布的影响。研究表明,酶解浓度越高,丝胶蛋白分子量越小。在此基础上,选择合适的酶解改性丝胶蛋白,进一步与丙烯酸/丙烯酰胺复合单体进行接枝共聚,研制具有生物降解性的酶解丝胶/丙烯酸/丙烯酰胺复合吸水材料,研究不同酶解改性丝胶蛋白复合吸水材料的结构与性能差异,阐明丝胶蛋白结构差异对复合吸水材料的接枝率、吸水性、保水性、生物降解性等的影响机制。研究表明,当碱性蛋白酶和丝胶的质量比为5mg/g时,酶解丝胶/丙烯酸/丙烯酰胺复合吸水材料的接枝率、吸水率、保水率、生物降解均达到最大。在此条件下,经冷冻干燥的酶解丝胶/丙烯酸/丙烯酰胺复合吸水材料吸收去离子水倍率达到896g/g,吸收自来水倍率为424g/g,吸收0.9%NaCl溶液倍率为83g/g。
     本研究对于丝胶蛋白基生态功能材料研发具有参考意义。
Present widely-used polyacrylic acid polymer, a kind of superabsorbent polymer (SAP), performs badly on biodegradation, which do harms to cause ecological environment and whose raw material is derived from increasingly exhausted oil. Therefore, researches on biodegradable SAP are of great importance to reducing environmental pollution.
     Sericin, a natural polymer, is generally treated as waste in silk prodction. If sericin is recycled and utilized as biological resources, there woulid be considerable social and economic benefits. Amino acids in sericin, which contain abundance polar groups (-OH,-COOH,-NH2etc), have good property in hydropgily, reactivity and biodegradability. The application of sericin to absorbent material field, and graft copolymerization of sericin and propenyl monomer to develop biodegradable SAP, can enrich the types of SAP and offer a new way to expand the utilization of sericin.
     Taken sericin as material, acrylic acid (AA) and acrylamide (AM) as monomer, ammonium persulfate (APS) and Methylene bisacrylamid (MBA) as initiator and crosslinker, this research synthesized a biodegradable SAP—Sericin/PAA-AM by polymerization in aqueous solutin. In our work, the synthetic reaction condition was studied including the dosage of sericin, the ratio of monomers, dosage of crosslinker and initiator, neutralization, temperture, and pH etc. After single factor experiment, orthogonal designed experiment of five factors, four levels was adopted to acquire optimal condition as follows:reaction temperture was60℃; reaction time was2h; the mass ratio of sericin to monomer wa1:2; the mass ratio of AA to AM was2:1; the mass ratio of initiator and crosslinker to monomer was2%and0.3%; neutralization degree was70%; pH was7. Water absorbencies of Sericin/PAA-AM in deionized water, tap water and0.9%NaCI solution were483g/g,296g/g and52g/g, respecyively.
     Consider inadequate absorption capacity of Sericin/PAA-AM SAP, sericin extracted by boiled-water was hydrolyzed by alkaline protease to different molecular weight of sericin, and the influence of processing conditions of enzymolysis modification was studied on sericin distribution of different molecular weight. It was found that the higher protease concertration, the smaller molecular weight of sericin would be. Furthermore, appropriate enzymolysis sericin was choosed and grafted with AA/AM to produce composite SAP with biodegradability. The differences was studied in structure and performance of this composite SAP, and mechanism of influence of different sericin structures was clarified on grafting percentage, water absorbency, water retaining capacity, biodegradability. The results showed that when the mass ratio of alkaline protease to sericin was5mg/g, APh-Sericin/PAA-AM's capacity reached the highest value, including grafting percentage, water absorbency, retaining capacity and biodegradability. The water absorbency of lyophilized Sericin/PAA-AM was896g/g in deionized water,424g/g in tap water, and83g/g in0.9%NaCl solution.
     This research could offer a reference for sericin-based ecological and functional materials.
引文
1. M. J. Zohuriaan-Mehr, A. Pourjavadi, H. Salimi, et al. Protein- and homo poly(amino acid)-based hydrogels with super-swelling properties [J]. Polymers for Advanced Technologies 2009,20 (8):655-671
    2. K. Prudnikova and M. Utz. Electromechanical Equilibrium Properties of poly(acrylic acid/acrylamide) hydrogels [J]. Macromolecules 2012,45 (2):1041-1045
    3. P. C. Parvathy and A. N. Jyothi. Synthesis, characterization and swelling behaviour of superabsorbent polymers from cassava starch-graft-poly(acrylamide) [J]. Starch-Starke 2012,64 (3):207-218
    4. 李建颖.高吸水与高吸油性树脂[M].北京:化学工业出版社,2005
    5. A. Sabokabar and R. Pandey. Hydroxyapatile particles are capable ofo inducing osteoclast formation [J]. Journal of Materials in Medicine 2001,12(8):659-664
    6.吴季怀,林建明,魏月琳等.高吸水保水材料[M].北京:化学工业出版社,2005
    7. 黄美玉,吴如,蒋利人等.超高吸水性聚丙烯酸钠的制备[J].高分子通讯,1984,2:129-134
    8. 崔英德,黎新明,尹国强等.绿色高吸水树脂[M].北京:化学工业出版社,2008
    9. Y. Diamant, G. Marom, L. J. Broutman. The effect of network stucture on mositure absorption of epoxy resins [J]. Journal of Applied Polymer Science 1981,26: 3015-3025
    10. J. Chen, H. Park, K. Park. Synthesis of superporous hydrogels:Hydrogels with fast swelling and superabsorbent properties [J]. Journal of Biomedical Materials Research 1999,44:53-62
    11. S. W. Czupryna. Superabsorbent polymer materials:A high performance, cost-effective alternative to viscous filling and flooding compounds for optical cable [J]. Wire Industry 2000,67(794):69-82
    12. M. G. Charls, N. Matthew. Synthesis of a superabsorbent polymer [J]. Journal of Chemical Education 1997,74(1):95
    13.潘祖仁,翁治学,黄志明等.悬浮聚合[M].北京:化学工业出版社,1999
    14. 孙晓然,单忠键.微波辐射合成耐盐性羟乙基纤维素高吸水树脂[J].化工新型材料,2008,36(1):82-84
    15.万涛,朱忠伟,思全寿.水溶液聚合高岭土复合聚丙烯酸钠-丙烯酰胺高吸水性树脂的研究[J].现代化工,2003,23(4):35-38
    16. 乌兰,柳明珠。玉米淀粉接枝丙烯酸制备高吸水性树脂[J].高分子材料科学与工程,2006,22(1):250-252
    17. J. P. Zhang, Wang. L, A.Q. Wang. Preparation and swelling behavior of fast-swelling superabsorbent hydrogels based on starch-g-poly(acrylic acid-co-sodium acrylate) macromol [J]. Material engineering 2006,291:612-620.
    18杨晓丽,马俊红,买苏尔等.木糖醇交联的聚丙烯酸钠类高吸水性树脂的制备及性能研究[J].胶体与聚合物,2005,23(2):24-26
    19王丹.羧甲基纤维素改性高吸水树脂合成及性能研究[J].林产化学与工业,2007,27(5):6-10
    20厚美瑛.快速响应“智能型”水凝胶[J].物理,2003,32(1):52
    21 陈密峰,张秀娟,杨健茂.AA/AMPS共聚型吸水树脂反相悬浮合成工艺研究[J].功能高分子学报,2002,15:451-456
    22赖雅平,尚小琴,陈展云等.改性淀粉超强吸水树脂反相乳液法合成与性能研究[J].粮油加工,2008,6:100-103
    23 B. Tyagi, C. D. Chudasama, R. V. Jasra. Characterization of surface acidity of an acid montmorillonite activated with hydro thermal, ultrasonic and microwave techniques [J]. Applied Clay Science 2006,31:16-28
    24邵赛,邓钢桥,王芊等.高分子吸水剂的辐射聚合制备及其性能研究[J].弹性体,2001,10(3):21-22
    25朱月群,宁荣昌,解云川.紫外照射合成高吸水性树脂的研究[J].高分子材料科学与工程,2001,17(4):71-73
    26陈长钢,邵赛,王芊等.辐射悬浮聚合法制备高吸水树脂[J].精细化工中间体,2001,31(6):26-27
    27 P. C. Parvathy and A. N. Jyothi. Synthesis, characterization and swelling behaviour of superabsorbent polymers from cassava starch-graft-poly(acrylamide) [J]. Starch-Stdrke 2012,64 (3):207-218
    28 C. Spagnol, F. H. A. Rodrigues, A. G. B. Pereira, et al. Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers [J]. Cellulose 2012,19 (4):1225-1237
    29 F. Wu, Y. Zhang, L. Liu, et al. Synthesis and characterization of a novel cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent composite based on flax yarn waste [J]. Carbohydrate Polymers 2012,87 (4):2519-2525
    30 H. Kono and S. Fujita. Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1,2,3,4-butanetetracarboxylic dianhydride [J]. Carbohydrate Polymers 2012,87 (4):2582-2588
    31 王鹏.纤维素接枝丙烯酸制备高吸水树脂及树脂保水性能的研究[J].哈尔滨商业大学学报,2002,18(2):192-196
    32孙晓琳,石红锦.丙烯酸与醋酸乙烯酯共聚类高吸水性树脂的研究[J].橡塑技术与装备,2007,33(6):39-42
    33 王建莉,张晨.浓乳液方法制备结构型高吸水性聚丙烯酰胺树脂[J].高分子材料科学与工程,2006,22(3):97-99
    34 王晓伟,张娜.高吸水性聚丙烯酸钠树脂的合成与性能研究[J].科技信息,2007,18:278-279
    35钱喜云,童群义.高吸水性树脂聚丙烯酸钠的制备及相关影响[J].化工新型材料,2006,34(5):46-48
    36 丁远蓉,肖长发,安树林.丙烯酸一丙烯酞胺共聚物/聚乙烯醇高吸水纤维研制[J].合成纤维工业,2005,28(5):1-3
    37 Lee W F, Yang L G. Superabsorbent Polymeric Materials. Ⅻ. Effect of Montmorillonite on Water Absorbency for Poly (sodium acrylate) and Montmorillonite nanocomposite [J]. Journal of Applied Polymer Science 2004,92: 3422-3429
    38 A. Pourjavadi, H. Ghasemzadeh and R. Soleyman. Synthesis, characterization, and swelling behavior of alginate-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites [J]. Journal of Applied Polymer Science 2007,105 (5): 2631-2639
    39 徐玉文,林建民,李玲等.膨润土/丙烯酸/丙烯酰胺三元共聚物的合成与吸水性能研究[J].矿物学报,2006,26(2):224-228
    40梁瑞婷,李锦凤.凹凸棒/膨润土/聚丙烯酸钠复合吸水树脂的合成及其吸水速率[J].化工新型材料,2008,36(3):36-38
    41 J. M. Lin, J. H. Wu, Z. F. Yang. Synthesis and properties of poly (acrylic acid)/Mica superabsorbent nanocomposite [J]. Macromolecular Rapid Communications 2001,22 (6):422-424
    42 尹国强,崔英德,廖列文等.抗菌型高吸水性树脂的合成及性能研究[J].功能材料,2004,35(3):368-370
    43 M. Silberbush, E. Adar, M. Y. De. Use of all hydropholie polymer to improve water storage and availability to crops grown in sand dunes [J]. Agricultural Water Management 1993, (23):303-313
    44唐广,李慧.农作物节水抗旱对比试验研究[J].北京农业科学,2000,18(4): 25-29
    45 罗正贵,闻秋江.离子吸附分离材料的研究进展[J].苏州大学学报,2004,24(1): 55-59
    46 S. R. Shukla, R. S. Pai. Adsorption of Cu, Ni and Zn on modified jute fiber [J]. Bioresource technology 2005,96:1430-1438
    47 D. Kuila, G. A. Blay, R. E. Borjas, et al. Polyacrylic acid (poly-AA) as a chelant and dispersant [J]. Journal of Applied Polymer Science 1999,73(7):1097-1115
    48杨云峰,刘强.聚甲基丙烯酸螯合树脂的研究[J].华北工学院学报,2000,21(4):319-322
    49 K. Kesenci, R. Say, A. Denizli. Removal of heavy metal ions from water by
    using poly (ethyleneglycol dimethacrylate-co-acrylamied) beads [J]. European polymer journal 2002,38:1443-1448
    50廖列文,崔英德,康正.淀粉接枝丙烯酸钠高吸水保水剂的合成及在食品保鲜中的应用[J].广州化工,2000,28(4):12-15
    51 F. Santiago, A. E. Mucientes, M. Osorio. Preparation of composites and nanocomposites based on bentonite and poly (sodium acrylate) [J]. European polymer Journal 2007,43:1-9
    52 A. B. Liu, H. Cai, B. Ye, et al. The damages of high intensity focused ultrasound to transplanted hydatid cysts in abdominal cavities of rabbits with aids of ultrasound contrast agent and superabsorbent polymer [J]. Parasitology Research 2013,112 (5): 1865-1875
    53 Q. W. Tang, K. Huang, G. Q. Qian, et al. Phosphoric acid-imbibed three-dimensional polyacrylamide/poly(vinyl alcohol) hydrogel as a new class of high-temperatrue proton exchange membrane [J]. Journal of Power Sources 2013, 229:36-41
    54刘艳三,邹新禧.聚丙烯酰胺吸水性树脂的改进[J].湘潭大学自然科学学报,1996,(4):46-48
    55贾振宇,崔英德,黎新明.聚丙烯酸钠高吸水树脂的改性研究进展[J].化工进展,2004,23(5):468-471
    56朱秀林,顾梅.丙烯酸-丙烯酰胺共聚物和高岭土交联的吸水树脂的合成及性能研究[J].石油化工,1994,23(7):431-435
    57田大听,过俊石.反相悬浮聚合法合成超强吸水剂[J].应用化学,1997,14(5): 15-18
    58孙克时,李志强.水溶液共聚法合成耐盐性高吸水树脂[J].化学与粘合,2000,3:105-107
    59林建明,杨正方,普敏莉.膨润土/聚丙烯酸钠盐高吸水性复合材料研究[J].矿物学报,2001,3(21):427-430
    60 D. W. Lim, K. J. Yoon and S. W. Kong. Synthesis of AA-based Superabsorbent interpenetrated with sodium PVA sulfate [J]. Journal of Applied Polymer Science 2000,78:2525-2532
    61 A. B. Argade and N. A. Peppas. Poly (acrylic acid)-poly (vinyl Mcohol) copolymers with superabsorbent properties [J]. Journal of Applied Polymer Science 1998,70:817-829
    62 P. C. Parvathy and A. N. Jyothi. Synthesis, characterization and swelling behaviour of superabsorbent polymers from cassava starch-graft-poly(acrylamide) [J]. Starch-Starke 2012,64 (3):207-218
    63 K Prafulla and P. K Sahoo. Synthesis and biodegradability of starch-g-ethyl methacrylate/sodium acrylate/sodium silicate superabsobing composite [J]. Journal of Material Science 2006,41:6470-6475.
    64慧贤民.洋芋淀粉接枝丙烯酸高吸水树脂的研究[J].安徽农业科学,2009,37(31):15091-15092.
    65 张东平,吴岳英,夏春娟.淀粉-丙烯酸接枝共聚物的生物降解研究[J].上海大学学报(自然科学版),2002,8(8):261-264.
    66刘晓洪,曾莹.淀粉接枝类高吸水性树脂的生物降解性与毒性研究[J].精细石油化工,2003,6:25-26.
    67赵妍嫣,姜绍通,郑志.淀粉基高吸水树脂降解菌的筛选及初步鉴定[J].微生物学通报,2004,31(6):83-86.
    68 P. Lanthong and R. Nuisin. Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents [J]. Carbohydrate Polymers 2006,66(2):229-245
    69 马涛,吕富强,邓小闻.高直链淀粉超强吸水材料制备及其吸湿保湿性能[J].食品研究与开发,2010,31(8):40-44
    70 陆爱霞,黄淼.农用纤维素基高吸水性树脂的制备与研究[J].湖北农业科学,2011,14(50):2948-2950
    71 窦玉,薛国新.纸浆纤维基高吸水材料的制备及性能研究[J].纤维学科学与技术,2009,17(1):35-40
    72 郑彤,王鹏.纤维素接枝丙烯酸制备高吸水树脂及树脂保水性能的研究[J].哈尔滨商业大学学报(自然科学版),2002,1 8(2):192-196
    73 G. B. Marandi and G. R. Mahdabinia. Swelling behavior of novel protein-based superabsorbent nonocomposite [J]. Journal of Applied Polymer Science 2010, 1170-1179
    74 B. Zhang, Y. D. Cui, G. Q. Yin, et al. Synthesis and swelling properties of protein-poly (acrylic acid-co-acrylamide) superabsorbent composite [J]. Polymer Composites 2011,683-691
    75汪琦翀,朱良均,闵思佳等.丝素蛋白/丙烯酸/丙烯酰胺复合吸水材料的吸水与保水性能检测[J].蚕业科学,2009,35(3):661-665
    76 张小红,崔英德.可生物降解海藻酸钠高吸水性树脂的性能与结构[J].高分子材料科学与工程,2006,11:362-365
    77 J. Cao, Y. B Tan, Y. J. Che, et al. Fabrication and properties of superabsorbent complex gel beads composed of hydrolyzed polyacrylamide and chitosan [J]. Journal of Applied Polymer Science 2010,3338-3345
    78 C. Spagnol, F. H. A. Rodrigues, A. G. B. Pereira, et al. Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid) [J]. Carbohydrate Polymers 2012,87 (3):2038-2045
    79 A. Pourjavadi and M. G. Reza. Superabsorbency, pH-sensitivity and swelling kinetics of partially hydrolyzed chitosan-g-poly(acrylamide) hydrogels[J].Turkish Journal of Chemistry 2006,30(5):595-605
    80葛华才,黄国荣,文庆炳.无引发剂条件下微波辐射法制备壳聚糖-丙烯酸高吸水材料[J].材料导报,2007,21:85-87.
    81 董奋强,崔英德.明胶-丙烯酸-丙烯酰胺可降解高吸水树脂的制备[J].现代化工,2007,11:48-50.
    82 I. E. Raschip and Vasile C. Semi-interpenetrating polymer networks containing polysaccharides. I Xanthan/Lignin Networks [J]. High performance 2007,19: 603-620.
    83 A. Pourjavadi, A. Vagrik, G. Hossein. Synthesis, characterization and swelling behavior of chitosan-sucrose as a novel full-polysaccharide superabsorbent hydrogel [J]. Journal of Applied Polymer Science 2008,109:2648-2655
    84孙波,伏东.EVA/木质素复合膜的紫外老化及生物降解性能研究[J].中国塑料,2006,20(12):19-22.
    85李仲谨,王磊,赖小娟等.海藻接枝丙烯酸高吸水性树脂的制备及性能研究[J].化工新型材料,2006,34:52-58
    86 Y. Q. Zhang. Applications of natural silk protein sericin in biomaterials [J]. Biotechnology Advances 2002,20:91-100
    87 F. Lucas, J. T. B. Shaw, S.G Smith. Amino-acid composition of the silk of chrysopa egg-stalks [J]. Nature 1957,179:906-907
    88 Y. Q. Zhang, Z. M. Chen, Y. D. Zhang. Structure and extraction conditions of sericin protein [J]. Journal of Clinical Rehabilitative Tissue Engineering Research 2011,15(3):568-472
    89朱良均,姚菊明,李幼禄等.蚕丝蛋白的氨基酸组成及其对人体的生理功能[J].中国蚕业,1997,(1):42-44
    90盛家镛.蚕丝蛋白质的分子量与亚单位结构[J].丝绸,1998,9:43-45
    91 黄国瑞.茧丝学[M].北京:农业出版社,1991
    92胡桂燕,王永强,李有贵等.丝胶蛋白性能及美白防晒乳的研制[J].丝绸,2010, (4): 27-30
    93 M. Yamazaki, K. Yamada, S. Furuya, et al. 3-Phosphoglyerate dehydrogenase (3PGDH), a key enzyme for L-serine biosynthesis, is preferentially expressed in the rarial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain [J]. Journal of Neuroscience 2001,21:7691-7704
    94 J. Mitoma. Occurrence of an unusal phopholipid, phosphatidyl-L-threonine, in cultured hippocampal neurons [J]. Journal of biological chemistry 1998,273(31): 19363-19366
    95 S. Furuya. L-Serine and glycine serve as major astroglia-derived trophic factors for cerebellar Purkinje neurous [J]. Porc. Natl. Acad. Sci 2000,97(21):11528-11533
    96 H. Yamada, Y. Fuwa, M. Nomura. Waer for food and drink. Japan patent 2000, 2000-184868A2
    97 H. Yamaguchi. Pickled Ume containing silk protein hydrolyzate added thereto and its production. Japan patent 2000,2000-201643 A2
    98 M. Sasaki, N. Kato, H. Watanabe, et al. Silk protein, sericin, suppresses colon carcinogenesis induced by 1,2-dimethylhydrazine in mice [J]. Oncology Reports 2000, 7(5):1049-1052
    99 N. Minoura, S. Aiba, Y. Gotoh, et al. Attachment and growth of cultured fibroblast cells on silk protein matrices [J]. Journal of Biomedical Materials Research 1995,29(10):1215-1221
    100 A. Kongdee, T. Bechtold, L. Teufel. Modification of cellulose fiber with silk sericin [J]. Journal of Applied Polymer Science 2005,96(4):1421-1428.
    101 杨美贵,林红,陈美贵等.丝胶蛋白对氧化棉纤维结构和性能的影响[J].丝绸,2007(9):24-25
    102 叶皓华,陈国强,唐孝明.改性丝胶在棉织物上的使用[J].纺织学报,2011(8):87-91
    103张海萍,朱良均,胡虹.丝胶蛋白固定化L-天冬酰胺酶的特性研究[J].蚕桑通报,2003,34(1):16-19
    104 M. Sachio and S. Masaaki. Properties of β-glucosidase immobilized in sericin membrane [J]. Journal of Fernent Technology 1978,56(4):303-308
    105 吴雯,王东升,王利群.快速pH响应丝胶/聚甲基丙烯酸互穿网络水凝胶的合成及表征[J].高等学校化学学报,2009,30:830-834
    106 A. Nishida, M. Yamada, T. Kanazawa, et al. Sustained-release of protein from biodegradable sericin film, gel and sponge [J]. International Journal of Pharmaceutics 2011,407 (2):44-52
    107 S. Nayak, S. Talukdar, S. C. Kundu. Potential of 2D crosslinked sericin membranes with improved biostability for skin tissue engineering. Cell and Tissue Research 2012,347:783-794
    108 B. Kundu and S. C. Kundu. Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction [J]. Biomaterials 2012,33 (30):7456-7467
    109 S. Annamaria, R. Maria, Tullia M, et al. The microbial degradation of silk:A laboratory investigation [J]. International Biodeterioration 1998,42(4):203-211.
    110 M. Nomura, Y. Iwasa, and H. Araya. Moisture absorbing and desorbing polyurethane foam and its production. Japan Patent 07-292240A2,1995.
    111 H. Hatakeyama. Biodegradable sericin-containing polyurethane and its production. Japan Patent 08-012738A2,1996.
    112 X. B. Hu. Synthesis and properties of silk sericin-g-poly (acrylic acid-co-acrylamide) superabsorbent hydrogel [J].Polymer Buletin 2010
    113段亚峰,杨晓瑜.缫丝厂废水处理与丝胶蛋白质的回收利用[J].丝绸,2000,(1):16-17.
    114 H. Omidian, S. A. Hashemi, P. G. Sammes, et al. Modified acrylic-based superabsorbent polymers (dependence on particle size and salinity) [J]. Polymer 1999 (40):1753-1761
    115 D. W. Lim, K. G. Song, K. J. Yoon, et al. Synthesis of acrylic acid-based superabsorbent interpentrated with sodium PVA sulfate using inverse-emulsion polymerization [J]. European Polymer Journal 2002,38(3):579-586
    116 J. M. Lin, J. H. Wu, Z. Yang, et al. Synthesis and properties of poly-acrylic acid/mica superabsorbent nanocomposites[J]. Macromolecular Rapid Communications 2001,22(6):422-424
    117 J. H. Wu, J. M. Lin, G. Q. Li, et al. Influence of th hydrophilic group and cross-link density of poly-acrylic acid/montmonilonite superabsorbent composite on water absorbency [J]. Polymer intermational 2001,50(9):1050-1053
    118 R. M. Prieto, P. K. Sahoo, R. J. Falconer. Polyelectrolyte screening effects on the dissolution of whey protein gels at high pH conditions [J]. Food Hydrocolloids 2007,21:1275-1284
    119 M. P. S. Keshava, M. Y. Murali, J. Sreeramulu, et al. Semi-IPNs of starch and poly (acrylamide-co-sodium methacrylate):Preparation, swelling and diffusion characteristics evaluation [J]. Reactive & Functional Polymers 2006,66:1482-1493
    120韩玉红.丙烯酸互穿网络高吸水性树脂的制备及性能研究.硕士学位论文
    121 Y. Q. Zhang, Y. Ma, Y. Y. Xia, et al. Silk sericin-insulin bioconjugates: Synthesis, characterization and biological activity [J]. Journal of Controlled Release 2006,115:307-315
    122 A. Madhuri, B. Nagaraju, N. Harikrishna, et al. Production of Alkaline Protease by Bacillus altitudinis GVC11 using Castor Husk in Solid-State Fermentation [J]. Applied Biochemistry and Biotechnology 2012,167(5):1199-1207
    123 J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯著;金冬雁,黎孟枫等译;侯云德等校。分子实验克隆指南(第二版)[M],北京:科学出版社,1996
    124 A. Manosroi, K. Boonpisuttinant, S. Winitchai, et al. Free radical scavenging and tyrosinase inhibition activity of oils and sericin extracted from Thai native silkworms (Bombyx mori) [J]. Pharmacertical Biology 2010,48:855-860
    125 W. Zou, L. Yu, X. X. Liu, et al. Effects of amylase/amylopectin ratio on starch-based superabsorbent polymers [J]. Carbohydrate Polymer 2012,87: 1583-1588
    126 夏北成.环境污染物生物降解[M].北京:化学工业出版社
    127 钟世云,许乾慰,王公善.聚合物降解与稳定化(第一版)[M].北京:化学工业出版社
    128 P. Lanthong, R. Nuisin, S. Kiatkamjormwong. Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents [J]. Carbohydrate Polymers 2006,66(2):229-245