乙二醛—尿素—甲醛共缩聚树脂的合成、性能及反应机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为从根本上降低木材胶合制品的甲醛释放对环境和人体健康的危害,本论文选用无毒、低挥发的乙二醛(G)全部或部分替代甲醛(F)合成系列乙二醛-尿素(GU)树脂及乙二醛-尿素-甲醛(GUF)共缩聚树脂。在用量子化学计算方法研究了树脂合成反应及结构形成机理的基础上,研究了反应物料摩尔比、反应pH值、反应温度、反应时间、pH调节剂等合成条件对树脂结构和性能的影响规律,确定树脂较佳的合成工艺条件;主要采用紫外-可见吸收光谱(UV-vis)、傅里叶变换红外光谱(FTIR)、核磁共振碳谱(I3CNMR)、基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)等方法研究树脂的结构及分子量分布情况;并用动态热机械性能分析(DMA)方法研究了系列GUF树脂的固化过程。得出如下主要结论:
     (1)分子模拟研究表明,尿素(U)、单羟甲基脲(MMU)、双羟甲基脲(DMU)与乙二醛(G)及2,2-二羟基乙醛(G1)的加成反应较难发生;但与质子化乙二醛(p-G)及质子化2,2-二羟基乙醛(p-G1)的加成反应则很容易发生,生成重要的系列碳正离子C-p-UG、C-p-UG1、C-p-G-MMU、C-p-G1-MMU、C-p-G-DMU和C-p-G1-DMU。在缩聚阶段,主要生成C-N-C和C-O-C键使分子量增加。
     (2)以量子化学计算的研究结果为指导,主要选择在弱酸性条件下制备出GU及GUF树脂,用其制备的胶合板干状胶合强度能满足国标GB/T9846.3-2004《普通胶合板通用技术条件》对III类胶合板的要求,可以在干燥状态下使用。
     (3)树脂的UV-vis谱图中存在π-π*跃迁的吸收峰,表明树脂结构中存在共轭结构;FTIR表明树脂中的主要官能团为-OH、-NH-、C=O、C-N、C-O等;与反应物进行对比,合成树脂的13CNMR谱中均出现许多新的吸收峰,主要对应于不同取代结构的羰基碳(C=O)和sp3杂化碳。
     (4) MALDI-TOF-MS研究表明,原料摩尔比对树脂聚合程度及分子量分布情况影响较大,但主要峰的吸收位置相同,表明不同摩尔比树脂的结构中可能具有相同的重复单元,这些重复单元构成了树脂的基本骨架。MMU、DMU自缩聚产生的吸收峰强度随着摩尔比的增加而增加;即低摩尔比时,体系中G与MMU或DMU的反应占主导地位,但高摩尔比时,MMU或DMU的自缩聚反应占主导地位。因此,在GUF树脂的合成过程中MMU/G或DMU/G的摩尔比不宜太高。
     (5)甲醛(F)的亲核反应活性强于乙二醛(G),当G、U、F三者放在一起进行反应时,首先发生U与F的反应,然后体系中主要发生G与剩余U及中间产物MMU的加成反应和后续发生的缩聚反应。GUF树脂较适宜的合成条件为:第二阶段的反应pH为弱酸性,反应时间2h,物料摩尔比为0.7:1:0.7。不同物料摩尔比GUF树脂的峰值温度和E’保持稳定的温度范围基本相同,表明树脂的固化速率和固化后树脂的热稳定性相差不大。
In order to decrease fundamentally the harm of formaldehyde to environment and human health, in this PhD thesis, the low volatile and nontoxic aldehyde, glyoxyal (G) was chosen to substitute for formaldehyde (F) to react with urea (U) to prepare glyoxal-urea (GU) resin and glyoxal-urea-formaldehyde (GUF) cocondensed resin. Firstly, the synthesis reaction and structure formation mechanism were studied by quantum chemical calculations. On the basis of the results of quantum chemical calculations, the optimal synthesis conditions will be determined after investigating the effects of various kinds of synthesis conditions on the resins'structure formation process and properties, including the molar ratios of material, reaction pH, reaction time, reaction temperatures and catalysts. Secondly, the structure and molecular weight distribution of the resins were investigated mainly by nuclear resonance carbon-13spectrum (13CNMR), matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), Fourier transform infrared spectroscopy (FTIR) and ultraviolet and visible spectroscopy (UV-vis) metods. Then, the dynamic mechanical analysis (DMA) test was used to investigate the curing process of GUF resins by simulating the hot pressing process in plywood manufacture. The main results obtained from the above study are summarized as follows:
     (1) The results of chemical calculation indicates that under weak acid condition, the addition reaction of urea (U), monomethylol urea (MMU) and dimethylol urea (DMU) with glyoxal (G) and2,2-dihydroxyacetaldehyde (G1) is difficulty to take place. However, the addition reaction of urea (U), monomethylol urea (MMU) and dimethylol urea (DMU) with protonated glyoxal (p-G) and protonated2,2-dihydroxyacetaldehyde (p-G1) is easily to occur. And in the these reactions, the important carbocation reactive intermediates C-p-UG and C-p-UG1, C-p-G-MMU and C-p-G1-MMU, C-p-G-DMU and C-p-G1-DMU have been formed, respectively. In the condensation stage, the resins have been produced through the formation of two main chemical bond of C-N-C and C-O-C.
     (2) Based on the quantum chemical calculation results, GU and GUF resin have been synthesized under slightly acid condition. The dry shear strength of the plywoods bonded with the GU or GUF resins could meet the type III grade plywood requirement of GB/T9846.3-2004, and could be used in dry conditions, but their wet dry shear strength has yet to be improved.
     (3) In the UV-vis spectrum of GU and GUF resins, the adsorption peak of the π→π*transition appears, which suggests that the conjugated structure exists in the structure of GU and GUF resin. FTIR shows that there are mainly such functional groups as-OH,-NH-, C-N, C=O, etc. and compared with the reactive materials, many new adsorption peaks appear in the13CNMR spectrum of GU and GUF resin, corresponding to the signals of the sp3hybridized carbon and carbonyl (C=O) with different substitution degree in the resins, which indicates that the structure of the resins is probably very complicated.
     (4) The MALDI-TOF-MS spectrum show that the materials molar ratio has important effects on the condensation degree and the molecular weight's distribution. The main peaks have appeared at the same adsorption position, but with different adsorption strength, which indicates that there are same repeating units in the resins with different molar ratio of MMU/G or DMU/G. Moreover, the peaks due to the dehydration condensation reaction of MMU or DMU also appear in the spectra and their strength increases with the MMU/G or DMU/G molar ratio, which indicates that at low MMU/G or DMU/G molar ratio much more glyoxal reacted with MMU or DMU and at high MMU/G or DMU/G molar ratio much more MMU or DMU occurs the dehydration condensation reaction, so in the resin's synthesis, the appropriate MMU/G or DMU/G molar ratio is very important.
     (5) The results of chemical calculation suggested that the nucleophilic reaction activity of formaldrhyde (F) is higher than that of glyoxal (G), so in the system existing G, U and F, U reacts firstly with F, then G reacts with the unreacted U and intermediate product of MMU, the most important intermediate products in the nucleophilic reaction of U and F, and even the corresponding condensation reaction. The proper synthesis conditions of GUF resin are as follows: the reaction pH in the second stage is weak acid; the reaction time in the second stage is2h; the molar ratio of G/U/F is0.7:1:0.7. The peak temperature, peak E'and stable temperature range of E'of GUF samples with different molar ratio are basically the same, which suggests that the curing rate, the heat stability and the performance of the resins are basically the same.
引文
1.常建华,董绮功.波谱原理及解析(第二版)[J].北京:科学出版社,2005.
    2.陈海霞,高文远.基质辅助激光解吸电离-飞行时间质谱在糖类化合物研究中的应用[J].质谱学报,2005,26(2):108-114.
    3.陈连清.环保型脲醛树脂粘合剂合成的研究[J].中国胶粘剂,2007,16(7):23-27.
    4.陈敏伯.计算化学-从理论化学到分子模拟[M].北京:科学出版社,2009.
    5.陈娅,陶伟根,林苗.磷型阻燃脲醛树脂胶粘剂的性能研究粘接[J].粘结,2011,15(1):56-58.
    6.陈志达.量子化学的第二次革命—1998年诺贝尔化学奖简介[J].大学化学,1999,14(3):3-6.
    7.程瑞香.动态热机械分析在木材加工行业的应用[J].木材工业,2005,19(4):28-30.
    8.崔小明.乙二醛的生产应用及市场分析[J].化学推进剂与高分子材料,2003,1(3):27-30.
    9.邓书端,杜官本,汪进.乙二醛-尿素(GU)树脂的合成、结构与性能研究[J]中国胶黏剂,2014,240):140-144.
    10.狄海燕,吴世臻,杨中兴,戴鹏杰,高国民.各种因素对动态热机械分析结果的影响[J].高分子材料科学与工程,2007,23(4):188-191.
    11.董华青,祝远帅,杨华丰,高建荣.乙二醛在Pd4团簇吸附、离以及选择氧化[J].分子催化,2012,2(2):111-115.
    12.董耀辉.低摩尔比脲醛树脂固化与性能的研究[D].北京:北京林业大学,2011.
    13.杜官本.尿素与甲醛加成及缩聚产物13CNMR研究[J].木材工业,1999,13(6):9-13.
    14.杜官本.缩聚条件对脲醛树脂结构的影响[J].粘结,1999,21(1):12-16.
    15.杜官本,雷洪,方群.PMUF共缩聚树脂制备过程中分子结构变化特征的研究[J].北京林业大学学报,2006,28(6):132-136.
    16.杜官本,雷洪,Pizzi A.脲醛树脂固化过程的热机械性能分析[J].北京林业大学学报,2009,31(3):106-110.
    17.杜官本,马洪泳,殷健雄,张尽辉.低甲醛释放蔗渣中密度纤维板用脲醛树脂[J].木材工业,1999,13(2):13-16.
    18.范东斌,李建章,卢振雷,周文瑞,毛安.不同固化剂下低摩尔比脉醛树脂热行为及胶接胶合板性能[J].中国胶黏剂,2006,15(12):1-4.
    19.冯伟,吕佳飞,李文飞.我国淀粉在胶粘剂改性中的应用研究进展[J].中国人造板,2010,8:9-11.
    20.甘卫星.我国木材胶粘剂的发展现状[J].国际木业,2006,12:34-36.
    21.高振华,顾皞.利用强碱性降解大豆蛋白制备木材胶粘剂及其表征[J].高分子材料科学与工程,2010,26(11):126-129.
    22.龚辈凡.我国大陆胶粘剂市场现状及发展预测[J].粘接,2008,29(1):1-5.
    23.顾继友.胶粘剂与涂料[M].北京:中国林业出版社,1999.
    24.何兴帮.三聚氰胺乙二醛溶液、制备、性质和改性的研究[D].广州:华南理工大学,2013.
    25.胡飚,傅深渊,程书娜,栾复友.PUF树脂的固化动力学研究[J].化学与粘合,2009,31(3):15-18.
    26.胡浩.从2013年诺贝尔化学奖浅析理论和计算化学发展前沿[J].科技导报,2013,31(34):18-21.
    27.胡巧玲.聚氨酯胶粘剂的分子设计[J].中国胶粘剂,1996,5(5):7-11.
    28.胡松青,胡建春,范成成,贾晓林,张军,郭文跃.新型咪唑啉缓蚀剂缓蚀性能的理论与实验研究[J].化学学报,2010,68(20):2051-2058.
    29.黄锐.叠氮纤维素的分子模拟研究[D].北京:北京理工大学,2011.
    30.季楠,龙军,郑环宇.大豆基木材胶黏剂的研究进展[J].化学与黏合,2011,33(2):49-52.
    31.乔丽君.纤维素—二氧化硅纳米复合材料的分子动力学模拟研究[D].兰州:西北师范大学,2009.
    32.江南,杨儒,邱瑾,李敏.2,2-二羟甲基丁醛的结构和性质的理论研究[J].北京化工大学学报,2006,33(1):46-49.
    33.雷洪,杜官本,Pizzi A,李琴,赵伟刚,方群.苯酚-尿素-甲醛共缩聚树脂结构形成比较[J].林产化学与工业,2009,29(1):73-78.
    34.雷洪,杜官本,Pizzi A,赵伟刚,李琴,方群,赵超超.碱性环境下苯酚-尿素-甲醛共缩聚树脂结构形成研究[J].林产化学与工业,2009,29(3):63-68.
    35.雷洪,杜官本,Pizzi A,周晓剑.乙二醛对蛋白基胶黏剂结构及性能的影响[J].西南林业大学学报,2011,31(2):70-73.
    36. Les Wingham.人造板树脂技术创新—中国人造板企业面临的挑战和机遇[J].中国人造板,2006,(4):29-33.
    37. Les Wingham.人造板树脂技术创新-中国人造板企业面临的挑战与机遇[J].中国人造板,2006(4):29-33.
    38.李大枝,张士国,卞贺,张立超.苯并咪唑类化合物缓蚀性能的量子化学研究[J].计算机与应用化学,2009,26(3):324-328.
    39.李慧连,刘国军,张桂霞,胡滨,余大平,陈书文.淀粉胶黏剂的最新研究进展[J].化学与黏合,2008,30(5):50-53.
    40.李倩,姚维尚,谭惠民.分子动力学模拟叠氮热塑性弹性体的杨氏模量及其与硝酸酯的溶度参数[J].火炸药学报,2007,(4):13-16.
    41.李永花,李建章,张世锋.低甲醛释放量人造板用改性脲醛树脂制备及应用研究[J].化学与黏合,2009,31(5):1-3.
    42.林梦海.量子化学计算方法与应用[M].北京:科学出版社,2004.
    43.刘述斌.概念密度泛函理论及近来的一些发展[J].物理化学学报,2009,25(3):590-600.
    44.刘书红,陈文凯,曹梅娟.甲醇在Au(111)表明吸附的密度泛函研究[J].催化学报,2006,27(1):55.
    45.骆建林,邓书端,杜官本,王辉.聚合异氰酸酯改性乙二醛-尿素(GU)树脂的性能研究[J].云南化工,2013,40(2):1-4.
    46.罗源,刘子忠,贾美林,刘东升,葛湘巍.金催化氧化乙二醛制取乙醛酸反应路径的理论研究[c].中国化学会第28届学术年会第13分会场摘要集,2014,4.3.
    47.罗源,刘子忠,刘红霞,葛湘巍,刘东升.Pd催化氧化乙二醛制取乙醛酸的理论研究[J].科技资讯,2013,(5):1-5.
    48.马学军.分子模拟的原理及方法概述[J].科技信息.2009,(19):99-99.
    49.孟令芝,龚淑玲,何永炳.有机波谱分析(第三版)[M].武昌:武汉大学出版社,2009.
    50.宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社,2000.
    51.裴志刚,朱立,张辉,李梅.居室装修主要污染物的危害及其测量方法和防治措施[J].实验技术与管理,2007,24(5):36-38.
    52.师奇松,刘太奇.绿色环保木材用胶黏剂的研究及应用进展[J].新技术新工艺,2011,(8):103-105.
    53.沈一丁,赖小娟,王磊.水溶性三聚氰胺乙二醛树脂的结构和性能[J].高分子材料科学与工程,2009,25(7):65-68.
    54.申海兰,赵靖松.分子动力学模拟方法概述[J].装备制造技术,2007,(10):29-30.69.宋成剑,苏文强.乙二醛在造纸工业中的应用[J].造纸化学品,2009,21(6):19-23.
    55.宋成剑,苏文强.乙二醛/尿素树脂的合成及改善瓦楞原纸抗水性能[J].造纸化学品,2010,29(3):51-55.
    56.宋道会.新型柠檬酸无甲醛防皱整理剂的研制与应用[D].石家庄:河北科技大学,2012,12.
    57.宋道会,杜建功,梁鹏飞.乙二醛/水溶性酯Y在纯棉织物防皱整理中的应用研究[J].化纤与纺织技术.2012,41(3):14-18.
    58.孙玉来,杜官本,雷洪,邓书端.三聚氰胺-乙二醛-甲醛共缩聚树脂合成研究[J].中国胶黏剂,2012,21(5):9-12.
    59.汪昆华,罗传秋,周啸.聚合物近代仪器分析(第二版)[M].北京:清华大学出版社,2000.
    60.王春鹏,赵临五.木材工业用胶黏剂的现状及发展趋势[J].林产工业,2001,28(2):9-12.
    61.王辉,杜官本,雷洪.高性能三聚氰胺-尿素-甲醛共缩聚树脂研制1)缩聚反应后期尿素的影响[J].化学与粘合,2010,32(2):45-49.
    62.王佩怡,杨春,李来才.SrTiO3薄膜生长初期Sr, Ti, O原子分子反应机理的理论研究[J].物理学报,2008,57(4):2340-2346.
    63.王晓青,陈栓虎.基质辅助激光解吸电离飞行时间质谱在聚合物表征中的应用[J].质 谱学报,2008,29(1):51-59
    64.王艺峰,程时远,王世敏,陈艳军.高分子材料模拟中的分子力学法和力场[J].高分子材料科学与工程,2003,19(1):10-14.
    65.王志玲,王正.人造板用异氰酸酯胶粘剂研究现状及发展趋势[J].中国胶粘剂,2003,13(1):59-62.
    66.邢其毅,裴伟伟,徐瑞秋,裴坚.基础有机化学(第三版)[M].北京:高等教育处出版社,2005.
    67.夏松华,李黎,李建章.纳米TiO2改性脲醛树脂性能研究[J].粘接,2008,29(7):21-23.
    68.徐力峥,李建章,张世锋,白有秀.固化剂对低摩尔比脲醛树脂固化特性的影响[J].北京林业大学学报,2009,3 1(3):124-128.
    69.徐文凤.苯酚与甲醛加成反应机理理论研究[D].昆明:云南大学,2012.
    70.徐志康,朱凌燕,徐又一.基质辅助激光解吸与离子化时间飞行质谱在高分子研究中的应用[J].分析化学评述与进展,1999,27(2):224-229.
    71.药明康德新药开发有限公司分析部.有机化合物的波谱分析[M].华东理工大学出版社,2012.
    72.阎春绵,张忠厚,何领好,吴卫林.绿色环保木材用胶黏剂的研究[J].化学与黏合,2008,30(5):4-7.
    73.杨芃原,钱小红,盛龙生.生物质谱技术与方法[M].北京:科学出版社,2003.
    74.杨静新,杨露露,徐园园,曹平,朱红耀.超低甲醛树脂合成的研究[J].印染助剂,2009,6(7):30-33.
    75.杨萍,孙益民.分子动力学模拟方法及其应用[J].安徽师范大学学报,2009,32(1):51-54.
    76.杨小霞.计算机与应用化学[M].北京:化学工业出版社,1999.
    77.曾谨言.量子力学卷I(第三版)[M].北京:科学出版社,2000.
    78.张华.现代有机波谱分析[M].北京:化学工业出版社,2006.
    79.张换换,刘浪浪,刘军海.甲醛捕捉剂的研究热点和发展方向[J].中国环保产业,2010,1:51-54.
    80.张美珍.聚合物研究方法[M].北京:中国轻工业出版社,2008.
    81.张彦华,顾继友,邸明伟,谭海彦.异氰酸酯改性脲醛树脂胶粘剂的研究进展[J].粘接,2008,29(4):32-35.
    82.张玉龙,徐勤福.脲醛胶黏剂[M].北京:化学工业出版社,2010.
    83.张自祥,李来才.乙二醛的Cannizzaro反应的量子化学研究[J].四川师范大学学报(自然科学版),1997,20(4):86-89.
    84.赵佳宁.弱酸性条件起始合成脲醛树脂机理研究[D].哈尔滨:东北林业大学,2010.
    85.赵临五,王春鹏.脲醛树脂胶黏剂[M].北京:化学工业出版社,2009.
    86.赵临五,王春鹏,施娟娟,张伟,储富强.三种三聚氰胺改性脲醛树脂胶结构与性能系[J].林产工业,2011,38(1):16-20.
    87.赵素,李金富,周尧和.分子动力学模拟及其在材料科学中的应用[J].材料导报,2007,21(4):5-8.
    88.赵振民.关于量子化学从头计算法及高斯98程序包计算结果的精度评述[J].原子核物理评论,2006,23(3):337-340.
    89.周平华,许乾慰.热分析在高分子材料中的应用[J].上海塑料,2004,3(1):36-40.
    90.朱诚身.聚合物结构分析(第二版)[M].北京:科学出版社,2010.
    91.朱淮武.有机分子结构波谱解析[M].化学工业出版社:北京,2005.
    92.朱家琪.封闭异氰酸酯在脲醛树脂中的反应和交联[J].人造板通讯,2004,11:27-35.
    93.朱丽滨.低甲醛释放脲醛树脂固化反应历程研究[D].哈尔滨:东北林业大学,2005.
    94.朱丽滨,顾继友.利用动态热机械分析仪对低毒脲醛树脂性能的研究[J].林产工业,2006,33(5):36-38.
    95.朱丽滨,顾继友,曹军.木材胶接用三聚氰胺改性脲醛树脂胶乳剂性能研究[J].化学与粘合,2009,31(4):1-4.
    96.朱伟平.分子模拟技术在高分子领域的应用[J].塑料科技,2002,(5):23-25.
    97.庄昌清,岳红,张慧军.分子模拟方法及模拟软件Materials Studio在高分子材料中的应用[J].塑料,2010,39(4):81-84.
    98. Accelrys Inc., Materials Studio 7.0,2013.
    99. AD-A125-539, National Technical Information Service:Springfield, VA.
    100. Environment-Friendly Soy Flour-Based Resins Without Formaldehyde [J]. Journal of Applied Polymer Science,2008,108:624-632.
    101. Armando G O, Katarzyna W, Alma R C E, Garay-Sevilla M E, Kazimierz W. High-performance liquid chromatography determination of glyoxal, methylglyoxal, and diacetyl in urine using 4-methoxy-o-phenylenediamine as derivatizing reagent[J]. AnalyticalBiochemistry,2014,449:52-58.
    102. Armin T, James E P, Carpenter N H. Investigating theexten to furea formaldehyde resin curein medium density fibre board:Characterisation of extract able resin components [J]. International Journal of Adhesion & Adhesives,2014,50:50-56.
    103. Baesjou P J, Driessen W L, Challa G, Reedijk J. AB initio calculations on 2, 6-dimethylphenol and 4-(2,6-dimethylphenoxy)-2,6-dimethylphenol. Evidence of an important role for the phenoxonium cation in the copper-catalyzed oxidative phenol coupling reaction [J]. Journal of the American Chemical Society,1997,119(51): 12590-12594.
    104. Ballerini A, Despres A, Pizzi A. Non-toxic, zero emission tannin-glyoxal adhesives for wood panels [J]. Holz als Roh-und Werkstoff,2005,63 (6):477-478.
    105. Becke A D. A multicenter numerical integration scheme for polyatomic molecules [J]. Journal of Chemical Physics,1988,88:2547-2553.
    106. Berkenkamp S, Menzel C, Karas M. Performance of infrared matrix-assisted laser desorption/ionization mass spectrometry with lasers emitting in the 3mm wavelength range [J]. Rapid Communications in Mass Spectrometry,1997,11(13):1399-1406.
    107. Chastrette F, Bracoud C, Chastrette M, Mattioda G, Christidis Y. Study of aqueous glyoxylic-acid solutions by C-13 NMR [J]. Bulletin de la Societe Chimique de France,1985, 66-74.
    108. Chastrette F, Chastrette M, Bracoud C. Acetalization of aqueous glyoxal solution-structure determination by tandem gas-chromatography-mass spectrometry and factorial analysis [J]. Bulletin de la Societe Chimique de France,1986,822-836.
    109. Conner A H. Predicting the reactivity of adhesive starting materials [J]. International contributions to wood adhesion research. Madison, WI:Forest Products Society,1999, 108-114.
    110. Conner A H, Mitsunaga T C. Hill G Jr. Reaction of formaldehyde with phenols:A computational Chemistry Study [C]. Wood Adhesives 2000, June 22-23, South Lake Tahoe, Nevada, Madison, WI:Forest Products Society,2001,147-153.
    111. Conner A H, Reeves M S. Reaction of formaldehyde at the ortho-and para-positions of phenol:exploration of mechanisms using computational chemistry [C]. Wood Adhesives 2000, Madison, WI:Forest Products Society,2001,483-487.
    112. Costa N, Pereira J, Martins J, Ferrac J, Cruz P, Magalhas F, Mendes A, Carvalho L. Alternative tolatent catalysts for curing UF resins used in the production of low formaldehyde emission wood-based panels [J]. International Journal of Adhesion & Adhesives,2012,33:56-60.
    113. Delley B. The conductor-like screening model for polymers and surfaces [J]. Molecular Simulation,2006,32 (2):117-125.
    114. Deng S D, Li X H, Xie X G, Du G B. Reaction mechanism, synthesis and characterization of urea-glyoxal (UG) resin [J]. Chinese Journal of Structural Chemistry,2013,32 (12): 1773-1786.
    115. Despres A, Pizzi A, Vu C, Delmotte L. Colourless formaldehyde-free urea resin adhesives for wood panels [J]. European Journal of Wood and Wood Products,2010,68:13-20.
    116. Despres A, Pizzi A, Vu C, Pasch H. Formaldehyde-free aminoresin wood adhesives based on dimethoxyethanal [J]. Journal of Applied Polymer Science,2008,110 (6):3908-3916.
    117. Despres A, Pizzi A, Pasch H, Kandelbauer A. Comparative 13C-NMR and matrix-assistedlaser desorption/ionization time-of-flight analyses of species variation and structuremaintenance during melamine-urea-formaldehyde resin preparation [J]. Journal of Applied Polymer Science,2007,106:1106-1128.
    118. Dewar M J S, Weiner P. Ground States of molecules [J]. Theoretical Chemistry Accounts:Theory, Computation, and Moldeling (Theoretical Chimica Acta),1972,27(4): 373-375.
    119. Du G B, Lei H, Pizzi A, Pasch H. synthesis-structure-performance relationship of cocondensed phenol-urea-formaldehyde resins by MALDI-TOF and 13CNMR [J]. Journal of Applied Polymer Science,2008,110:1182-1194.
    120. Dunky M. Urea-formaldehyde (UF) adhesive resins for wood [J]. International Journal of Adhesion & Adhesives,1998,18:95-107.
    121. Ebdon J R, Heaton P E. Characterization of urea-formaldehyde adducts and resins by 13C-NMR spectroscopy [J]. Polymer,1977,18:971-974.
    122. Ebdon J R, Heaton P E, Huckerby T N. Characterization of Urea-Formaldehyde and melamine-formaldehyde adducts and resins by 15N-NMR Spectroscopy [J]. Polymer,1984, 25 (6):821-825.
    123. Ebewele R O. Differential scanning calorimetry and dynamic mechanical analysis of amine-modified urea-formaldehyde adhesives [J]. Journal of Applied Polymer Science, 1995,58:1689-1700.
    124. El Hage R, Brosse N, Navarrete P. Extraction, characterization and utilization of organosolv miscanthus lignin for the conception of environmentally friendly mixed tannin/lignin wood resins [J]. Journal of Adhesion Science and Technology,2011,25:1549-1560.
    125. El Mansouri N E, Pizzi A, Salvado J. Lignin-based polycondensation resins for wood adhesives[J]. Journal of Applied Polymer Science,2007,103:1690-1699.
    126. El Mansouri N E, Yuan Q L, Huang F R. Study of chemical modification of alkaline lignin by the glyoxalation reaction [J]. Bioresources,2011,6:4523-4536.
    127. Elder T J, Worley S D. The application of molecular orbital calculations to wood chemistry [J]. Wood Science and Technology,1984,18(4):307-315.
    128. Fan D B, Chang J M, Li J X, Mao A, Zhang L T.13C-NMR Study on the structure of phenol-urea-formaldehyde resins prepared by methylolureas and phenol [J]. Journal of Applied Polymer Science,2009,112:2195-2202.
    129. Ferg E E, Pizzi A, Levendis D C.13C-NMR analysis method for urea-formaldehyde resin strength and formaldehyde emission [J]. Journal of Applied Polymer Science,1993,50: 907-915.
    130. Ferra J M M, Henriques A, Mendes A M, Costa M R N, Carvalho L H, Magalhas F D. Comparison of UF synthesis by alkaline-acid and strongly acid processes [J]. Journal of Applied Polymer Science,2012,123(3):1764-1772.
    131. Follensbee R A, Koutsky J A, Christiansen A W, Myers G E, Geimer R L. Development of dynamic mechanical methods to characterize the cure state of phenolic resole resins [J]. Journal of Applied Polymer Science,1993,47:1481-1496.
    132. Fratzke A R, Reilly P J. Kinetic analysis of the disproportionation of aqueous glyoxal [J]. International Journal of Chemical Kinetics,1986,18(7):757-773.
    133. Gao Q, Shi S, Zhang S, Li J Z, Liang K W. Improved plywood strength and lowered emissions from soybean meal/melamine urea-formaldehyde adhesives [J]. Forest Products Society,2011,61(8):688-693.
    134. Gies A P, Nonidez W K. A technique for obtaining matrix-assisted laser desorption/ionization time of flight mass spectra of poorly soluble and insoluble aromatic polyamides [J]. Analytical Chemistry,2004,76 (7):1991-1997.
    135. Giovando S., Pizzi A, Pasch H, Rode K. Synthetic tannins structure by MALDI-TOF Mass spectroscopy [J]. Journal of Applied Polymer Science,2009,114:1339-1347.
    136. Hamidreza P, Reza O, Mohammad S, Gholamhasan A. Hydrogen bond strengthening of cis-trans glyoxal dimers in electronic excited states:A theoretical study [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2014,122:337-342.
    137. Hanton S D, Hyderi Z, Stets J R, Owens K G, Blair W R, Guttman C M. Investigations of electrospray sample deposition for polymer MALDI mass spectrometry [J]. Journal of the American Society for Mass Spectrometry,2004,15 (2):168-179.
    138. Hanton S D, Parees D M. Extending the solvent-free MALDI sample preparation method [J]. Journal of the American Society for Mass Spectrometry,2005,16 (1):90-93.
    139. Hastings W P, Koehler C A, Bailey E L, De Haan D O. Secondary organic aerosol formation by glyoxal hydration and oligomer formation:humidity effects and equilibrium [J]. Environmental Science & Technology,2005,39 (22):8728-8735.
    140. He G B, Yan N.13CNMR study on structure, composition and curing behavior of phenol-urea-formaldehyde resole resin [J]. Polymer,2004,45:6813-6822.
    141. Hofmann D, Fritz L, Ulbrich J. Molecular modeling of amorphous membrane polymers [J]. Polymer,1997,25(5):6145-6155.
    142. Hotelin G A J, Erb W J, Tyson R J. Exploring the importance of the relative solubility of matrix and analyte in MALDI sample preparation using HPLC [J]. Analytical Chemistry, 2004,76(17):5157-5164.
    143. Huberty M C, Vath J E, Yu W. Site-specific carbohydrate identification in recombinant proteins using MALDI-TOF-MS [J]. Analytical Chemistry,1993,65 (20):2791-2800.
    144. Hung P S, Lee S H, LohY W, Lum W C, Tan B H. Production of low formaldehyde emission particleboard by using new formulated formaldehyde based resin [J]. Asian Journal of Scientific Research,2011,4(3):264-270.
    145. http://references.accelrys.com/
    146. IdaPoljansek, Urskasebenik, Matjaz Krajnc. Characterization of phenol-urea-formaldehyde resin by inline FTIR Spectroscopy [J]. Journal of Applied Polymer Science,2006,99: 2016-2028.
    147. Jiang J, Yang Y L, Li C, Li J Z. Effect of three boron flame retardants on thermal curing behavior of urea formaldehyde resin [J]. Journal of Thermal Analysis and Calorimetry,2011, 105:223-228.
    148. Kandelbauer A, Despres A, Pizzi A, Taudes I. Testing by Fourier transform infrared species variation during melamine-urea-formaldehyde resin preparation [J]. Journal of Applied Polymer Science,2007,106:2192-2197.
    149. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10000 Daltons [J]. Analytical Chemistry,1988,60 (20):2299-2301.
    150. Kim M G. Examination of selected synthesis parameters for typical wood adhesive type urea-formaldehyde resins by 13C-NMR spectroscopy Ⅰ [J]. Journal of Applied polymer Science Part A:Polymer Chemistry,1999,37:995-1007.
    151. Kim M G. Examination of selected synthesis parameter for typical wood adhesive type urea-formaldehyde resins by 13C-NMR spectroscopy Ⅱ [J]. Journal of Applied polymer Science,2000,75:1243-1254.
    152. Kim M G, Nieh W L S, Meacham R M. Study on the curing of phenol-formaldehyde resol resins by dynamic mechanical analysis [J]. Industrial & Engineering Chemistry Research, 1991,30(4):798-803.
    153. Kim M G, Wan H, No B Y, Nieh W L. Examination of selected synthesis and room-temperature storage parameters for wood adhesive type urea-formaldehyde resins by 13C-NMR spectroscopy IV [J]. Journal of Applied polymer Science,2001,82:1155-1169.
    154. Kim M G, Watt C, Davis C R. Effects of urea addition to phenol-formaldehyde resin binders for oriented strand-board [J]. Journal of Wood Chemistry and Technology,1996,16,21-29.
    155. Kim S, Kim H. J. Comparison of standard methods and gas chromatography method in determination of formaldehyde emission from MDF bonded with formaldehyde-based resins[J]. Bioresource Technology,2005,96:1457-1464.
    156. Kim S, Kim H J, Kim H S, Lee Y K, Yang H S. Thermal analysis study of viscolastic properties and activation energy of melamine-modified urea-formaldehyde resins [J]. Journal of Adhesion Science and Technology,2006,20 (8):803-816.
    157. Kim S, Kim H J, Kim H S, Lee H H. Effect of bio-scavengers on the curing behavior and bonding properties of melamine-formaldehyde resins [J]. Macromolecular Materials and Engineering,2006,291:1027-1034.
    158. Klamt A, Schuurmann G COSMO:A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient [J]. Journal of the ChemicalSociety, Perkin Transactions,1993,2:799-805.
    159. Knop A, Scheib W. Chemistry and application of phenolic resins [M].1979, Springer-Verlag in Berlin, New York.
    160. Krause J, Stoeckli M, Schlunegger U P. Studies on the selection of new matrices for ultraviolet matrix-assisted laser desorption/ionization time of flight mass spectrometry [J]. Rapid Communications in Mass Spectrometry,1996,10 (15):1927-1933.
    161. Kua J, Hanley S W, De Haan D O. Thermodynamics and kinetics of glyoxal dimer formation: a computational study [J]. Journal of Physical Chemistry A,2008,112:66-72.
    162. Laine O S, Trimpin S, Raeder H J. Changes in post source decay fragmentation behavior of poly(methyl methacrylate) polymers with increasing molecular weight studies by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J]. European Journal of Mass Spectrometry,2003,9:195-201.
    163. Leach A R. Molecular modelling principles and applications (2nd ed) [M]. World Book Inc. 2011.
    164. Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density [J]. Physical Review B,1988,37:785-789.
    165. Lee S M, Kim, M G. Effects of urea and curing catalysts added to the strand board core-layer binder phenol-formaldehyde resin[J]. Journal of Applied Polymer Science,2007,105: 1144-1155.
    166. Lei H, Pizzi A, Despres A, Pasch H, Du G B, Ester acceleration mechanisms in pheno-formaldehyde resin adhesives [J]. Journal of Applied Polymer Science,2006,100: 3075-3093.
    167. Li T H, Xie X G,Du G B.A theoretical study on the water-mediated asynchronous addition between urea and formaldehyde [J]. Chinese Chemical Letters,2013,24:85-88.
    168. Li T H, Xie X G,Du G B. Formation of methylolureas under alkaline condition:A theoretical study [J]. Asian Journal of Chemistry,2013,15:8317-8323.
    169. Li T H, Wang C M, Xie X G,Du G B.A computational exploration of the mechanisms for the acid-catalytic urea-formaldehyde reaction:new insight into the old topic [J]. Journal of Physical Organic Chemistry,2012,25:118-125.
    170. Liu Y Q, Tian Y, Zhao G Z, Sun Y Y, Zhu F T, Cao Y. Synthesis of urea-formaldehyde resin by melt condensation polymerization [J]. Journal of Polymer Research,2008,15:501-505.
    171. Loeffler K W, Koehler C A, Paul N M, De Haan D O. Oligomer formation in evaporating aqueous glyoxal and methyl glyoxal solutions [J]. Environmental Science & Technology, 2006,40 (20):6318-6321.
    172. Luo Z L, Jiang J W. Molecular dynamics and dissipative particle dynamics simulations for the miscibility of poly (ethylene oxide)/poly(vinyl chloride) blends [J]. Polymer,2010, 51(6):291-299.
    173. Maciel G E, Szevereyi N M, Early T A, George E M.13CNMR studies of solid urea-formadehyde resins using cross polarization and magic-angle spinning [J]. Macromolecules,1983,16:598-604.
    174. Mansouri H R, Thomas R R, Gamier S, Pizzi A. Fluorinated polyether additives to improve the performance of urea-formaldehyde adhesives for wood panels [J]. Journal of Applied Polymer Science,2007,106:1683-1688.
    175. Mansouri H R, Pizzi A. Urea-formaldehyde-propionaldehyde physical gelation resins for improved swelling in water [J]. Journal of Applied Polymer Science,2006,102:5131-5136.
    176. Maminski M L, Pawlicki J, Zado A, Parzuchowski P. Glutaraldehyde-modjfied MUF adhesive system-improved hot water resistance [J]. Holz als Roh- und Werkstoff,2007,65: 251-253.
    177. Maminski, M L, Borysiuk P, Zado A. Study on the water resistance of plywood bonded with UF-glutaraldehyde adhesive [J]. Holz als Roh- und Werkstoff,2008,66(6):469-470.
    178. Maminski M L, KrOl M E, Grabowska M, Gtuszynski P. Simple urea-glutaraldehyde mix used as a formaldehyde-free adhesive:Effect of blending with nano-Al2O3 [J]. European Journal of Wood and Wood Products,2011,69(3):505-506.
    179. Mansouri R, Navarrete P, Pizzi A, Tapin-Lingua S, Benjelloun-Mlayah B, Pasch H, Rigolet S. Synthetic-resin-free wood panel adhesives from mixed low molecular mass lignin and tannin [J]. European Journal of Wood and Wood Products,2011,69:221-229.
    180. Mansouri H R, Pizzi A. Urea-formaldehyde-propionaldehyde physical gelation resins for improved swelling in water [J]. Journal of Applied Polymer Science,2006,102:5131-5136.
    181. Marcus A G, Gerhard L. Isolation and characterization of glyoxal-arginine modifications [J]. International Congress Series,2002,1245:377-378.
    182. Meierma E R, De Gansbj, Vandenbergam J. Automated multiple-layer spot ting for matrix-assisted laser desorption/ionization of synthetic polymers utilizing inject printing technology [J]. Rapid Communications in Mass Spectrometry,2003,17(20):2349-2353.
    183. Meunier M. Diffusion coefficients of small gas molecules in amorphous cis-1, 4-polybutadiene estimated by molecular dynamics simulations [J]. Journal of Chemical Physics,2005,123:134906.
    184. Minopoulou E, Dessipri E, Chryssikos G D, Gionis V, Paipetis A, Panayiotou C. Use of NIR for structural characterization of urea-formaldehyde resins [J]. International Journal of Adhesion and Adhesives,2003,23(6):473-484.
    185. Myers G E. Investigation of urea-formaldehyde polymer cure by infrared [J]. Journal of Applied Polymer Science,1981,28:747-764.
    186. Nair B R, Francis D J. Kinetics and mechanism of urea-formaldehyde reaction [J]. Polymer, 1983,24:626-630.
    187. National Institute for Occupational Safety and Health (NIOSH), The Registry of Toxic Effects of Chemical Substances, December 2000.
    188. Navarrete P, Pizzi A, Pasch H. Study on lignin-glyoxal reaction by MALDI-TOF and CP-MAS C-13-NMR [J]. Journal of Adhesion Science and Technology,2012,26(8-9): 1069-1082.
    189. Neubert H, Knights K A, De Mighely R, Cowan D A. MALDI TOF post-source decay investigation of alkali metal adducts of a polar polypentyl resorcinol dendrimers [J]. Macromolecules,2003,36 (22):8297-8303.
    190. No B Y, Kim M G. Curing of low level melamine-modified urea-formaldehyde particleboard binder resins studied with dynamic mechanical analysis (DMA) [J]. Journal of Applied Polymer Science,2005,97:377-389.
    191. Park B D, Kim J W. Dynamic mechanical analysis of urea-formaldehyde resin adhesives with different formaldehyde-to-urea molar ratios [J]. Journal of Applied Polymer Science,2008, 108:2045-2051.
    192. Park B D, Causin V. Crystallinity and domain size of cured urea-formaldehyde resin adhesives with different formaldehyde/urea mole ratios [J]. European Polymer Journal,2013, 49:532-537
    193. Park B D, Frihart C R, Yan Y, Adya P. Singh. Hardness evaluation of cured urea-formaldehyde resins with different formaldehyde/urea mole ratios using nanoindentation method [J]. European Polymer Journal,2013,49:3089-3094
    194. Park B D, KimY S. Singh A P, Lim K P. Reactivity, chemical structure, and molecular mobility of urea-formaldehyde adhesives synthesized under different conditions using FTIR and solid-state 13C CP/MAS NMR spectroscopy [J]. Journal of Applied Polymer Science, 2003,88:2677-2687.
    195. Parr R G, Yang W. Density function approach to the frontier-electron theory of chemical reactivity [J]. Journal of American Chemical Society,1984,106:4049-4050.
    196. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Physical Reviewer Letters,1996,77:3865-3868.
    197. Perdew J P, Wang Y. Accurate and simple analytical representation of the electron-gas correlation energy [J]. Physical Review B,1992,45:13244-13249.
    198. Pizzi A, Tondi G, Pasch H, Celzard A. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Structure Determination of Complex Thermoset Networks:Polyrlavonoid Tannin-Furanic Rigid Foams [J]. Journal of Applied Polymer Science,2008,110:1451-1456.
    199. Pizzi A. Advance Wood Adhesive Technology [M], Marcel Dekker Inc., New York,1994.
    200. Pizzi A, Pasch H, Rode K, Giovando S. Polymer structure of commercial hydrolysable tannins by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry [J]. Journal of Applied Polymer Science,2009,113:3847-3859.
    201. Pople J A, Beveridge D L, Dobosh P A. Approximate self-consistent molecular-orbital theory. V. Intermediate Neglect of differential overlap [J]. The Journal of Chemical Physics,1967, 47(6):2026-2033.
    202. Properzi M, Wieland S, Pichelin F, Pizzi A, Despres A. Formaldehyde-free dimethoxyethanal-derived resins for wood-based panels [J]. Journal of Adhesion Science and Technology,2010,24 (9):1787-1799.
    203. Qu R J, Sun Y Z, Wang C H, Lu S L, Yu H M, Cheng G X. Syntheses and properties of carboxymethyl chitosan/urea-formaldehyde snake-cage resins [J]. Journal of Applied Polymer Science,2002,84:310-317.
    204. Roumeli E, Papadopoulou E, Pavlidou E, Vourlias G, Bikiaris D K M, Chrissafis P K. Synthesis, characterization and thermal analysis of urea-formaldehyde/nanoSi02 resins [J]. Thermo-chimica Acta,2012,527:33-39.
    205. Schmidt K, Grunwald D, Pasch H. Preparation of Phenol-Urea-Formaldehyde Copolymer Adhesives under Heterogeneous Catalysis [J]. Journal of Applied Polymer Science,2006, 102:2946-2952.
    206. Slonim I Y. Determination of the structure of cyclochain urea-formaldehyde resins by 13C-NMR analysis [J]. Journal of Polymer Science,1977,19:920-936.
    207. Siimer K, Christjanson P, Kaljuvee T, Pehk T, Lasn I, Saks I. TG-DTA study of Melamine-urea-formaldehyde resins [J]. Journal of Thermal Analysis and Calorimetry,2008, 92:19-27.
    208. Slonim I, Alekseyeva S G, Urman Y G, Arshava B M, Akselrod B Y, Gurman I M.13C-NMR determination of the structure on linear-branched urea-formaldehyde resins [J]. Polymer Science,1977,19:899-909.
    209. Soulard C, Kamoun C, Pizzi A. Uron and uron-urea-formaldehyde resin [J]. Journal of Applied Polymer Science,1998,72:277-289.
    210. Tauchi Y, Ishida Y, Ohtani H, Matsubara H. Direct analysis of an oligomeric hindered aminelight stabilizer in polypropylene materials by MALDI-MS using a solid sampling technique to study its photostabilizing action [J]. Analytical Chemistry,2004,76 (3): 697-703.
    211. Tohmura S, Hse C Y, Higuchi M. Formaldehyde emission and high-temperature stability of cured urea-formaldehyde resins [J]. Journal of Wood Science,2000,46:303-309.
    212. Tomita B, Hatono S. Urea-formaldehyde resins Ⅲ Constitutional characterization by 13C fourier transform NMR spectroscopy [J]. Journal of Polymer Science,1978,16:2509-2525.
    213. Tong C, Blanco M, William A G Ⅲ, Seinfeld J H. Secondary organic aerosol formation by heterogeneous reactions of aldehydes and ketones:a quantum mechanical study [J]. Environmental Science & Technology,2006,40(7):2333-2338.
    214. Vazquez G, Lopezsuevos F, Villar-garea A.13CNMR anal ysis of phenol-urea-formaldehyde prepolymers and phenol-urea-fomaldehydetannin adhesives [J]. Journal of Adhesion Science and Technology,2004,18:1529-1543.
    215. Vazquez G, Santos J, Sonia F M. DSC and DMA study of chestnut shelltannins for their application as wood adhesives without formaldehyde emission [J]. Journal of Thermal Analytical Calorimetry,2012,108:605-611.
    216. Wang D, Sun X S, Yang G, Wang Y. Improved water resistance of soy protein adhesive at isoelectric point [J]. transactions of the asae,2009,52(1):173-177.
    217. Wang J W, Laborie M P G, Wolcott M P. Kinetic analysis of phenol-formaldehyde bonded wood joints with dynamical mechanical analysis [J]. Thermochimica Acta,2009,491(1-2): 58-62.
    218. Wang J W, Marie-Pierre G Laborie, Michael P W. Correlation of mechanical and chemical cure development for phenol-formaldehyde resin bonded wood joints [J]. Thermochimica Acta 2011,513:20-25.
    219. Wang S, Pizzi A. Succinaldehyde induced water resistance improvements of UF wood adhesives [J]. Holz als Roh-und Werkstoff,1997,55:9-12.
    220. Wang W B, Zhao Z Y, Gao, Z. H. Whey protein-based water-resistant and environmentally safe adhesives for plywood [J]. Bioresources,2011,6:3339-3351.
    221. Whipple E B. Structure of glyoxal in water [J]. Journal of the American Chemical Society, 1970,92:7183-7186.
    222. Wieland S, Pizzi A, Grigsby W, Warnes J, Pichelin F, Microcrystallinity and colloidal peculiarities of UF/isocyanate hybrid resins [J]. Journal of Applied Polymer Science,2007, 104:2633-2636.
    223. World Health Organisation (WHO) (2004), International programme on chemical safety (IPCS), Glyoxal-toxicity, risk assessment, environmental exposure, food contamination. Concise International Chemical Assessment Document (CICAD) 57, ISBN 924153057 X.
    224. Xu W F, Xiong S S, Shi Y Q, Li T H, Du G B, Xie X G. Addition mechanisms of phenol toward formaldehyde under acidic condition:a theoretical investigation [J]. Chinese Journal of Structural Chemistry,2012,31:821-828.
    225. Yang H, Sheng L Z, Qian H J. Molecular dynamics simulation studies of binary blend miscibility of poly (3-hydroxybutyrate) and poly(ethylene oxide) [J]. Polymer,2004, 45:453-457.
    226. Yarovsky I, Evans E. Computer simulation of structure and properties of cross linked polymers:Application to epoxy resins [J]. Polymer,2002,43:963-969.
    227. Young N B, Moon G K. Curing of low level melamine-modified urea-formaldehyde particleboard binder resins studied with dynamic mechanical analysis (DMA) [J]. Journal of Applied Polymer Science,2005,97:377-389.
    228. Zanetti M, Pizzi A, Beaujean M, Pasch H, Rode K, Dalet P. Acetals-induced strength increase of melamine-urea-formaldehyde (MUF) polycondensation adhesives. II. solubility and colloidal state disruption[J]. Journal of Applied Polymer Science,2002,86:1855-1862.
    229. Zhang Y, Zhu P C, Edgren D. Crosslinking reaction of poly(vinyl alcohol) with glyoxal [J]. Journal of polymer research,2010,17(5):725-730.
    230. Zhang Y F, Zeng X, Ren B Y. Synthesis and structural characterization of urea-isobutyraldehyde-formaldehyde resins [J]. Journal of Coatings and Technological Resin,2009,6 (3):337-344.
    231. Zhou L, Han C, Zhang S, Gao Q, Li H, Li J. Preparation and properties of environmental friendly wood adhesives based on wild acorn starch [J]. Applied Mechanics and Materials, 2012,121-126:2834-2838.
    232. Zorba T, Papadopoulou E, Hatjiissaak A, Paraskevopoulos K M, Chrissafis K. Urea-formaldehyde resins characterized by thermal analysis and FTIR method [J]. Journal of Thermal Analysis and Calorimetry,2008,921:29-33.