山东菏泽杨树人工林碳储量和碳贮库特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以山东菏泽杨树人工林为研究对象,基于地面调查和Landsat5TM影像,在GIS和ENVI等软件的支持下,建立生物量估算模型,对该市2011年杨树人工林碳储量、碳贮库特征、碳密度及其空间分布进行了研究,并对东明县2000-2011年间杨树林碳储量时空动态进行了分析,为菏泽市乃至整个鲁西黄泛平原区杨树人工林更好地发挥碳汇功能奠定基础,也为区域杨树人工林碳储量的测算提供参考。研究结果充分展示了我国区域杨树人工林巨大的碳汇能力,表明大力发展杨树速生丰产林,对提高我国森林总体固碳增汇水平,增强我国国际竞争力作用巨大。主要结论如下:
     1、中菏1号、中菏2号和欧美107杨为目前菏泽市杨树人工林固碳增汇的首选品种,各品种固碳能力为中菏1号>中菏2号>欧美107杨。3-9年生杨树幼龄林为该市森林固碳增汇主体,也是当地杨树人工林碳汇潜力所在。建议在保证当地杨树用材林面积的前提下,将轮伐期延长至13~14年,并大力发展农田、道路及河岸防护林,以更大程度地发挥当地杨树人工林固碳增汇水平。
     2、基于TM遥感影像的菏泽市杨树人工林生物量估算模型B=1765.412+7378.884ln(ρ4)+2113.781×(1/ρ√)+14.541×(1/ρ1),自变量少,模型复相关系数达0.754,其生物量拟合值与实测值间的平均相对误差仅为7.65%,预测精度较高,能较好地估算菏泽市杨树人工林生物量,可为区域杨树人工林碳储量的研究提供参考。
     3、菏泽市杨树人工林是当地森林碳汇的主体,是山东省森林植被碳汇的重要组成部分,固碳增汇水平在全国杨树林平均水平之上。2011年,该市杨树人工林面积为31.79万hm2,碳储量为13.93Tg,碳密度为43.82t/hm2。73.22%的杨树人工林碳密度小于57t/hm2,且较均匀地分布在整个菏泽地区。
     4、菏泽市国有林场林地碳储量为0.321Tg,植被和土壤碳储量分别为0.174和0.147Tg,林木碳储量占植被的97.9%,固碳增汇主要依靠林木;林地碳密度为74.74t/hm2,林木和土壤碳密度分别为39.67和34.--1t/hm2。4、5、6、7、9年生杨树林林木碳密度分别为28.54、34.45、36.51、41.24和44.80t/hm2。国有林场,村庄片林,农田、道路及河岸林网单株杨树碳储量分别为56.86、43.72、78.84、69.86和43.01kg/株。
     5、东明县2000~2011年4个时期的杨树人工林面积逐年增加,分别为17542.62、22705.83、26019.27和27109.10hm2;平均碳密度分别为52.15、40.36、23.26和27.98t/hm2,总碳储量分别为914847.63、916407.30、605208.22和758512.62t。其中,2011年东明县杨树林面积占菏泽市杨树林总面积的8.53%,碳储量占全市杨树林总碳储量的5.45%。
The poplar plantations in Heze City were studied in this research. On the basis of field survey and Landsat5TM data, the carbon storage, characteristics of carbon pool, carbon density and its spatial distribution of poplar plantations in2011were studied by GIS and ENVI. Furthermore, the spatial and temporal patterns of poplar plantations'carbon storage from the year2000to2011in Dongming County were analyzed. This study would lay the foundation of effective peforming of carbon sink of poplar plantations in Heze and the Yellow River Flood Plain in west Shandong, and also provided a reference for calculation regional poplar plantations'carbon storage. The results fully demonstrated huge capacity of carbon sinks of regional poplar plantations. With the development of poplar plantations, the forest carbon storage would be increased rapidly, and would enhance China's international competitiveness.The main conclusions are as follows:
     1. Zhonghe NO.1, ZhongheNO.2and107were the preferred varieties of carbon sequestration in Heze. The order of carbon density of different varieties on the same age was Zhonghe NO.1> Zhonghe NO.2>107. The young forest of3~9year-old were the main part of carbon sequestration. Under the premise of ensuring the area of timber forest, extending the rotation to13or14years and developing more farmland shelterbelts, road shelterbelts and riparian forests were suggested to improve the level of poplar plantation's carbon sequestration in Heze City.
     2. Model B=1765.412+7378.884ln(ρ4)+2113.781X(1/ρ4)+14.541X(1/ρl) was appropriate for estimating biomass of poplars in the target area. with its multiple correlation coefficient being0.754. The relative error was only7.65%between measured and simulated values. It could be acted as a reference for the study of poplar plantations'biomass on regional scale.
     3. Poplar plantation in Heze was the main part of the local forest carbon sinks. Meanwhile, it was an important part of forest vegetation carbon sinks in Shandong. In2011. the total area, carbon storage and carbon density of poplar plantation was317.900ha,13.93Tg, and43.82t/hm2respectively. In addition, the carbon density of73.22%of poplar plantations was lower than57t hm-2. and the poplar plantations presented a homogeneity in spatial distribution in Heze City.
     4. The carbon storage of state-owned poplar plantations was0.321Tg, and carbon density was74.74t/hm2. The vegetation and soil carbon storage were0.174and0.147Tg respectively. Poplar plantations'carbon storage accounted for97.9%of vegetation's total values. The carbon density of4.5,6,7and9year-old poplar plantations were28.54,34.45,36.51,41.24and44.80t/hm2respectively. In addition, the carbon storage of single tree in state-owned forests, village woodlots. farmland shelterbelts, road sheltcrbclts and riparian forests were56.86,43.72,78.84.69.86and43.01kg respectively.
     5. From the year2000to2011. the area of poplar plantation in Dongming County were17542.62ha,22705.83ha,26019.27ha and27109.10ha. The carbon density and storage were52.15,40.36,23.26,27.98t/hm2and914847.63.916407.30,605208.22,758512.62t, respectively. In2011. the area and carbon storage of poplar plantation in Dongming accounted for8.53%and5.45%of the total values in Heze City.
引文
[1]白雪爽,胡亚林,曾德慧,等.半干旱沙区退耕还林对碳储量和分配格局的影响[J].生态学杂志,2008,27(10):1647-1652.
    [2]蔡志福,徐瑾,袁勇,等.黄泛沙地杨树胶合板材培育技术的研究[J].山东林业科技,2003,4:15-16.
    [3]查同刚.北京大兴杨树人工林生态系统碳平衡的研究[D].北京林业大学,2007.
    [4]曹庆先,徐大平,鞠洪波.北部湾沿海5种红树林群落生物量的遥感估算[J].广西科学,2011,18(3):289-293.
    15] 程鹏飞,王金亮,王雪梅.等.森林生态系统碳储量估算方法研究进展[J].林业调查规划,2009,12,34(6):39-44.
    [6]陈遐林.华北主要森林类型的碳汇功能研究[D].北京林业大学,2003.
    [7]崔瑞蕊,杜华强,周国模,等.近30a安吉县毛竹林动态遥感监测及碳储量变化[J].浙江农林大学学报,2011,28(3):422-431.
    [8]丁凤梅,鲁法典,王迎.不m 造林密度杨树速生丰产林成熟龄的研究[J].河北林果研究,2007,22(3):242-246.
    [9]丁扬.苏北杨树人工林生物量与碳贮量的研究[D].南京林业大学,2008.
    [10]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508.
    [11]方精云.北半球中高纬度的森林碳库可能远小于目前的估算[J].植物生态学报,2000,24(5):635-638.
    [12]方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-973.
    [13]方升佐.中国杨树人工林培育技术研究进展[J].应用生态学报,2008,19(10):2308-2316.
    [14]范文义,张海玉,于颖,等.三种森林生物量估测模型的比较分析[J].植物生态学报,2011,35(4):402-410.
    [15]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].科学出版社,1999.
    [16]光增云.河南森林植被的碳储量研究[J].地域开发与研究,2007,26(1):76-79.
    [17]郭志华,彭少麟,王伯荪.利用TM数据提取粤西地区的森林生物量[J].生态学报,2002,22(11):1832-1839.
    [18]郝彦平,苗婷婷,刘圣清.安徽省宜秀区人工杨树林碳储量研究[J].四川林业科技,2012,33(2):65-69.
    [19]韩爱惠.森林生物量及碳储量遥感遥感监测方法研究[D].北京林业大学,2009.
    [20]何红艳,郭志华,肖文发.遥感在森林地上生物量估算中的应用[J].生态学杂志,2007,26(8):1317-1322.
    [21]黄从德,张健,杨万勤,等.四川森林植被碳储量的时空变化[J].应用生态学报,2007,18(12):2687-2692.
    1221黄从德,张健,杨万勤,等.四川省及重庆地区森林植被碳储量动态[J].生态学报,2008,28(3):966-975.
    [23]黄从德,张健,杨万勤,等.四川省森林植被碳储量的空间分异特征[J].应用生态学报,2009,29(9):5115-5121.
    [24]黄德双.神经网络模式识别系统理论[M].北京:电子工业出版社,1996.
    [25]贾黎明,刘诗琦,祝令辉.等.我国杨树林碳储量和碳密度[J].南京林业大学学报(自然科学版).2013,
    [26]焦秀梅,项文化,田大伦.湖南省森林植被的碳贮量及其地理分布规律[J].中南林不院学报.2005,25(1):4-8.
    [27]焦燕.黑龙江省森林植被碳储量及其动态变化[J].应用生态学报,2005,16(12):2248-2252.
    [28]李春平,吴斌.张宇清.等.山东郓城农田防护林杨树器官含碳率分析[J].北京林业大学学报,2010,32(2):74-78.
    [29]李怒云.中国林业碳汇[M].北京:中国林业出版社,2007.
    [30]李海奎,雷渊才.中国森林被生物量和碳储量评估[M].北京:中国林业出版社,2010.
    [31]李海奎,雷渊才,曾伟生.基于森林资源清八资料的中国森林植被碳储量[J].林业科学,2011,47(7):7-12.
    [32]李海奎,赵鹏祥,雷渊才.等.基于森林清查资料的乔木林生物量估算方法的比较[J].林业科学,2012,48(5):44-52.
    [33]李海玲,陈乐蓓,方升佐,等.不同杨-农间作模式碳储量及分布的比较[J].林业科学.2009,45(11):9-14.
    [34]李海涛,王姗姗,高鲁鹏.等.赣中亚热带森林植被碳储量[J].生态学报,2007,27(2):693-704.
    [35]李晶晶,林明彻,杨富强.德班气候变化谈判预期[J].世界环境,2011,6:20-22.
    [36]李明瑞.菏泽市杨树新无性系选择及载培技术研究[D].南京林业大学,2006.
    [37]李明泽.尔北林区森林生物量遥感估算及分析[D].东北林业大学,2010.
    [38]李娜,黄从德.川西亚高山针叶林生物量遥感估算模型研究[J].林业资源管理,2008,3:100-104.
    [39]黎夏,叶嘉安.王树功,等.红树林湿地植被生物量的雷达遥感估算[J].遥感学报,2006,10(3):387-396.
    [40]联合国气候灾变化框架公约-京都议定书[M].1997.
    [41]刘婷婷.基于树体结构推算杨树人工林生物量及碳储量[D].北京林业大学,2009.
    [42]刘文国,张旭东,黄玲玲,等.我国杨树生理生态研究进展[J].世界林业研究,2010,23(1):50-55.
    [43]娄雪婷,曾源,吴炳方.森林地上生物量遥感估测研究进展[J].国土资源遥感,2011,88(1):1-8.
    [44]马钦彦,谢征鸣.中国油松林储碳量基本估计[J].北京林业大学学报,1996.18(3):31-34.
    [45]马钦彦,陈遐林,王娟.等.华北主要森林类型建群的含碳率分析[J].北京林业大学学报,2002,24(5/6):96 100.
    [46]马泽清,刘琪璟,徐雯佳.基于TM遥感影像的湿地松林生物量研究[J].自然资源学报.2008.23(3):467-478.
    [47]孟宪宇.测树学[M].北京:中国林业出版社,2006.
    [48]闵志强,孙玉军.长白落叶松林生物量的模拟估测[J].应用生态学报,2010,21(6):1359-1366.
    [49]彭少麟,郭志华,王伯荪.RS和GIS在植徽生态学中的应用及其前景[J].生态学杂志,1999,18(5):52-64.
    [50]秦大河,罗勇,陈振林.等.气候变化科学的最新进展:IPCC第四次评估综合报告解析[J].气候变化研究进展,2007,3(6):311-314.
    [51]沈国舫,翟明普.森林培育学[M].第二版.北京:中国林业出版社,2011.
    [52]司婧.贾黎明,韦艳葵,等.地下滴灌对杨树速生丰产林碳储量的影响[J].北京林业大学学报,2012,34(1):14-18.
    [53]孙启祥,张建锋,吴立勋.滩地杨树人工林抑螺效果与碳汇效应[J].中国生态农业学报.2008,16(3):701-706.
    [54]唐骄萍,李贤伟,赖元长,等.洪雅县退耕竹林碳储量时空格局[J].林业科学,2011,47(10):1-7.
    [55]唐罗忠,生原喜久雄,黄宝龙,等.江办省里下河地区杨树人工林的碳储量及其动态[J].南京林业大学学报,2004,28(2):1-6.
    [56]唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学,2000,36(专刊1):19-27.
    [57]江少华,张茂震,赵平安,等.丛于TM影像、森林资源清查数据和人工神经网络的森林碳空间分布模拟[J].生态学报,2011,31(4):0998-1008.
    [58]王立海,刑艳秋.基于人工神经网络的天然林生物量遥感估测[J].应用生态学报.2008,19(2):261-266.
    [59]王淑君,管东生,黎夏.等.神经网络模型森林生物量遥感估测方法的研究[J].生态环境,2008,16(1):108-111.
    [60]王维枫,雷渊才,王雪峰,等.森林生物量模型综述[J].西北林学院学报,2008,23(2):58-63.
    [61]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16.
    [62]王雪军,黄国胜,孙玉军,等.近20年辽宁省森林碳储量及其动态变化[J].生态学报,2008,28(10):4757-4764.
    [63]王红岩,高志海,王瑧瑜,等.丛于SPOT 5遥感影像丰宁县植被地上生物量估测研究[J].遥感技术与应用,2010,25(5):639-646.
    [64]王磊,丁晶晶,季永华,等.江苏省森林碳储量动态变化及其经济价值评价[J].南京林业大学学报(自然科学版),2010,34(2):1-5.
    [65]王秀云,孙玉军,等.森林生态系统碳储量估测方法及其研究进展[J].世界林业研究,2008,21(5):24-29.
    [66]王仲锋,冯仲科.样地林木生物量精度评定的研究[J].北京林业大学学报,2005,27(增刊2):173-176.
    [67]韦玉春,汤国安,杨听.等.遥感数字图像处理教程[M].北京:科学出版社,2008.
    [68]魏安世,林寿明,李志洪.基于TM数据的森林植物碳储量估测方法研究[J].中南林业调查规划,2006,25(4):44-47.
    [69]魏蕾.6种杨树无性系人工林生长规律及林下经营模式研究[D].山东农业大学,2009.
    [70]魏艳敏.荒漠环境规模化人工杨树林生物量和碳储量研究[D].新疆大学,2010.
    [71]邢素丽,张广录,刘慧涛,等.基于Landsat ETM数据的落叶松林生物量估算模式[J].福建林学院学报,2004,24(2):153-156.
    [72]邢艳秋.基于RS和GIS东北天然林区域森林生物量及碳贮量估测研究[D].东北林业大学,2005.
    [73]邢艳秋,王立海.基于森林调查数据的长白山大然林森林生物量相容性模型[J].应用生态学报,2007,18(1):1-8.
    [74]胥辉.一种与材积相容的生物量模型[J].北京林业大学学报,1999,21(5):32-36.
    [75]胥辉.刘伟平.相容性生物量模型研究[J].福建林学院学报,2001,21(1):18-23.
    [76]徐天蜀,张王菲,岳彩荣.基于PCA的森林生物量遥感信息模型研究[J].生态环境,2007.16(6):1759-1762.
    [77]徐小军.基于Landsat TM影像毛竹林地上部分碳储量估算研究[D].浙江林学院.2009.
    [78]徐小军,周国模,杜华强.等.基于Landsat TM数据估算雷竹林地上生物量[J].林业科学,2011,47(9):1-6.
    [79]徐新良,曹明奎,李克计.中国森林生态系统植被碳储量时空动态变化研究[J].地理科学进展,2007,26(6):1-10.
    [80]徐水荣,王斗天,冯宗炜,等.天津滨海几种人工植被的碳汇作用研究[J].华中农业大学学报,2003,22(6):603-607.
    [81]杨存建,刘纪元,骆剑承.不同龄组的热带森林植被生物量与遥感地学数据之间的相关性分析[J].植物生态学报,2004.8(6):862-867.
    [82]杨昆.管东生.周春华.潭江流域森林碳储量及其动态变化[J].应用生态学报.2006,17(9):1579-1582.
    [83]杨晓菲.河南西平县杨树人工林碳储量及其与环境响应研究[D].北京林业大学,2011.
    [84]叶金盛,佘光辉.广东省森林植被碳储量动态研究[J].南京林业大学学报(自然科学版).2010,34(4):7-12.
    [85]游先祥.遥感原理及在资源环境中的应用[M].北京:中国林业出版社,2003.
    [86]岳彩荣.香格里拉县森林生物量遥感估测研究[D].北京林业大学,2011.
    [87]张超,彭道黎.基于PCA-RBF神经网络的森林碳储量遥感反演模型研究[J].中国农业大学学报,2012,17(4):148-153.
    [88]张锋.基于遥感信息估测森林生物量的研究.[D].东北林业大学.2003.
    [89]张慧芳.北京地区森林植被生物量遥感反演及时空动态格局分析[D].北京林业大学.2008.
    [90]张慧芳,张晓丽,黄瑜.遥感技术支持下的森林生物量研究进展[J].世界林业研究,2007,20(4):30-34.
    [91]张会儒,唐守正,王奉瑜.与材积兼容的生物量模型的建立及其估计方法研究[J].林业科学研究,1999,12(1):53-59.
    [92]张亮,林文欢,等.广东省森林植被碳储量空间分布格局[J].生态环境学报,2010,19(6):1295-1299.
    [93]张鹏强,余旭初,刘智.等.多时相遥感图像对辐射校正[J].遥感学报,2006,10(3):339-344.
    [94]张文俊,马珂,师庆东,等.克拉玛依人工杨树碳汇林对土壤有机碳储量的影响[J].新疆农业科学,2012.49(5):856-861.
    [95]张元元.大兴安岭地区森林生物量遥感模型的研究[D].东北林业大学,2009.
    [96]赵贝贝.山东省107-杨树生丰产林生长预测模型及成熟龄研究[D].山东农业大学,2010.
    [97]赵合娥,黄东森,吴全宇,等.中菏2号等杨树新品种选育和区域化试验研究[J].中国林业产业,2005,2:56-59.
    [98]赵俊芳,延晓冬,贾根锁.1981-2002年中国东北地区森林生态系统碳储量的模拟[J].应用生态学报,2009,20(2):241-249.
    [99]赵丽琼.北京山区森林碳储量遥感估测技术研究[D].北京林业大学,2010.
    [100]赵敏,周广胜.基于森林资源清查资料的生物量估算模式[J].应用生态学报,2004,15(8):1468-1472.
    [101]曾伟生,骆期邦,贺东北.兼容性立木生物最非线性模型研究[J].生态学杂志,1999,18(4):19-24.
    [102]周玉荣,于振良.赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报.2000,24(5):518~522.
    [103]朱会义,李秀彬.关于区域土地利用变化指数模型方法的讨论[J].地理学报,2003,58(5):643-650.
    [104]Arief W, Sandi K. Richard G. et al. Improved strategy for estimating stem volume and forest biomass using moderate resolution remote sensing data and GIS[J]. Journal of Forestry Research. 2010.21(1):1-12.
    [105]Arvind B L, Swamy M S, Neeraj A K. Land-use, biomass and carbon estimation in dry tropical forest of Chhattisgarh region in India using satellite remote sensing and GIS[J]. Journal of Foresry Research,2010,21(2):161-170.
    [106]Brown S, LugoA E. Biomass of tropical forests:a new estimate based on forest volumes[J]. Science,1984,223:1290-1293.
    [107]Brown S,Gillespie R,Lugo A E.Biomass estimation methods for tropical forests with applications to forest inventory data[J].ForestScience.1989,35:881-902.
    [108]Brown S L,Schroeder P E.Spatial patterns of aboveground production and mortality of woody biomass for eastern U.S. forests[J]. Ecological Applications,1999,9:968-980.
    [109]Burcshel P.Kursten E.Present role of German forest and forestry in the national carbon budget and options to its increase[J].Water,Air and Soil Pollution,1993,70:325-340.
    [110]Cannell M.G.R, Dewar R C, Thornley J H M. Carbon Flux and Storage in European Forests[J]. Responses of Forest Ecosystems to Environment Changes,1992:256-271.
    [111]Christopher Potter. Peggy Gross, Steven Klooster, Matthew Fladeland. Vanessa Genovese. Storage of carbon in U.S. forests predicted from satellite data, ecosystem modeling, and inventory summaries[J]. Climatic Change,2008,90(3):269-282.
    [112]Crutzen,P J and Andreae MO.Biomass burning in the tropics:impact on the atmospheric chemistry and biogeochemical cycles[J].Science,1990,250:1669-1678.
    [113]Daniel B, Botkin, Lloyd G. Simpson, Robert A. Nisbet. Biomass and carbon storage of the North American deciduous forest[J]. Biogeochemistry,1993,20(1):1-17.
    [114]Daniel W M, Denys Y, Glenn F, et al.Yield in short rotation coppice:model simulations using the process model SECRETS[J].Forest Policy and Economics,2004,6:345-358.
    [115]Detwiler R P, Hall C S. Tropical forests and the global carbon cycle[J]. Science,1988.239:42-47.
    [116]Dixon R K, Brown S,Houghton R A.et al. Carbon pools and flux of global forest ecosystems[J]. Science,1994,263(5144):185-190.
    [117]Dobson M C, Pierce L E, Ulaby F T. Knowledge based Land cover Classification using ERS-1/JERS-1 SAR Composites[J].1FFE Transactions on Geosci3nce and Remote Sensing,1996, 34:83-99.
    [1181 Dong J R. Kaufmann R K, Myneni R B, et al. Remoting sensing estimates of boreal and temperate forest woody biomass:Carbon pools, sources, and sinks[J]. Remote Sensing of Environment. 2003.84:393-410.
    [119]Douglas A. S. Wendell P. C. Application of remote sensing.an artificial neural network leaf area model,and a process-based simulation model to estimate carbon storage in Florida slash pine plantations[J]. Journal of Forestry Research,2010.21(2):171-176.
    [120]Fang J Y, Chen A P. Peng C H. et al. Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998[J].Science.2001.292(5525):2320-2322.
    [121]Fang J Y,GuoZ D, Piao S L,et al.Terrestrial vegetation carbon sinks in China,1981-2000[J]. Science in China Series D:Earth Scicnce,2007,50(7):1341-1250.
    [122]Fang S Z, Li H L, Sun Q X, et al. Biomass production and carbon stocks in poplar-crop intercropping systems:a case study in northwestern Jiangsu, China[J]. Agroforcst System.2010. 79(2):213-222.
    [123]Foody G M. Cutler M E, Mcmorrow J. et al. Mapping the biomass of Bornean tropical rainforest from remotely sensed data[J]. Global Ecology & Biogeography,2001,10:379-387.
    [124]Foody G M. Boyd D S, Cutler M E. Predictive relations of tropical forest biomass from Landsat TM data and their Iransferability between regions[J]. Remote Sensing of Environment,2003,85: 463-474.
    [125]Giclen B,Calfapictra C,Lukae M,et al.Net carbon storage in a Poplar Plantation (POPFACE) after three years of free-CO2 enriehment[J]. Tree Physiology.2005.25:1399-1408.
    [126]Gielen B,Ceulemans R.The likely impact of rising atmospheric CO2 on natural and managed PoPulus:a literature review[J]. Environmental Pollution,2001.115:335-358.
    [127]Hame T. Salli A. Andersson K, et al. A new methodology for the estimation of biomass of conifer-dominated boreal forest using NOAA AVHRR data[J]. Remote Sensing,1997.18(15): 3211-3243.
    [128]Heath L S, Kauppi P E, Burschcl P, et al. Contribution of temperate forests to the world's carbon budgt[J]. Water, Air and Soil Pollution,1993,70:55-69.
    [129]Hoekman D H, Q u inones M J. Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colobian Amazon[J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38:685-696.
    [130]Hoosbeck M R, Scarascia-Mugnozza G F. Increased Litter Build Up and Soil Organic Matter Stabilization in a Poplar Plantation After 6 Years of Atmospheric CO2 Enrichment (FACE):Final Results of POP-EuroFACE Compared to Other Forest FACE Experiments[J]. Ecosystems,2009. 12(2):220-239.
    [131]Houghton R A. Land-use change and the carbon cycle[J]. Global Change Biology,1995,1:275-287.
    [132]Houghton R A, Skole D L, Nobre C A, et al. Annual fluxes of carbon from deforestation and regrowth inthe Brazilian Amazon[J]. Nature,2001,403:301-304.
    [133]Imhoff M L, Johnson P. BioSAR/sup TM/:An inexpensive airborne VHF multiband SAR system for vegetation biomass measurement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38:1458-1462.
    [134]Isacv A.Korovin G, Zamolod D, et al Carbon stock and deposition in phytomass of the Russian forests[J].Water Air Soil Pol.1995,82:247-256.
    [135]Johnson J C.BirdseryR A.PanY D.Boimass and NPP estimation for theMid-Atlantic region (USA) using plot-level inventory data[J]. Ecol App.2001.11:1174-1193.
    [136]Karjalainen T,Seppo K.et al.Carbon balance in the forest sector in Finland during 1990 2039[J].Climate Change,1995.31:451-478.
    [137]Kauppi P.E.,Mielikainen K. Kuusela K. Biomass and carbon budget of European forest.1971 to 1990[J]. Science,1992,256(5053):70-74.
    [138]Kauppi P.E., Ausubel J H, Fang J Y. et al. Returning forests analyzed with the forest identity[J]. 2006.103(46):17574-17579.
    [139]Keeling R F, Piper S C, Heimann M. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration[J]. Nature,1996,381:218-221.
    [140]Kim H S, Oren R, Hinekley T M. Actual and Potential transpiration and carbon assimilation in an irrigated poplar plantation[J]. Tree Physiology,2008,28:559-577.
    [141]Kurz W A.Apps M J.Contribution of northern forest to the global carbon cycle:Canada as a case study[J|.Water,Air and Soil Pollution,1993,70:163-176.
    [142]Larcher W. Physiological plant ecology. Berlin:Springer-Verlag,252 Nabuurs C J.1996. Significance of wood products in forest sector carbon.In:Apps M J, Price D T. Forest Ecosystems. Forest Management and the Global Carbon Cycle[J]. Berlin:Springer-Verlag,1980,245-256.
    [143]Liang W J, Hu H Q, Liu F J, et al. Research advance of biomass and carbon storage of poplar in China[J].Journal of Forestry Research,2006,17(1):75-79.
    [144]Lefsky M A, Cohen W B, Harding D J, et al. Lidar remote sensing of above-ground biomass in three biomes[J]. Global Ecology and Biogeography,2002,11 (5):393-399.
    [145]Lu D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon[J]. International journal of remote sensing,2005.26(12):2509-2525.
    [146]Lu D S, Mateus B. Exploring TM image texture and its relationships with biomass estimation in Rondonia, Brazilian Amazon[J]. Acta Amazonica,2005.35(2):249-257.
    [147]Mark D. C., Isebrands J.G., David N. T, et al. Comparing soil carbon of short rotation poplar plantations with agricultural crops and woodlots in North central United States[J]. Environmental Management,2004,33(supplement 1):299-308.
    [148]Matthias P, Naresh V. T, Andrew M.G, et al. Carbon sequestration potentials in temperate tree-based intercropping systems, southern Ontario, Canada[J]. Agroforestry Systems,2006(26): 243-257.
    [149]Meenakshi K, Mohren G.M.J, Dadhwal V.K. Carbon storage and sequestration potential of selected tree species in India[J]. Mitig Adapt Strateg Glob Change,2010,15:489-510.
    [150]Murillo J C R. Temporal variations in the carbon budget of forest ecosystems in Spain[J]. Ecological Applications,1997,7(2):461-469.
    [151]Olson,J.S.,J.A..Watts&L.J.Allison. Carbon in live vegetation of major world ecosystems[J].US Department of Energy DOE/NBGB-0037.(Rep.Ornl-58620,Oak Ridge National Labortary,Oak Ridge,TN).1983.
    [152]Pacala S.W., Hurtt G.C.. Baker D. et al. Consistent land- and atmosphere-based U.S. carbon sink estimates[J]. Science,2001,292(5525):2316-2320.
    [153]Paul E H. Planted forests:poplars[J]. New Forests,1999,17(1):89-93.
    [154]Pasquale A M, Scotti R.Top-down growth model:a prototype for poplar Italy[J]. Forest Ecology and Management,2002,161:65-73.
    [155]Pan Y, Birdsey R.A., Fang J Y, et al. A large and persistent carbon sink in the world's forests[J]. Science.2011,333:988-993
    [156]Piao S L, Fang J Y, Philippe C, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature,2009,458:1009-1013.
    [157]Santos J R, Freitas C C, Araujo L S, et al. Airborne P-band SAR applied to the aboveground biom- ass studies in the Brazilian tropical rainforest[J]. Remote Sensing of Environment,2003,87: 482-493.
    [158]Schroeder P S. Brown J. Birdsey M R, et al. Biomass estimation for temperate broadleaf forests of the United States using inventory data[J]. Forest Science,1997.43:424-434.
    [159]Suchenwirth L, Forster M. Cierjacks A, et al. Knowledge-based classification of remote sensing data for the estimation of below-and above-ground organic carbon stocks in riparian forests[J]. Wetlands Ecology and Management,2012.20(2):151-163.
    [160]Sykes M,Prentice C. Carbon storage and climate change in Swedish for-est:a comparison of static and dynamic modeling approaches.In:Apps M J. Price D T.eds.Forest Ecosystems,Forest Management and the Global Carbon Cycle[J].Berlin Heidelberg:Springer-verlag,1996,69-77.
    [161]Whittaker R H. Likens G E. Methods of assessing terrestrial productivity[M]. New York:Springer Verlag,1975.
    [162]Wittig V E.Bernacchi C J,Zhu X G,et al.Gross primary produetion is stimulated for three PoPulus Species grown under free-air CO2 enriehment from planting through canopy closure[J].Global Change Biology,2005,11:644-656.
    [163]Woodwell G M, Whittaker R H, Reiners W A. et al. T he biota and the world carbon budget[J]. S cience,1978,199:141-146.
    [164]Xu B, Guo Z D. Piao S L, et al. Biomass carbon stocks in China's forests between 2000 and 2050: A prediction based on forest biomass-age relationships[J]. Science China,2010,53(7):776-783.
    [165]Zhang J B, Shangguan T L. Meng Z Q. Changes in soil carbon flux and carbon stock over a rotation of poplar plantations in northwest China[J]. Ecology Research,2011,26(1):153-161.