关节突关节螺钉在腰椎间融合术中应用的生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     随着我国逐渐进入老龄化社会,中老年人的腰椎退行性疾病也逐年增多,需手术干预者相应增多。目前腰椎退行性疾病的主要手术治疗方法是伴有融合内固定和非融合技术的椎管减压术。
     近年来腰椎非融合技术的开发和临床应用取得了长足的进展。但由于目前设计的非融合装置总体上处于研发和初步临床应用阶段,器械设计还存在这样那样的缺陷,加之该技术还存在器械昂贵、缺少前瞻性研究的支持等等原因,使该技术尚未普及应用。
     自Chandler于1929年最早报道后外侧融合方法的腰椎融合术以来,至今已有多种融合术式相继问世。椎间融合器植骨附加椎弓根螺钉固定成为目前主流的手术方法。
     对腰椎融合及坚强内固定手术的争议自该技术诞生以来就不断,许多学者认为各种融合内固定术后融合率明显提高,但临床效果与非融合固定术相比并无明显提高。以椎间融合为主流,内固定术以螺钉根螺钉钉棒系统(Pedicle screw,PS)为代表的坚强内固定主要具有以下缺陷:1.应力遮挡可能使腰椎节段融合失败和临近节段椎间盘的加速退变;2.因椎弓根螺钉应力集中造成断钉、断棒、移位时有发生,椎弓钉穿破椎弓根损伤神经根和临近椎间盘的危险;3.内固定手术延长了手术时间、增加了软组织损伤和出血量,再手术的几率明显增加;4.治疗费用的大幅提高也给患者带来较大的经济负担。
     目前虽可微创植入椎弓根螺钉,但要求昂贵的的手术设备、较长而陡峭的学习曲线、医患较多的射线摄入量,加上椎弓根螺钉自身的风险,在我国近期内尚难以普遍开展。
     但是就巨大的腰椎间盘突出、腰椎退行性变合并腰椎不稳以及部分腰椎滑脱而言,融合内固定确实比单纯减压取得了更好的手术效果。因此,怎样在下腰椎需要融合内固定手术时采用有效、适度、经济而又微创的方法进行成为骨科医生日益关注的问题。
     关节突关节螺钉具有微创、安装便捷、成本低廉、缩短手术时间和减少术后并发症等优点,成为符合上述脊柱骨科发展理念的一个进展方向,逐渐引起人们的重视。
     1959年,Boucher在腰椎融合术中尝试用经关节突关节椎弓根螺钉(Trans-facetopediclescrew,简称Boucher螺钉或TFPS)。1983年,Magerl在脊柱后外侧融合内固定术中,首先介绍了经椎板关节突关节螺钉(Transliminarfacet screw,简称Magerl螺钉或TLFS)。两种螺钉在使用过程中具有微创、安装便捷、成本低廉、神经根损伤风险低,缩短了手术时间和有效减少并发症,同时提高了融合率。2003年,Kandziora等研发了腰椎关节突界面螺钉(Lumbar facet interferencescrew,简称LFIS),但尚未见临床应用结果的报道。
     近年来,多位学者研究发现前路腰椎间融合辅以关节突关节螺钉固定的腰椎节段稳定性与椎弓根螺钉固定无明显的差别。尚有学者发现,与椎弓根螺钉坚强内固定相比,临近节段退变的时间较晚且程度较轻,推测可能与这两种关节突关节螺钉固定技术减少了邻近腰椎节段应力有关。
     关节突关节螺钉对关节突的完整性要求高,故临床应用的报道主要在完成前路腰椎间融合术(Anterior lumbar interbody fusion,ALIF)之后进行,并可经皮植入减少组织损伤。由于临床医生担心关节突关节螺钉不能满足内固定的力学安全性能要求,导致骨-螺钉界面松动或螺钉断裂,因而限制了脊柱外科医生的应用热情。
     经椎间孔腰椎间融合(Transforaminal lumbar interbody fusion,TLIF)手术只破坏了一侧关节突关节,需要椎弓根螺钉坚强固定,理论上关节突关节螺钉固定对侧的关节突关节即可达到稳定整个功能节段的结果,而不需要椎弓根螺钉固定。有学者就对侧用Magerl螺钉或LFIS的非对称固定进行生物力学稳定性研究,发现固定效果与双侧椎弓根螺钉接近,可满足临床应用所需生物力学要求。TFPS与其他两种关节突关节螺钉相比,尚具有对关节突关节破坏小、更易于置入和神经根损伤风险低等优点,然而未见此螺钉与椎弓根螺钉组合应用的研究报道。
     但在ALIF后路内固定情况下,关节突关节螺钉所受应力特点如何?与椎弓根螺钉固定相比是否具有减少应力遮挡的作用?两种关节突关节螺钉哪种更安全?TFPS参与TLIF非对称固定的节段稳定性和螺钉力学安全性又会怎样?这些问题均未见文献报道,值得深入研究。
     目前,用三维有限元模型可以有效模拟腰椎固定后的螺钉及椎间融合器应力状况,且重复性、可比性强。我们拟用有限元工具,在某些腰椎间融合(ALIF/TLIF)基础上,对关节突关节螺钉参与的组合固定建模并进行力学性能分析,同时采用生物力学试验分析TLIF后路PS+TFPS这一新非对称固定的稳定性,可以为关节突关节螺钉更好的临床应用提供实验基础和理论依据,评价其应用前景。
     目的
     1.建立腰4-5功能节段ALIF后路双侧PS、TLFS及TFPS固定的三维有限元模型,施加相同的负荷,不同的扭矩,比较各种运动状态下两种关节突关节螺钉应力分布特点,分析三种螺钉和椎间融合器的应力状况。
     2.建立腰4-5功能节段左侧TLIF后,分别予以同侧PS+对侧TFPS、同侧PS+对侧TLFS及双侧PS固定的三维有限元模型,施加相同的载荷,分析不同运动状态下三种组合固定螺钉和椎间融合器的应力状况。
     3.对新鲜人体腰椎标本的腰3-4功能节段左侧TLIF后,同侧PS+对侧TFPS的非对称组合固定进行运动范围(Range of motion,ROM)测试,并与正常状态、TLIF+同侧PS及TLIF+双侧PS固定的ROM进行比较,分析同侧PS+对侧TFPS固定的稳定性,评价其临床应用前景。
     方法
     1.对一成人正常腰4-5椎节段标本、椎间融合器、椎弓根螺钉和皮质骨螺钉进行64排螺旋CT扫描,通过Mimics11.1建立ALIF后路三种内固定(双侧TFPS\TLFS\PS)的几何模型,导入Simpleware3.1软件建立三维有限元模型。先对ALIF后路TFPS和TLFS固定的有限元模型施加500N负荷模拟轴向压缩,再以500N\10Nm载荷模拟前屈、后伸、左侧弯、左轴向旋转运动,用Abaqus6.8软件比较分析两种关节突关节螺钉的应力变化和分布特点。然后,对ALIF后路双侧TFPS、TLFS和PS固定的有限元模型施加500N\6Nm载荷模拟前屈、后伸、左侧弯、左轴向旋转运动,用Abaqus6.8软件比较分析三种螺钉和Cage的应力变化和分布特点。
     2.对一成人正常腰4-5椎节段标本、椎间融合器、椎弓根螺钉和皮质骨螺钉进行64排螺旋CT扫描,通过Mimics11.1建立左侧TLIF后路三种内固定组合(同侧PS+对侧TLPS、同侧PS+对侧TFPS及双侧PS固定)的几何模型,导入Simpleware3.1软件分别建立三维有限元模型,施加500N\6Nm载荷模拟前屈、后伸、左\右侧弯、左\右轴向旋转等6种运动状态,用Abaqus6.8软件进行螺钉、椎间融合器应力变化特点的比较分析。
     3.用7例新鲜、正常成人腰椎标本(L1-5),分别制作成正常状态、左侧L3-4节段TLIF后路同侧PS固定、PS+对侧TFPS固定、双侧PS固定状态4组标本。采用脊椎三维运动试验机Spine2000分别对以上4组固定状态标本加载10Nm扭矩,测试前屈、后伸、左\右侧弯和左\右轴向旋转6种运动状态。用Geomagicstudio软件计算腰3-4椎节段ROM,比较分析TLIF后路同侧PS+对侧TFPS固定的稳定性。
     4.试验结果统计采用SPSS 13.0软件包分析。对500N\10Nm载荷下两种关节突关节螺钉的关节突关节部应力均值比较采用析因设计的方差分析,TLFS和TFPS在各运动状态下的关节突关节部应力均值比较采用独立样本资料t检验。对生物力学稳定性试验中的4组标本在各种运动状态下的ROM,采用重复测量样本的方差分析,同一运动状态下各种固定组间ROM均值采用单因素方差分析,多重比较采用Bonferroni法。同一固定组内各种运动状态之间ROM均值的比较采用单因素方差分析。差异显著性标准置于0.05。
     结果
     1.在500N负荷和500N\10Nm载荷下,两种关节突关节螺钉在关节突关节部均见明显应力集中,应力峰值均位于此部。螺钉关节突关节部应力峰值均在轴向压缩载荷下最小,在侧屈载荷时最大;螺钉关节突关节部应力均值在扭矩参与的各种运动状态下比较,TLFS均明显大于TFPS(P<0.01)。在500N\6Nm载荷下,椎弓根螺钉在屈伸时应力峰值较两种关节突关节螺钉固定小,在侧弯和轴向旋转时较大;两种关节突螺钉应力特点相似。在双侧椎弓根螺钉坚强固定时,除旋转运动外,椎间融合器有应力遮挡现象。
     2.由于TLIF手术入路切除了左侧关节突关节,造成内植物应力分布不对称,对弹性模量大的内固定器械—椎弓根螺钉应力影响最大,尤其是在左轴向旋转运动时。双侧椎弓根螺钉固定对椎间融合器的应力并无明显应力遮挡效应。在不对称组合内固定中,对侧椎弓根螺钉应力相应增加,以左轴向旋转运动时尤为明显,但关节突关节螺钉断裂的危险性增高不明显。
     3.不同固定方式、运动状态对ROM有显著性影响(P=0.000),活动状态与固定方式之间交互效应显著(P=0.000),主要表现在完整标本、TLIF+单侧PS固定与TLIF+PS+TFPS、TLIF+双侧PS固定时的屈曲、侧弯活动上。除TLIF后单侧PS固定的左\右旋转运动及PS+TFPS组合的右旋运动与完整标本ROM无差异外,完整标本ROM与其他各组固定方式及运动均有显著性差异(P<0.05);单侧PS固定与PS+TFPS固定在左侧弯时有显著性差异(P<0.05);单侧PS与双侧PS固定在左\右侧弯和左\右轴向旋转时有显著性差异(P<0.05);PS+TFPS和双侧PS固定在所有运动时均无显著性差异。
     结论
     1.在腰椎ALIF后路关节突关节螺钉辅助固定时,两种关节突螺钉应力在术后制动情况下均是安全的,从关节突关节螺钉的置入特点和力学安全性考虑,可优先考虑TFPS固定。在相同的载荷下,ALIF后两种关节突螺钉固定的安全性和椎弓根螺钉固定相近,螺钉断裂风险小。使用关节突关节螺钉固定,除减少创伤、节约成本等优点外,还可减少对椎间Cage的应力遮挡效应。
     2.为降低螺钉断裂的风险,TLIF后路三种组合内固定均应严格限制旋转运动,尤其是关节突切除侧的旋转运动。同时,在非对称固定时,关节突切除侧椎弓根螺钉可选用略粗直径螺钉。
     3.腰椎TLIF后路PS+TFPS组合固定的生物力学稳定性与双侧PS固定相近,明显比单侧PS固定稳定性好。加之TFPS具有微创、易置入和神经损伤风险小等优点,PS+TFPS组合固定方式可作为微创手术治疗的可靠备选方案。
     主要创新点
     1.首次运用有限元方法建立腰椎体间融合后路关节突关节螺钉固定的三维模型,并利用模型分析关节突关节螺钉的应力分布特点。
     2.运用有限元方法分析两种腰椎间融合术(TLIF\ALIF)加各种螺钉组合固定的应力分布特点,提出减少内固定失败风险的对应策略。
     3.首次提出TLIF后路同侧椎弓根螺钉+对侧TFPS的不对称固定方法。同时,对此不对称固定的生物力学稳定性和螺钉力学安全性能进行评价。
Background
     Along with our country entering into aging society,more and more lumbar degenerative diseases(LDD) occurred,leading to the number of adults and old people needing operation increasing.At present,the main operation methods are neural canal decompression with or without interbody fusion accompany supplement with internal fixation.
     For the past decade years,the lumbar non-fusion techniques have make a great progress worldwide.However,the non-fusion techniques and equipment are in early stage and not enough to gain popularity because of it's deficiency of prospective investigation and expensive instrument.At the same time,those techniques have some defects in instrument design,and are based on vague recognition about principal of between mobile lumbar vertebra and LDD.
     Since Chandler first report post-lateral fusion of lumbar vertebra at 1929,many kinds of fusion methods of lumbar spinal fusion had come out.Now,lumbar interbody fusion with stuffing bone graft cages and supplement with pedicle screws fixation had become main stream of operation method.
     The argument about lumbar spinal fusion and firm internal fixation are inceasing since emergence from these techniques.Lumbar interbody fusion supplement with pedicle screws fixation have major shortages as follow:1.stress-shielding from rigid internal fixation may lead to lumbar fusion failure and accelerating degeneration of vicinity intervertebral discs(IVD).2.Stress concentration of pedicle screws may cause breakage and displacement of screws or rod.Perforation of pedicle of vertebra result in nerve root lesions.3.The fixation system will increase operation time,soft tissue injury,bleeding volume,complication after operation and reoperation rate obviously.At the same time,it will make more expense by pedicle screws fixation.
     Although pedicle screw system can be implanted by mircoinvasive methods,it is hardly to widespread application in the near future still in our country,because this technique needs more expensive equipments,longer and steeper learning-curve, more radiation to doctors and patients,in addition to intrinsic risk of pedicle screws itself.
     In terms of tremendous lumbar disc herniation,unstable IDD and part of lumbar spondylolisthesis,the lumbar interbody fusion with internal fixation has distinct superiority and gain preferable result of operation certainly.For this reason,it has become an interesting problem that how to undertake lumbar fusion and internal fixation operation supplement with effective,appropriate,cheap and mirco-invasive methods.
     Facet joint(zygapophysial joint) is the only real active joint in lumbar vertebra, and share axial loading approximately 10 to 20 percent of total loading.The function of facet joint is against rotation as well as against shearing force.Immobilization of facet joint can be got more ability of anti-rotation,anti-shearing force and anti-extension.Therefore,Immobilization of facet joint with screw is one of reasonable methods offer by Heggeness MH.
     In 1959,Boucher attempted to lumbar spinal fusion with transfacetopedicle screw (Boucher screw,TFPS).Magerl introduced transliminarfacet screw(Magerl screw, TLFS) at first in lumbar posterlateral fusion of spine in 1983.These facet screws have below merits:installing convenience,cheaper cost,lower risk of nerve root lesions,shorten operation time,diminishing complication and rising fusion ratio.In 2003,Kandziora created a new facet screw:lumbar facet interference screw(TFIS), but no clinical report was found about this new facet screw in lumbar interbody fusion so far.
     For the past few years,it was discovered that segment stability of lumbar vertebra has no significant difference between interbody fusion supplement with facet screws fixation and with pedicle screws fixation.Moreover,campared to pedicle screws fixation,adjunct segment degeneration was later and lighter with facet screws fixation.It was conjectured that this phenomenon is because that facet screws fixation is a semi-rigid internal fixation.
     Implantation of these facet screws needs integrity of facet joint.Therefore,the past clinical application reports of facet screws were performed with anterior lumbar interbody fusion(ALIF) by percutaneous implantation mainly.The application was restricted because clinician worried about facet screw didn't meet the biomechanics requirement,which will lead to screws breakage and failure of lumbar spinal fusion.
     Owing to the feature of transforaminal lumbar interbody fusion(TLIF) operation, which destroy facet joint of approach side,the lumbar vertebra of approach side segment need pedicle screws(PS) fixation.Theoretically,contralateral facet joint fixation supplements with facet screws can stabilize whole function segment. Biomechanical investigation had discovered that effectiveness of the posterior asymmetric fixation on the base of TLIF,one side using PS fixation and the other side using facet screw(TLFS and LFIS) was similar to double side pedicle screws fixation.The posterior asymmetric fixation on the base of TLIF can meet mechanical requirement of clinical application.
     What are stress attribution feature of facet screws fixation accompany with ALIF? Compared with pedicle screws fixation,whether facet screws fixation can reduce stress-shielding effect or not? What kind of facet screw is more secure than the other? How is the TFPS security and segment stabilization in posterior asymmetric fixation after TLIF? No answers are found about these questions so far,and it deserves to study further.
     Currently,the stress distribution of internal fixation and Cages can be analyzed by 3-D finite element(FE) model,which method has the characters of reproducibility and comparability.We plan to analyze the mechanical property of facet screws on basis of lumbar interbody fusion(ALIF\TLIF) by finite element method(FEM) and to evaluate stability of the poster pedicle screws plus TFPS fixation after TLIF with biomechanical experiments.These can offer theory proofs for the better clinical application.
     Objectives
     1.To develop a 3-D finite element model of the different facet screws fixation and pedicle screws fixation and to evaluate the stress feature of three kind screws and cages in ALIF with same loading and different moments.
     2.To develop three 3-D finite element models:posterior unilateral pedicle screws supplemented with contralateral TFPS fixation,posterior unilateral pedicle screws supplemented with contralateral TLFS fixation and posterior bilateral pedicle screws fixation after TLIF respectively.To evaluate the stress of three kinds of screws combined fixation and cages in TLIF.
     3.The biomechanical testing in vitro aimed to evaluate the stability of posterior unilateral pedicle screws plus TFPS fixation after TLIF,and then compare it with that of intact segment,unilateral pedicle screws and bilateral pedicle screws to indentify the biomechanical features of the novel construct after TLIF.
     Methods
     1.The geometrical model was created by Mimics 11.1 based on CT data of L4-5 motion segment from a health adult man.Different facet screws,pedicle screws and cages geometrical model were dealt with as the same procedure.Subsequently,the above models were imported into the Simpleware 3.1 in order to establish the 3D finite element models of ALIF with double fusion cages and TLFS,TFPS and pedicle screws fixation respectively.The 3D finite element models were imported into Abaqus 6.8 and analyzed.
     At first,500N pressure was loaded on the upper surface of L4 of ALIF supplement with TLFS and TFPS to simulate lumbar axial compression,then,10Nm moments was loaded to simulate lumbar anteflexion,extension,left lateral bending and left axial rotation.The mean Von mises stress of the facet part of facet screws was recorded and inputted into Spss 13.0 to analyze the difference of stress of the two different fixations.Then,500N\6 Nm loading was loaded on the upper surface of L4 of ALIF supplement with three types screws to simulate lumbar flexion, extension,left lateral bending and left axial rotation.Both the peak Von raises stress and stress distribution imagerys of the three kinds of screws fixation and cages were recorded,and the feature of different stress distribution of the three fixations were analyzed.
     2.The geometrical model was created by Mimics 11.1 based on CT data of L4/5 motion segment from an adult man.Different fixation models after left TLIF including the following sequentially test configurations:1) ipsilateral PS plus contralateral TLFS;2) ipsilateral PS plus contralateral TFPS;3) Bilateral PS. Subsequently,the above models were imported into the Simpleware 3.1 in order to establish the 3D finite element models.The 3D finite element models were imported into Abaqus 6.8 and analyzed.500N\6Nm loading was loaded on the upper surface of L4 of TLIF supplement with three types of fixations to simulate lumbar flexion, extension,lateral bending and axial rotation.Both the peak Von mises stress and stress distribution imagerys of the three kinds of fixations and cages were recorded, and the features of different stress distribution of the three fixations were analyzed.
     3.Range of motion(ROM) testing of L3-4 motion segment was performed in 7 fresh-frozen health adult human cadaveric lumbar spine motion segments in flexion, extension,lateral bending and axial rotation using 10.0 Nm torques on the Spine 2000 3-D motion test machine,including the following sequentially test configurations:1) intact segment;2) left TLIF and ipsilateral PS;3) TLIF and ipsilateral PS plus contralateral TFPS;4) TLIF and bilateral PS.Analysis of ROM dates determined construct stability.
     4.Statistical analysis of the dates was performed using the SPSS 13.0 software package.For mean stress comparison of facet parts between TLFS and TFPS under different motions under 500N\10Nm loading,Statistical analyses of the data was performed using factorial analysis,followed by independent-samples t-Test at different fixations under same motion.Statistical analyses of the ROM dates in biomechanical experiments were performed using a repeated-measures analysis of variance.At same motion\fixation,statistical analyses of the mean ROM under different fixations\motions were performed using analysis of univariate,followed multiple comparsion at different fixations by Bonferroni method under same motion. Significance was assumed for probability values 0.05.
     Results
     1.It was obviously that the Von mises of the screws concentrated on the facet part. Among of mean Von mises stress of all loadings of TLFS and TFPS fixation,axial compression load was minimal and the lateral bending was maximal.The mean Von mises stress of TLFS fixation of different loading was larger than that of TFPS fixation(P<0.01).
     The peak stress of pedicle screws in extension\flexion were less than the stress of facet screws,but the stress of pedicle screws in bending\axial rotation were bigger than the stress of facet screws under 500N\6Nm loading.The stress features were similar to two types of facet screws.There was stress-shielding effect at cages because of pedicle screw robust fixation.The risk of screws fatigue breakage of two kinds of screws is quite lowly.
     2.Left facet joint was removed in TLIF procedure,which leads to asymmetry stress attribution of internal implants.For rigid PS fixation,they were more influenced by asymmetry stress attribution,especially under left axial rotation.The stress-shielding effect of cage was not obvious in bilateral PS fixation after TLIF.In asymmetry fixation,the stress of PS side was increasing accordingly,however,the breakage risk of facet screw remain lower under rotation controling properly.
     3.Both fixation and motion status have significant influence on the value of ROM (P=0.000).The reciprocational effect between fixation and motion status were also obvious(P=0.000).The motion of flexion and lateral bending was significant among such specimen as intact specimen,TLIF follow by unilateral PS,TLIF+PS+TFPS and TLIF+bilateral PS fixation.Except for ipsilateral PS in rotation and PS+TFPS in right axial rotation,the ROM of intact group had significant difference with other groups in different motions(P<0.05).After TLIF,the ipsilateral PS construct provided less segment stability than the novel asymmetric construct in left bending (P<0.05).In bending and rotation motion,the ipsilateral PS construct provided less segment stability than the bilateral PS fixation(P<0.05),and it allows for significant off-axial rotation motions,which could be detrimental to stability and the promotion for fusion.In flexion/extension,lateral bending and axial rotation motions,there were no measureable difference in ROM between the standard bilateral PS and the novel asymmetric construct fixation after TLIF.
     Conclusions
     1.The TFPS fixation after ALIF can be considered as a good alternative to TLFS fixation to avoid the breakage risk of the screws.It is necessary to limit patients' activities by a waist-brace after operation.At the same torque,the safety of facet screws fixation after ALIF were similar to pedicle screws fixation.It may relieve stress-shielding effect of interbody cages by mean of facet screws fixation.
     2.For stepping down the risk of PS fatigue breakage,we suggest to restrict severely axial rotation after operation and to adopt bigger diameter PS on the side that facet joint was destroyed in posterior asymmetric fixation after TLIF.
     3.Placing ipsilateral PS plus contralateral TFPS provides the surgical advantages with stability compare to TLIF with bilateral PS fixation,which infers that the novel construct can be an alternative preferential in minimal invasive surgery.
引文
[1] Rajasekaran S, Naresh-Babu J. Translaminar facetal screw (Magerl' s) fixation [J].Neurol India, 2005, 53(4):520-4.
    
    [2] Kim SM, Lim TJ, Paterno J. A biomechanical comparison of supplementary posterior translaminar facet and transfacetopedicular screw fixation after anterior lumbar interbody fusion [J]. Neurosurg (Spine 1), 2004, 1(1): 101 -V.
    [3] Chen CS, Cheng CK, Liu CL.A biomechanical comparison of posterolateral fusion and posterior fusion in the lumbar spine [J]. Spinal Disord Tech, 2002, 15(1):53-63.
    [4] Fantigrossi A, Gallbusera F, Raimondi MT. Biomechanical analysis of cages for posterior lumbar interbody fusion [J]. Med Eng Phys, 2007, 29(1): 101-9.
    [5] Vadapalli S, Sairvo K, Goel VK,et al. Biomechanical rationale for using poly- etheretherketone(PEEK) spacer for lumbar interbody fusion-A finite element study [J]. Spine, 2006, 31(26): E992-8.
    [6] Schmidt H, Heuer F, Drumm J, et al. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment [J]. Clin Biomech (Bristol, Avon), 2007, 22(4):377-84.
    [7] Yamamoto I, Panjabi MM, Crisco T, et al. Three-dimensional movements of the whole lumbar spine and lumbosacra joint [J]. Spine, 1989, 14(11): 1256-60.
    [8] Mimura M, Panjabi MM, Oxland TR, et al. Disc degeneration affects the multidirectional flexibility of the lumbar spine [J]. Spine, 1994, 19(12):1371-80.
    [9] Schmoelz W, Huber JF, Nydegger T, et al. Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment [J]. Spinal Disord Tech,2003,16(4):418-23.
    [10]White AA,Panjabi MM.Physical properties and functional biomechanics of the spine.In:Clinical biomechanics of the spine[M].Philadelphia:B Lippincott Company,1978.pp.1-83.
    [11]Kim YE,Goel VK.Biomechanics of chemonucleolysis.The winter annual meeting of the ASME[J].BED,1988,9:461-71.
    [12]Shirazi-Adl A.Biomechanics of the lumbar spine in sagittal/ lateral movements[J].Spine,1994,19(21):2407-14.
    [13]Andersson GB,Schultz AB.Effects of fluid injection on mechanical properties of intervertebral disc[J].J Biomech,1979,12(6):453 - 8.
    [14]Nachemson AL,Schultz AB,Berkson MH.Mechanical properties of human lumbar spine motion segments.Influence of age,sex,disc level,and degeneration[J].Spine,1979,4(1):1-8.
    [15]Chen CS,Cheng CK,Liu CL,et al.Stress analysis of the disc adjacent to Interbody fusion in lumbar spine[J].Med Eng Phys,2001,23(7):483 - 91.
    [16]Chosa E,Totoribe K,Tajima N.A biomechanical study of lumbarspondylolysis based on a 3-dimensional finite element method[J].Orthop Res,2004,22(1):158 -63.
    [17]Sairyo K,Goel VK,Masuda A,et al.Three-dimensional finite element analysis of the pediatric lumbar spine.Part Ⅰ:pathomechanism of apophyseal bony ring fracture[J].Eur Spine,2006,15(6):923-9
    [18]Lund T,Oxland TR,Jost B,et al.Interbody cage stabilisation in the lumbar spine:biomechanical evaluation of cage design,posterior instrumentation and bone density[J].Bone Joint Surg Br,1998,80(2):351-9.
    [19]陈剑、范顺武.关节突关节螺钉在腰椎融合术中的应用进展[J].国外医学,骨科学分册,2004,25(6):358-60.
    [20]Ferrara LA,Secor JL,Jin BH,et al.A Biomechanical comparison of facet screw fixation and pedicle screw fixation effects of short-term and long-term repetitive cycling[J].Spine,2003,28(12):1226-34.
    [21]Oxland TR,Lund T.Biomechanics of stand-alone cages and cages in combination with posterior fixation:a literature review[J].Eur Spine,2000,9(Suppl 1):S95-101.
    [22]Eskander M,Brooks D,Ordway N,et al.Analysis of pedicle and translaminar facet fixation in a multisegment interbody fusion model[J].Spine,2007,32(7):E230-5.
    [23]Johnson WM,Nichols TA,Jethwani D,et al.In vitro biomechanical comparison of an anterior and anterolateral lumbar plate with posterior fixation following single-level anterior lumbar interbody fusion[J].Neurosurg Spine,2007,7(3):332-5.
    [24]Mahar A,Kim C,Oka R,et al.Biomechanical comparison of a novel percutaneous transfacet device and a traditional posterior system for single level fusion[J].Spinal Disord Tech,2006,19(8):591-4.
    [25]邹德威,杨惠林,金大地,等.脊柱功能重建外科学—高级理论和技巧[M].北京:人民军医出版社,2008:65-6.
    [26]Humke T,Grob D,Dvorak J,et al.Translaminar screw fixation of the lumbar and lumbaosacral[J].Spine,1998,23(10):1180-4.
    [27]Chen SI,Lin RM,Chang CH.Biomechanical investigation of pedicle screwvertebrae complex:a finite element approach using bonded and contact interface conditions[J].Med Eng Phys,2003,25(4):275-82.
    [28]Jang JS,Lee SH.Clinical analysis of percutaneous facet screw fixation after anterior lumbar interbody fusion[J].Neurosurg Spine,2005,3(1):40-6.
    [29]Shim CS,Lee SH,Jung B,et al.Fluoroscopically assisted percutaneous trans- laminar facet screw fixation following anterior lumbar interbody fusion:technical report[J].Spine,2005,30(7):838-43.
    [30]Kim Y.Finite element analysis of anterior lumbar interbody fusion:threaded cylindrical cage and pedicle screw fixation[J].Spine,2007,32(23):2558-68.
    [31]陆声,徐永清,张美超,等.腰椎前路椎间融合后不同固定方式的生物力学特性[J].脊柱外科杂志,2008,6(1):28-31.
    [32]Chen SH,Tai CL,Lin CY,et al.Biomechanical comparison of a new standalone anterior lumbar interbody fusion cage with established fixation techniques--a three-dimensional finite element analysis[J].BMC Musculoskelet Disord,2008,Jun 18,9:88.
    [33]Schmidt H,Heuer F,Claes L,et al.The relation between the instantaneous center of rotation and facet joint forces--A finite element analysis.Clin Biomech(Bristol,Avon).2008,23(3):270-8.
    [34]Bono C,Lee C.Critical analysis of trends in fusion for degenerative disc disease over the last twenty years:influence of technique on fusion rate and clinical outcome[J].Spine,2004,29(4):455-63.
    [1]Harms J,Rolinger H:A one-stager procedure in operative treatment of spondyloistheses:dorsal traction-reposition and anterior fusion[J].Z Orthop Ihre Grenzgeb,1982,120(3):343-7.
    [2]Mummaneni PV,Haid RW,Rodts GE.Lumbar interbody fusion state-of-the -art technical advance.Invited submission from the Joint Section Meeting on Disorders of the spine and peripheral Nevers,March 2004[J].Neurosurg Spine,2004,1(1):24-30.
    [3]Schwender JD,Holly LT,Ruben DP,et al.Minimally invasive transforaminal lumbar interbody fusion(TLIF):Technical feasibility and initial results[J].Spinal Disorder Tech,2005,18 Suppl:S1-6.
    [4]Kandziora F,Schleicher P,Scholz M,et al.Biomechanical testing of the lumbar facet interference screw[J].Spine,2005,30(2):E34-9.
    [5]Slucky AV,Brodke DS,Bachus KN,et al.Less invasive posterior fixation method following transforaminal lumbar interbody fusion:a biomechanical analysis[J].Spine,2006,6(1):78-85.
    [6]Schleicher P,Beth P,Ottenbacher A,et al.Biomechanical evaluation of different asymmetrical posterior stabilization methods for minimally invasive transforaminal lumbar interbody fusion[J].Neurosurg Spine,2008,9(4):363-71.
    [7]Sethi A,Lee S,Vaidya R.Transforaminal lumbar interbody fusion using unilateral pedicle screws and a translaminar screw[J].Eur Spine,2009,18(3):430-4.
    [8]陈家麟,茅祖斌,吴小涛.四种经椎间孔腰椎间融合固定方式的三维有限元分析[J].中国组织工程研究和临床康复杂志,2008,12(39):7605-10.
    [9] Chen CS, Cheng CK, Liu CL. A biomechanical comparison of posterolateral fusion and posterior fusion in the lumbar spine [J]. Spinal Disord Tech, 2002, 15(1):53-63.
    [10] Fantigrossi A, Gallbusera F, Raimondi MT. Biomechanical analysis of cages for posterior lumbar interbody fusion [J]. Med Eng Phys, 2007, 29(1): 101-9.
    [11] Vadapalli S, Sairvo K, Goel VK, et al.Biomechanical rationale for using poly- etheretherketone(PEEK) spacer for lumbar interbody fusion-A finite element study [J]. Spine, 2006, 31(26): E992-8.
    [12] Schmidt H, Heuer F, Drumm J, et al. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment [J]. Clin Biomech (Bristol, Avon), 2007, 22(4):377-84.
    [13] Panjabi MM, Oxland TR, Yamamoto I, et al. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load displacement curves [J]. Bone Joint Surg Am, 1994,76(3):413-24.
    [14] Fujiwara A, Lim TH, An HS, et al. The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine [J]. Spine, 2000, 25(23):3036-44.
    [15] Niosi CA, Zhu QA, Wilson DC, et al. Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study [J].Eur Spine,2006, 15(6):913-22.
    [16] Heuer F, Schmidt H, Klezl Z, et al. Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle [J]. Biomech, 2007,40(2):271-80.
    [17] White AA, Panjabi MM. Physical properties and functional biomechanics of the spine. In: Clinical biomechanics of the spine [M]. Philadelphia: B Lippincott Company, 1978. pp. 1-83.
    [18] Kim YE, Goel VK. Biomechanics of chemonucleolysis. The winter annual meeting of the ASME [J]. BED, 1988, 9:461-71.
    [19] Shirazi-Adl A. Biomechanics of the lumbar spine in sagittal/lateral movements [J]. Spine, 1994, 19(21):2407-14.
    [20] Andersson GB, Schultz AB. Effects of fluid injection on mechanical propertiesof intervertebral disc[J]. Biomech, 1979, 12(6): 453-8.
    [21] Nachemson AL, Schultz AB, Berkson MH. Mechanical properties of human lumbar spine motion segments. Influence of age, sex, disc level, and degeneration [J]. Spine, 1979, 4(1):1-8.
    [22] Chen CS, Cheng CK, Liu CL, et al. Stress analysis of the disc adjacent to interbody fusion in lumbar spine[J]. Med Eng Phys , 2001, 23(7): 483-91.
    [23] Chosa E, Totoribe K, Tajima N. A biomechanical study of lumbarspondylolysis based on a3-dimensional finite element method [J]. Orthop Res, 2004, 22(1): 158 -63.
    [24] Turtle J, Shakir A, Choudhri HF: Paramedian approach for transforaminal lumbar interbody fusion with unilateral pedicle screw fixation: Technical note and preliminary report on 47 cases [J]. Neurosurg Focus, 2006, 20(3):E5.
    
    [25] Deguchi M, Cheng BC, Sato K, et al. Biomechanical evaluation of translaminar facet joint fixation. A comparative study of poly-L-lactide pins, screws and pedicle fixation [J]. Spine, 1998, 23(12):1307-12.
    [26] Ferrara LA, Secor JL, Jin BH, et al. A biomechanical comparison of facet screw fixation and pedicle screw fixation: effect of short term and long-term repetitive cycling [J]. Spine, 2003, 28 (12):1226-34.
    [27] Harris BM, Hilibrand AS, Savas PE, et al.Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine [J]. Spine, 2004, 29(4):E65-70.
    [28] Jang JS, Lee SH. Minimally invasive transforaminal lumbar interbody fusion with ipsilateral pedicle screw and contralateral facet screw fixation [J]. Neurosurg Spine, 2005, 3(3):218-23.
    
    [29] Kim SM, Lim TJ, Paterno J, et al.A biomechanical comparison of supplementary posterior translaminar facet and transfacetopedicular screw fixation after anterior lumbar interbody fusion [J]. Neurosurg Spine, 2004,1(1):101-7.
    
    [30] Chen SH, Tai CL, Lin CY, et al. Biomechanical comparison of a new standalone anterior lumbar interbody fusion cage with established fixation techniques — a three-dimensional finite element analysis [J]. BMC Musculoskelet Disord, 2008 Jun 18, 9:88.
    
    [31] Schmidt H, Heuer F, Claes L, et al. The relation between the instantaneous center of rotation and facet joint forces-A finite element analysis. Clin Biomech (Bristol, Avon), 2008, 23(3):270-8.
    [1] Harms J, Rolinger H: A one-stager procedure in operative treatment of spond- yloistheses: dorsal traction-reposition and anterior fusion (author, s transl) [J]. Z Orthop Ihre Grenzgeb, 1982, 120(3):343-7.
    
    [2] Mummaneni PV, Haid RW, Rodts GE. Lumbar interbody fusion state-of-the -art technical advance.Invited submission from the Joint Section Meeting on Disorders of the spine and peripheral Nevers [J].Neurosurg Spine, 2004, 1(1):24-30.
    
    [3] Slucky AV, Beodke DS, Bachus KN, et al. Less invasive posterior fixation method following transforaminal lumbar interbody fusion: a biomechanical analysis [J]. Spine, 2006, 6(1):78-85.
    
    [4] Bucciero A. Implantation of a hybrid solution, using a combination of instrumentation systems for the treatment of degenerative disorders of the lumbo- sacral spine. A technical note [J]. Neurosurg Sci, 2008, 52(1):23-6, discussion 27.
    
    [5] Resnick DK, Choudhri TF, Dailey AT, et al: Guidelines for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 12:pedicle screw fixation as an adjunct to posterolateral fusion for low-back pain [J]. Neurosurg Spine, 2005, 2(6):700-6.
    
    [6] Schwender JD, Holly LT, Rouben DP, et al. Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results [J]. Spinal disorder Tech, 2005, 18 Suppl: S1-6.
    
    [7] Mummaneni PV, Rodts GE Jr. The mini-open transforaminal lumbar interbody fusion [J]. Neurosurgery, 2005, 57(4 Suppl):256-61.
    
    [8] Panjabi MM. Biomechanical evaluation of spinal fixation devices: LA con- ceptual framework [J]. Spine, 1988,13(10):1129-34.
    
    [9] Hasegawa K, Ikeda M, Washio T, et al. An experimental study of porcine lumbar segmental stiffness by the distract-compression principle using a threaded interbody cage [J]. Spinal Disord, 2000, 13(3): 247-52.
    
    [10] Harris BM, Hilibrands AS, Savas PE, et al: Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine [J]. Spine, 2004, 29(4):E65 -E70.
    
    [11] Turtle J, Shakir A, Choudhri HF: Paramedian approach for transforaminal lumbar interbody fusion with unilateral pedicle screw fixation: Technical note and preliminary report on 47 cases [J]. Neurosurg Focus, 2006, 20(3):E5.
    
    [12] Lowe TG, Tahernia AD. Unilateral transforaminal posterior lumbar interbody fusion [J]. Clin Orthop, 2002, 394:64-72.
    
    [13] Beringer WF, Mobasser JP: Unilateral pedicle screw instrumentation for minimally invasive transforaminal lumbar interbody fusion [J]. Neurosurg Focus, 2006, 20(3):E4.
    
    [14] Geol VK, Lim TH, Gwon J, et al. Effect of rigidity of an internal fixation device: a comprehensive biomechanical investigation [J]. Spine, 1991,16 (3 Suppl): S155-61.
    
    [15] Schleicher P, Beth P, Ottenbacher A, et al. Biomechanical evaluation of different asymmetrical posterior stabilization methods for minimally invasive transforaminal lumbar interbody fusion [J]. Neurosurg Spine, 2008, 9(4):363-71.
    
    [16] Bachus K, Brodke D, Droge J. Increasing the stability of unilateral transverse lumbar interbody fusions. Presented at the 50th Annual Meeting of the Orthopedic Research Society, San Francisco, CA, March 7-10, 2004 [J]. Proc Orthop Res Soc 2004, 29:1122.
    [17] Slucky A, Brodke D, Droge J. In vivo biomechanical analysis of transverse lumbar fusion techniques [M]. Presented at World Spine Conference II, Chicago, IL, 2003.
    
    [18] Kandziora F, Schleicher P, Scholz M, et al. Biomechanical testing of the lumbar facet interference screw [J]. Spine, 2005, 30(2):E34-9.
    
    [19] Kim SM, Lim TJ, Paterno J, et al. A biomechanical comparision of supplementary posterior translaminar facet and transfacetopedicular screw fixation after anterior lumbar interbody fusion [J]. Neurosurg Spine, 2004, 7(1): 101-07.
    
    [20] Panjabi MM, Krag MH, Goel VK. A technique for measurement and discription of three-dimensional six degree-of-freedom motion of a body joint with an application to the human being [J]. Biomech, 1981, 14 (7): 447-60.
    
    [21] Best NM, Sasso RC. Efficacy of translaminar facet screw fixation in circumferential interbody fusions as compared to pedicle screw fixation [J]. Spinal Disord Tech, 2006, 19(2):98-103.
    [1]Kaiser MG,Haid RW Jr,Subach BR,et al.Anterior cervical plating enhances arthrodesis after discectomy and fusion with cortical allograft[J].Neurosurgery,2002,50(2):229-38.
    [2]Ghiselli G,Wang JC,Bhatia NN,et al.Adjacent segment degeneration in the lumbar spine[J].Bone Joint Surg Am,2004,86-A(7):1497-503.
    [3]Bono C,Lee C.Critical analysis of trends in fusion for degenerative disc disease over the last twenty years:influence of technique on fusion rate and clinical outcome[J].Spine,2004,29(4):455-63.
    [4]Martin BI,Mirza SK,Comstock BA,et al.Are lumbar spine reoperation rates falling with greater use of fusion surgery and new surgical technology?[J].Spine,2007,32(19):2119-26.
    [5]Eck JC,Hodges S,Humphreys SC.Minimally invasive lumbar spinal fusion[J].Am Acad Orthop Surg.2007,15(6):321-9.
    [6]邱贵兴.正确评价脊柱退变性疾病的非融合治疗[J].中华外科杂志,2006,44(16):1081-3.
    [7]Huang RC,Girardi FP,Lim MR,et al.Advantages and disadvantages of nonfusion technology in spine surgery[J].Orthop Clin North Am,2005,36(3):263 -9.
    [8]Chandler FA.Spinal fusion operations in the treatment of low back and sciatic pain[J].JAMA,1929,93:1447.
    [9]Schwender JD,Holly LT,Rouben DP,et al.Minimally invasive transforaminal lumbar interbody fusion(TLIF):technical feasibility and initial results[J].Spinal Disord Tech,2005,18 Suppl:S 1-6.
    [10]符楚迪,许文根.范顺武.改良小切口技术在腰椎单节段融合术中的应用[J].浙江医学,2007,29(7):699-701.
    [11] Deguchi M, Cheng BC, Sato K, et al. Biomechanical evaluation of translaminar facet joint fixation. A comparative study of poly-L-lactide pins, screws and pedicle fixation [J]. Spine, 1998, 23(12):1307-12.
    [12] Magerl FP. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation [J]. Clin Orthop, 1984, (189): 125-41.
    [13] King D. Internal fixation for lumbosacral fusion [J]. Am Surg , 1944, 66: 357 -61.
    [14] Boucher HH. A method of spinal fusion [J]. Bone Joint Surg Br. 1959, 41- B(2):248-59.
    [15] El Masry MA, McAllen CJ, Weatherley CR. Lumbosacral fusion using the Boucher technique in combination with a posterolateral bone graft [J].Eur Spine, 2003, 12(4): 408-12.
    [16] Stoneecipher T, Wright S. Posterior lumbar interbody fusion with facet-srcew fixation [J]. Spine, 1989, 14(4): 468-71.
    [17] Humke T, Grob D, Dvorak J, et al. Translaminar screw fixation of the lumbar and lumbosacral spine. A 5-year follow-up [J]. Spine, 1998, 23(10):1180-4.
    [18] Montesano PX, Magerl FP, Jacobs RR, et al. Translaminar Facet Joint Screws [J]. Orthopedics, 1988,11(10):1393-7.
    [19] Reich SM, Kuflik P, Neuwirth M. Translaminar facet screw fixation in lumbar spine fusion [J]. Spine, 1993, 18(4): 444-9.
    [20] Markwalder TM, Reulen HJ. Translaminar screw fixation in lumbar spine pathology [J]. Acta Neurochir, 1989, 99(1-2):58-60.
    [21] Kandziora F, Schleicher P, Scholz M, et al. Biomechanical testing of the lumbar facet interference screw[J]. Spine, 2005 , 30(2):E34-9.
    [22] Mahar A, Kim C, Oka R, et al. Biomechanical comparison of a novel percutaneous transfacet device and a traditional posterior system for single level fusion[J].Spinal Disord Tech,2006,19(8):591-4.
    [23]Rajasekaran S,Naresh-Babu J.Translaminar facetal screw(Magerl's) fixation [J].Neurol lndia,2005,53(4):520-4.
    [24]Kim SM,Lim TJ,Paterno J,et al.A biomechanical comparison of supplementary posterior translaminar facet and transfacetopedicular screw fixation after anterior lumbar interbody fusion[J].Neurosurg Spine,2004,1(1):101-7.
    [25]Grob D,Humke T.Translaminar screw fixation in the lumbar spine:technique,indications,results[J].Eur Spine,1998,7(3):178-86.
    [26]Margulies JY,Seimon LP.Clinical efficacy of lumbar and lumbosacral fusion using the Boucher facet screw fixation technique[J].Bull Hosp Jt Dis,2000,59(1):33-9.
    [27]Jacobs RR,Montesano PX,Jackson RP.Enhancement of lumbar spine fusion by use of translaminar facet joint screws[J].Spine,1989,14(1):12-5.
    [28]殷渠东,郑祖根,蔡建平,等.经椎板螺钉固定脊椎融合术治疗腰椎退变性不稳[J].中国骨与关节损伤杂志,2005,20(11):737-9.
    [29]Jang JS,Lee SH.Clinical analysis of percutaneous facet screw fixation after anterior lumbar interbody fusion[J].Neurosurg Spine,2005,3(1):40-6.
    [30]Shim CS,Lee SH,Jung B,et al.Fluoroscopically assisted percutaneous translaminar facet screw fixation following anterior lumbar interbody fusion:Technical report[J].Spine,2005,30(7):838-43.
    [31]Thalgott JS,Chin AK,Ameriks JA,et al.Minimally invasive 360 degrees instrumented lumbar fusion[J].Eur Spine,2000,9 Suppl 1:851-6.
    [32]Best NM,Sasso RC.Efficacy of translaminar facet screw fixation in circumferential interbody fusions as compared to pedicle screw fixation[J].Spinal Disord Tech,2006,19(2):98-103.
    [33]Tuli SK,Eichler ME,Woodard EJ.Comparison of perioperative morbidity in translaminar facet versus pedicle screw fixation[J].Orthopedics,2005,28(8):773 -8.
    [34]Jun BY.Posterior lumbar interbody fusion with restoration of lamina and facet fusion[J].Spine 2000,25(8):917-22.
    [35]汪向东,王文军,朱一平,等.经椎板关节突螺钉固定治疗下腰椎失稳症的疗效评价[J].医学临床研究,2007,24(5):796-7.
    [36]Eskander M,Brooks D,Ordway N,et al.Analysis of pedicle and translaminar facet fixation in a multisegment interbody fusion model[J].Spine,2007,32(7):E230-235.
    [37]Harms J,Rolinger H.A one-stager procedure in operative treatment of spondyloistheses:dorsal traction-reposition and anterior fusion[J].Z Orthop Ihre Grenzgeb,1982,120(3):343-47.
    [38]Jang JS,Lee SH.Minimally invasive transforaminal lumbar interbody fusion with ipsilateral pedicle screw and contralateral facet screw fixation[J].Neurosurg Spine,2005,3(3):218-23.
    [39]Sethi A,Lee S,Vaidya R.Transforaminal lumbar interbody fusion using unilateral pedicle screws and a translaminar screw[J].Eur Spine,2009 Mar,18(3):430-4.
    [40]Bucciero A.Implantation of a hybrid solution,using a combination of instrumentation systems for the treatment of degenerative disorders of the lumbosacral spine.A technical note[J].Neurosurg Sci,2008,52(1):23-6;discus- sion 27.
    [41]陈剑、范顺武.关节突关节螺钉在腰椎融合术中的应用进展[J].国外医学,骨科学分册,2004,25(6):358-360.
    [42]Tuli J,Tuli S,Eichler ME,et al.A comparison of long-term outcomes of translaminar facet screw fixation and pedicle screw fixation:a prospective study[J].Neurosurg Spine,2007,7(3):287-92.
    [43]Lu J,Eberaheim NA,Yeasting RA.Translaminar facet screw placement:An anatomic study[J].Am Orthop,1998,27(8):550-5.
    [44]殷渠东,郑祖根,夏存林.置入经椎板关节突关节螺钉的应用解剖[J].中国临床解剖学杂志,2004,22(3):277.
    [45]陆声,徐永清,丁自海,等.经皮椎板关节突螺钉固定的应用解剖和影像学研究[J].中国矫形外科杂志,2006,14(5):351-352.
    [46]Sasso RC,Best NM,Potts EA.Percutaneous computer-assisted translaminar facet screw:an initial human cadaveric study[J].Spine,2005,5(5):515-9.
    [47]Phillips FM,Ho E,Cunningham BW.Radiographic criteria for placement of translaminar facet screws[J].Spine,2004,4(4):465-7.
    [48]Jang JS,Lee SH,Lim SR.Guide device for percutaneous placement of translaminar facet screws after anterior lumbar interbody fusion.Technical note[J].Neurosurg,2003,98(1 Suppl):100-3.
    [49]Lieberman IH,Togawa D,Kayanja MM,et al.Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement:Part Ⅰ-Technical development and a test case result[J].Neurosurgery,2006,59(3):641-50,discussion 641-50.
    [50]Togawa D,Kayanja MM,Reinhardt MK,et al.Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement:part 2-Evaluation of system accuracy[J].Neurosurgery,2007,60(2 Suppl 1):ONS 129-39,discussion ONS 139.
    [51]Kang HY,Lee SH,Jeon SH,et al.Computed tomography-guided percutaneous facet screw fixation in the lumbar spine.Technical note[J].Neurosurg Spine,2007,7(1):95-8.
    [52]Guyer DW,Yuan HA,Werner FW,et al.Biomechanical comparison of seven internal fixation devices for the lumbosacral junction [J]. Spine, 1987, 12(6):569-73.
    [53] Heggeness MH, Esses SI. Translaminar facet joint screw fixation for lumbar and lumbosacral fusion. A clinical and biomechanical study [J]. Spine, 1991,16(6suppl):S266-9.
    [54] Kornblatt MD, Casey MP, Jacobs RR. Internal fixation in lumbosacral spine fusion. A biomechanical and clinical study [J]. Clin Orthop, 1986, (203): 141 -50.
    [55] Burton D, McIff T, Fox T, et al. Biomechanical analysis of posterior fixation techniques in a 360 degrees arthrodesis model [J]. Spine, 2005, 30(24): 2765-71.
    [56] Vanden Berghe L, Mehdian H, Lee AJ, et al. Stability of the lumbar spine and method of instrumentation [J]. Acta Orthop Belg, 1993, 59(2):175-80.
    [57] Ferrara LA, Secor JL, Jin BH, et al. A biomechanical comparison of facet screw fixation and pedicle screw fixation: effect of short term and long-term repetitive cycling [J]. Spine, 2003,28 (12):226-34.
    
    [58] Phillips FM, Cunningham B, Carandang G, et al. Effect of supplemental trans-laminar facet screw fixation on the stability of stand-alone anterior lumbar interbody fusion cages under physiologic compressive preloads [J]. Spine, 2004, 29(16):1731-6.
    [59] Beaubien BP, Mehbod AA, Kallemeier PM, et al. Posterior augmentation of an anterior lumbar interbody fusion: minimally invasive fixation versus pedicle screws in vitro. Spine, 2004, 29(19):E406-12.
    [60] Lowe TG, Tahernia AD. Unilateral transforaminal posterior lumbar interbody fusion. Clin Orthop , 2002,394:64-72.
    [61] Harris BM, Hilibrand AS, Savas PE, et al. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine [J]. Spine. 2004, 29(4):E65-70.
    [62] Slucky AV, Beodke DS, Bachus KN, et al. Less invasive posterior fixation method following transforaminal lumbar interbody fusion: a biomechanical analysis [J]. Spine, 2006,6(1):78-85.
    [63] Schleicher P, Beth P, Ottenbacher A, et al. Biomechanical evaluation of different asymmetrical posterior stabilization methods for minimally invasive transforaminal lumbar interbody fusion [J]. Neurosurg Spine, 2008, 9(4):363- 71.