有限元法模拟特发性脊柱侧凸后路矫形及内固定应力分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究应用CAE (Computer aid engineering)软件建立了腰椎运动节段的有限元模型,通过3组模型各种工况结果的对比,探索出最佳建模方案;运用最佳建模方案建立了6例Lenkel型特发性脊柱侧凸有限元模型,并对模型有效性进行了验证;在证实仿真有效的6例有限元模型上模拟了后路侧凸矫形脊柱,并对每一椎弓根螺钉应力分布进行了测算;通过对椎弓根应力分布分析推算出“关键椎”节段,二次建模后模拟了“关键椎”置钉方案的后路矫形,并与实际手术结果进行了对比研究。
     第一章有限元单元类型和局部形态对脊柱模型生物力学仿真度的影响
     目的应用CAE软件建立了3组L4-5运动节段三维有限元模型,通过各种工况模拟探索较优的建模方式。
     方法一例Lenkel型特发性脊柱侧凸患者作为研究对象,取其L4-5节段CT图像,以Dicom格式输入Mimics10.01,建立包括椎间盘、所有附属韧带在内的腰椎运动单元(FSU, Function spinal unit)。在此基础上作前屈、后伸、扭转、侧弯、压缩以及拉伸等工况模拟,所得结果与经典体外实验数据对比,分析得出最佳建模方式。
     结果成功建立3组L4-5脊柱FSU,每组有限元模型包括两个椎体、一个椎间盘以及所有韧带组织。分析各种工况模拟位移云图、力-位移曲线和力矩-角度曲线发现模型A与体外实验数据吻合度最高。
     结论分别采用四面体单元构建椎体和六面体单元构建椎间盘结构的有限元模型仿真模拟人体脊柱运动单元生物力学特性较佳,此方法可以用于后续脊柱侧凸有限元模型的建立。
     第二章青少年特发性脊柱侧凸有限元模型的建立和有效性验证
     目的建立青少年特发性脊柱侧凸有限元模型并对其有效性进行验证
     方法选择1例青少年特发性脊柱侧凸志愿者作为研究对象。仰卧位下进行CT从C7至尾骨的连续扫描,获得Dicom格式CT图像616张。导入逆向工程软件MIMICS10.01,建立完整的有限元几何模型。经过几何清理、网格划分、材料赋值生成三维有限元模型。分别进行分段加载验证和整体活动验证。分段验证:取T10-T11, T11-L1以及L1-S1三个节段,分别参照体外实验对模型进行加载模拟,并与体外实验结果比对验证模型的有效性;整体验证:模拟悬吊位、仰卧左右Bending位、支点加压位,测量测量各椎体质心与骶骨中垂线的距离,并与X线片测量结果对照以验证模型有效性。
     结果建立了完整的LenkelBN型特发性脊柱侧凸有限元模型。共采用5种单元类型。14种材料属性,共划分节点214429个,建立Combin单元7778个;Shell单元259226个;四面体单元749910个,六面体单元16306个。分段加载验证:10-T11,T11-L1以及L1-S1三个节段与体外实验结果基本吻合。整体验证:悬吊位、左右Bending位以及支点加压位有限元模型与X线片侧凸角度测量值误差率为8.1%。有限元模型模拟悬吊位、左右Bending位以及支点加压位与X线片椎体质心与CSVL距离无显著性差异。
     结论从有限元模型的几何外形、分段验证试验、悬吊位、左右Bending位以及支点加压位等整体验证实验,验证了建模的可靠性和有效性。为后续建立多例脊柱侧凸有限元模型及矫形模拟奠定了基础。
     第三章有限元法模拟脊柱后路矫形技术及椎弓根螺钉应力分布研究
     目的利用前述方法建立6例青少年脊柱侧凸有限元模型,模拟后路矫形手术并测算椎弓根钉应力分布。
     方法采用第二章所用方法建立了6例Lenke1型青少年特发性脊柱侧凸有限元模型。应用建立的有限元模型进行脊柱侧凸全节段置钉方案后路矫形模拟,并分析了椎弓根螺钉应力分布情况。
     结果6例模型均顺利完成了模拟矫形。上固端定椎均为T4,2例以L3为下端固定椎,3例以L2为下固定椎,1例以L1为下固定椎。冠状面上胸弯平均Cobb角由22.8°矫正至8°;主胸弯由41.6°矫正至10°;腰弯由28.5°矫正至8.5°,平均矫形率分别为:64.9%、75.9%、70.1%°矫形术后胸椎后凸由平均19.7°增大21.8°;术前腰椎前凸角由平均34.3°减小32.8°。矫形后椎弓螺根应力分布特点为:两端椎区域和顶椎区域螺钉应力最大,顶椎区域凸侧螺钉应力较凹侧大
     结论有限元法能有效模拟脊柱侧凸后路矫形手术过程。通过分析矫形椎弓根螺钉应力分布特点,为下一步探索选择性置钉方案提供了有效途径。
     第四章有限元法应力分析选择关键椎在脊柱侧凸矫形手术中的应用
     目的探讨有限元法应力分析选择关键椎置钉方案在脊柱侧凸矫形策略制定的有效性。
     方法通过分析全节段置钉方案矫形后椎弓根螺钉应力分布特点,将表面应力最大值小于1Gpa的椎弓根螺钉予以去除后二次建模,重新建立6例“关键椎”置钉的侧凸有限元模型并重新模拟前述后路矫形过程。测量“全节段”置钉方案与“关键椎”置钉方案的侧凸参数。比较“关键椎”置钉方案与实际手术置钉方案之间差异。比较两种有限元模拟矫形效果与实际手术效果。
     结果“关键椎”置钉方案矫形效果与“全节段置钉”矫形效果无明显差异。“关键椎”置钉方案矫形效果与实际术后矫形效果对比同样无明显差异。有限元模型应力分析得出的“关键椎”置钉方案内固定使用总体数量少于实际手术方案。
     结论有限元法分析选择关键椎置钉方案辅助制定脊柱侧凸矫形策略是一种新型有效的方法,可为外科医生制定和优化脊柱侧凸矫形策略提供指导意见。
In this study, computer aid engineering (CAE) soft was used to establish finite element model(FEM) of the lumbar function spinal unite (FSU), and compared three different models under several behaviour of the FSU to find out the best modeling method. Then use the optimized modeling method to construct six FEMs of the adolescent idiopathic scoliosis (AIS) and validated the final model. On the basis, we simulated the main steps of the posterior correction surgery using the FEMs and An inverse method based on Finite Element Analysis was used to apply forces to the implant screw model such that it was deformed the same after surgery. Then compared the effective of the Key-segmental instrumentation techniques and all segmental pedicle screws strategy.
     Chapter One Influence of Element Type and Geometry on the Biomechanical Behavior of a Functional Spinal Unit
     Objective The CAE soft was used to construct3a functional spinal unit (FSU) L4-L5using a specimen-specific finite element model. The aim of this study was to determine the better element type for each anatomical structure.
     Methods A female adolescent idiopathic scoliosis patient was includes as object of the study. CT imagines of the L4-L5were imported into MIMICS10.01to create the FEMs.3different types of FEMS was performed using reported in vitro data on the mechanical response of an intact lumbar functional unit and its successive reduced stages after the dissection of ligaments, facet joints, vertebral arch and nucleus pulposus. The loading conditions in the study were pure moments in flexion, extension, lateral bending and axial rotation.
     Results An intact lumbar functional unit was built successfully in three different modeling methods which named model A, B and C. All of the models were subjected to pure moments and forces in the three anatomical planes. For each of the loading scenarios, with and without vertical and follower preload, the presented model A provides results in closest agreement with the most accepted literature.
     Conclusions Tetrahedron element to build the vertebrae and hexahedral element to create the intervertebral disk was the best modeling method.
     Chapter Two Establishment and Validation Study of Finite Element Model of Adolescent Idiopathic Scoliosis
     Objective To build three-dimensional finite element model of adolescent idiopathic scoliosis and to validate the model.
     Methods In this study, a patient with adolescent idiopathic scoliosis was included as a volunteer. CT transverse scanning was done in supine position from C7to caudal end, and obtained616CT Dicom images. All CT images were imported into Mimics10.01to form qualified three-dimensional geometry model after geometry clean, initial division of shell, mesh partition and assignment of material parameters. To verify the validity of the model, the view of the model ande linieal X-ray films were being compared, and spinal segments (TI0-T11, T11-L1and L1-S1) extracted from the whole finite element model were constrained and loaded respectively referring to historical specimen biomechanical in vitro studies. Compare the results of simulation of the model with the hanging posterior-anterior X-ray, lateral flexion X-ray and fulcrum bending X-ray. Comparing the vertical distance between each barycenter and CSVL of model and X-ray for biomechanical validation.
     Results A finite element model of Lenkel1BN adolescent idiopathic scoliosis was built, using five mesh types and14kinds of material parameters, in consist of214429nodes,7778combin element,259226shell elements,749910tetrahedron elements and hexahedron elements. The segmental simulations were similar to their references respectively. Though the parameter comparing, we got the individual FEM whose simulation results had no significant statistical difference to the dates of clinical radiographic film (P>0.05).
     Conclusions The finite element model was built and well validated by geometry appearance, segmental validation and hanging test, lateral bending test, and fulcrum bending test validation which provided an effective way for further biomechanical research.
     Chapter Three Finite Element Model Simulation of Posterior Surgical Correction of Adolescent Idiopathic Scoliosis and Analysis of Corrective Force of the Implant
     Objective Using the method stated above to create six FEMs of adolescent idiopathic scoliosis, and to simulate posterior correction surgery and investigate the corrective force of the pedicle screw.
     Methods Six FEMs were built to simulate the posterior correction surgery with all-segmental instrumentation strategy. Then the corrective force of each screw was analysised by CAE soft.
     Results Six FEMs successfully completed the simulation of posterior correction surgery. The upper instrumentation vertebra was selected to T4in all of the FEMs, and the lowest instrumentation vertebra was to L3in2models, L2in3models and L1in one model. The mean Cobb's angles of proximal curve, main thoracic curve, lumbar cure, T5-12sagittal kyphosis and L1-5lordosis pro-correction and post-correction simulation were22.8°to8,41.6°to10°,28.5°to8.5°,19.7°to21.8°,34.3°to32.8°, respectively. The corrective force located at the convex and the end instrumentation segment were significant greater than the rest concave area.
     Conclusions The FEMs can effectively simulate the correction procedure and provide a new way to optimize the fixation strategy by corrective force analysis.
     Chapter Four Application of Finite element analysis of corrective force in the determination of Key-segment for Surgical Correction of Adolescent Idiopathic Scoliosis
     Objective To investigate the effective of finite element analysis of corrective force in the determination of Key-segment for surgical correction of adolescent idiopathic scoliosis.
     Methods Wipe out the pedicle screw which force under lGpa thought the finite element analysis and recreate six FEMs with Key-segment fixation. Simulated the posterior surgical correction again with the secondary finite element models. Measured the Cobb angles and compare the parameter with postoperative X-ray.
     Results The correction rate of the Key-segment fixation strategy has no significant difference with the all-segment instrumentation strategy, and there was no significant difference when compare to the practical postoperative X-ray. The mount of implants were less than the clinical date.
     Conclusions The finite element analysis is an effective method in determination of Key-segmental instrumentation. In the future, it can offer an essential guide to assist surgeons during preoperative planning of surgical instrumentation in adolescent idiopathic scoliosis.
引文
[1]Brekelmans WA, Poort HW, Slooff TJ. A new method to analyse the mechanical behaviour of skeletal parts[J]. Acta Orthop Scand.1972; 43(5):301-17.
    [2]Rybicki EF, Simonen FA, Weis EB Jr. On the mathematical analysis of stress in the human femur[J]. J Biomech 1972; 5(2):203-15.
    [3]Belytschko T, Kulak RF, Schultz AB, et al. Finite element stress analysis of an intervertebral disc[J]. J Biomech.1974; 7(3):277-85.
    [4]Andriacchi TP, Schultz AB, Belytschko TB, et al. Milwaukee brace correction of idiopathic scoliosis. A biomechanical analysis and a restrospective study[J]. J Bone Joint Surg Am.1976 58(6):806-15.
    [5]Viviani GR, Ghista DN, Lozada PJ, et al. Biomechanical analysis and simulation of scoliosis surgical correction[J]. Clin Orthop Relat Res.1986; 208:40-7.
    [6]Ghista DN, Kobayashi AS, Davids N. Analyses of some biomechanical structures and flows by computer-based finite element method[J]. Comput Biol Med.1975; 5(2):119-161.
    [7]Nissan M, Gilad I. Dimensions of human lumbar vertebrae in the sagittal plane[J]. J Biomech.1986; 19(9):753-758.
    [8]Ueno K, Liu YK. A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion[J]. J Biomech Eng.1987; 109(3):200-9.
    [9]Ghista DN, Viviani GR, Subbaraj K, et al. Biomechanical basis of optimal scoliosis surgical correction[J]. J Biomech.1988; 21(2):77-88.
    [10]Mizrahi J, Silva MJ, Hayes WC. Finite element stress analysis of simulated metastatic lesions in the lumbar vertebral body[J]. J Biomed Eng.1992; 14(6): 467-75.
    [11]Aubin CE, Dansereau J, Labelle H. Biomechanical simulation of the effect of the Boston brace on a model of the scoliotic spine and thorax[J]. Ann Chir.1993; 47(9):881-7.
    [12]Noone G, Mazumdar J, Kothiyal KP, et al. Biomechanical simulations of scoliotic spinal deformity and correction[J]. Australas Phys Eng Sci Med.1993; 16(2): 63-74.
    [13]Ng HW, Teo EC. Nonlinear finite-element analysis of the lower cervical spine (C4-C6) under axial loading[J]. J Spinal Disord Tech.2001; 14(3):201-10.
    [14]Perie D, Sales De Gauzy J, Hobatho MC. Biomechanical evaluation of Cheneau-Toulouse-Munster brace in the treatment of scoliosis using optimisation approach and finite element method[J]. Med Biol Eng Comput.2002; 40(3): 296-301.
    [15]Brolin K, Halldin P. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics[J]. Spine.2004; 29(4): 376-85.
    [16]Carrier J, Aubin CE, Villemure I, et al. Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis[J]. Med Biol Eng Comput.2004; 42(4):541-8.
    [17]Stokes IA. Analysis and simulation of progressive adolescent scoliosis by biomechanical growth modulation[J]. Eur Spine J.2007; 16(10):1621-8.
    [18]Crawford NR, Arnett JD, Butters JA, et al. Biomechanics of a posture-controlling cervical artificial disc:mechanical, in vitro, and finite-element analysis[J]. Neurosurg Focus.2010; 28(6):E11.
    [19]Abolaeha OA, Weber J, Ross LT. Finite element simulation of a scoliotic spine with periodic adjustments of an attached growing rod[J]. Conf Proc IEEE Eng Med Biol Soc.2012; Aug:5781-5.
    [20]Desbiens-Blais F, Clin J, Parent S, et al. New brace design combining CAD/CAM and biomechanical simulation for the treatment of adolescent idiopathic scoliosis[J]. Clin Biomech (Bristol, Avon).2012; 27(10):999-1005.
    [1]Vedantam R, Lenke LG, Bridwell KH, et al. A prospective evaluation of pulmonary function in patients with adolescent idiopathic scoliosis relative to the surgical approach used for spinal arthrodesis[J]. Spine.2000; 25(1):82-90.
    [2]Vedantam R, Lenke LG, Bridwell KH, et al. Comparison of push-prone and lateral-bending radiographs for predicting postoperative coronal alignment in thoracolumbar and lumbar scoliotic curves[J]. Spine.2000; 25(1):76-81.
    [3]Lamarre ME, Parent S, Labelle H, et al. Assessment of spinal flexibility in adolescent idiopathic scoliosis:suspension versus side-bending radiography[J]. Spine.2009; 34(6):591-7.
    [4]Troke M, Moore AP, Maillardet FJ, et al. A normative database of lumbar spine ranges of motion[J]. Man Ther.2005; 10(3):198-206.
    [5]Kondratek M, Krauss J, Stiller C, et al. Normative values for active lumbar range of motion in children[J]. Pediatr Phys Ther.2007; 19(3):236-44.
    [6]Carrier J, Aubin CE, Villemure I, et al. Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis[J]. Med Biol Eng Comput.2004; 42(4):541-8.
    [7]Villemure I, Aubin CE, Dansereau J, et al. Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation[J]. J Biomech Eng.2002; 124(6):784-90.
    [8]Stokes IA. Analysis and simulation of progressive adolescent scoliosis by biomechanical growth modulation[J]. Eur Spine J.2007; 16(10):1621-8.
    [9]Schmidt H, Heuer F, Wilke HJ. Interaction between finite helical axes and facet joint forces under combined loading[J].Spine.2008; 33(25):2741-8.
    [10]Ruberte LM, Natarajan RN, Andersson GB. Influence of single-level lumbar degenerative disc disease on the behaviour of the adjacent segments:a finite element model study[J]. J Biomech.2009; 42(3):341-8.
    [11]Chung SK, Kim YE, Wang KC. Biomechanical effect of constraint in lumbar total disc replacement:a study with finite element analysis[J]. Spine (Phila Pa 1976). 2009; 34(12):1281-6.
    [12]Schmidt H, Heuer F, Drumm J, et al. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment[J]. Clin Biomech(Bristol, Avon).2007; 22(4):377-84.
    [13]Brolin K, Halldin P. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics[J]. Spine.2004; 29(4): 376-85.
    [14]Palomar AP, Calvo B, Doblare M. Anaccurate finite element model of the cervical spine under quasi-static loading[J]. J Biomech.2008; 41(3):523-31.
    [15]Heuer F, Schmidt H, Klezl Z, et al. Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle[J]. J Biomech. 2007; 40(2):271-280.
    [16]Weisse B, Aiyangar AK, Affolter Ch, et al. Determination of the translational and rotational stiffnesses of an L4-L5 functional spinal unit using a specimen-specific finite element model[J]. J Mech Behav Biomed Mater.2012; 13:45-61.
    [17]Tibrewal SB, Pearcy MJ. Lumbar intervertebral disc heights in normal subjects and patients with disc herniation[J]. Spine.1985; 10(5):452-454.
    [18]Wolf A, Shoham M, Michael S, et al. Morphometric study of the human lumbar spine for operation-workspace specifications[J]. Spine.2001; 26(22):2472-7.
    [19]Zhou SH, McCarthy ID, McGregor AH, et al. Geometrical dimensions of the lower lumbar vertebrae-analysis of data from digitized ct images[J]. Eur Spine J. 2000; 9(3):242-248.
    [20]Panjabi MM, Oxland TR, Yamamoto I, et al. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves[J]. J Bone Joint Surg Am.1994; 76(3):413-24.
    [21]Amonoo-Kuofi HS. Morphometric changes in the heights and anteroposterior diameters of the lumbar intervertebral discs with age[J]. J Anat 1991; 175: 159-168.
    [22]Nissan M, Gilad I. Dimensions of human lumbar vertebrae in the sagittal plane[J]. J Biomech.1986; 19(9):753-758.
    [23]Rohlmann A, Nabil Boustani H, Bergmann G, et al. Effect of a pedicle-screw-based motion preservation system on lumbar spine biomechanics:a probabilistic finite element study with subsequent sensitivity analysis[J]. J Biomech.2010; 43(15):2963-9.
    [24]Yamamoto I, Panjabi MM, Crisco T, et al. Three-dimensional movements of the whole lumbar spine and lumbosacral joint[J]. Spine.1989; 14(11):1256-60.
    [25]Niemeyer F, Wilke HJ, Schmidt H. Geometry strongly influences the response of numerical models of the lumbar spine--a probabilistic finite element analysis[J]. J Biomech.2012; 45(8):1414-23.
    [26]Cripton PA, Bruehlmann SB, Orr T, et al. In vitro axial preload application during spine flexibility testing:towards reduced apparatus-related artefacts[J]. J Biomech. 2000; 33(12):1559-1568.
    [27]Panjabi MM, Krag MH, White AA 3rd, et al. Effects of preload on load displacement curves of the lumbar spine[J]. Orthop Clin North Am.1977; 8(1): 181-92.
    [28]Patwardhan AG, Havey RM, Meade KP, et al. A follower load increases the load-carrying capacity of the lumbar spine in compression [J]. Spine.1999; 24(10): 1003-9.
    [29]Lin HS, Liu YK, Adams KH. Mechanical response of the lumbar intervertebral joint under physiological (complex) loading[J]. J Bone Joint Surg Am.1978; 60(1):41-55.
    [30]Lin HS, Liu YK, Ray G, et al. Systems identification for material properties of the intervertebral joint[J]. J Biomech.1978; 11(2):1-14.
    [31]Shirazi-Adl SA, Shrivastava SC, Ahmed AM. Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study[J]. Spine.1984; 9(2):120-34.
    [32]Spilker RL, Jakobs DM, Schultz AB. Material constants for a finite element model of the intervertebral disk with a fiber composite annulus[J]. J Biomech Eng. 1986; 108(1):1-11.
    [33]Rao AA, Dumas GA. Influence of material properties on the mechanical behaviour of the L5-S1 intervertebral disc in compression:a nonlinear finite element study[J]. J Biomed Eng.1991; 13(2):139-51.
    [34]Goel VK, Kim YE, Lim TH, et al. An analytical investigation of the mechanics of spinal instrumentation[J]. Spine.1988; 13(9):1003-11.
    [35]Hakim NS, King AI. A three dimensional finite element dynamic response analysis of a vertebra with experimental verification[J]. J Biomech.1979; 12(4): 277-92.
    [36]Ueno K, Liu YK. A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion[J]. J Biomech Eng.1987; 109(3):200-9.
    [37]Whyne CM, Hu SS, Klisch S, et al. Effect of the pedicle and posterior arch on vertebral body strength predictions in finite element modeling[J]. Spine.1998; 23(8):899-907.
    [38]Mizrahi J, Silva MJ, Hayes WC. Finite element stress analysis of simulated metastatic lesions in the lumbar vertebral body[J]. J Biomed Eng.1992; 14(6): 467-75.
    [39]Fagan MJ, Dobson CA, Ganney PS, et al. Finite Element Analysis of Simulations of Cancellous Bone Resorption[J]. Comput Methods Biomech Biomed Engin. 1999; 2(4):257-270.
    [1]Viviani GR, Ghista DN, Lozada PJ, et al. Biomechanical analysis and simulation of scoliosis surgical correction[J]. Clin Orthop Relat Res.1986; 208:40-7.
    [2]Azegami H, Murachi S, Kitoh J, et al. Etiology of idiopathic scoliosis. Computational study[J]. Clin Orthop Relat Res.1998; 357:229-36.
    [3]Goto M, Kawakami N, Azegami H, et al. Buckling and bone modeling as factors in the development of idiopathic scoliosis[J]. Spine.2003; 28(4):364-70.
    [4]戴立扬,成培来.有限元方法在腰椎生物力学研究中的应用[J].国外医学:生物医学工程分册.1989;12(2):63-67.
    [5]胡明涛,韦兴,赵红平.后路椎弓根螺钉系统治疗特发性腰椎侧凸的有限元分析[J].医用生物力学.2007;22(4):367-372.
    [6]汪正宇,刘祖德,王哲,等.青少年特发性脊柱侧凸有限元模型的建立及其意义[J].生物医学工程学杂志.2008;25(5):1084-1088.
    [7]White AA. Kinematics of the normal spine as related to scoliosis[J]. J Biomech. 1971; 4(5):405-11.
    [8]Brekelmans WA, Poort HW, Slooff TJ. A new method to analyse the mechanical behaviour of skeletal parts[J]. Acta Orthop Scand.1972; 43(5):301-17.
    [9]Rybicki EF, Simonen FA, Weis EB Jr. On the mathematical analysis of stress in the human femur[J]. J Biomech 1972; 5(2):203-15.
    [10]Goldstein LA. The surgical treatment of idiopathic scoliosis[J]. Clin Orthop Relat Res.1973; 93:131-57.
    [11]钟贵彬,臧危平,李新锋,等.轴向负载对特发性脊柱侧弯的影响机制研究[J].中华小儿外科杂志.2010;20(6):435-439.
    [12]汪学松,吴志宏,孙伟方,等.PUMCⅡd2型青少年特发性脊柱侧凸选择性融合的有限元分析[J].中华医学杂志.2010;90(15):1039-1043.
    [13]聂文忠,张希安,王成焘.矢状面内人体屈伸运动的生物力学研究[J].上海交通大学学报.2009(7):1027-1031.
    [14]聂文忠,叶铭,王成焘.脊柱侧凸个性化支具的生物力学研究[J].生物医学工程学杂志.2009;26(2):313-317.
    [15]刘小丹,王成熹,王冬梅.人体脊柱的有限元建模及其在脊柱侧凸矫正中的应用[J].医疗卫生装备.2009;30(2):1-3.
    [16]戴力扬,屠开元,徐印坎.腰椎椎体应力分布的三维有限元分析[J].中国临床解剖学杂志.1991;9(1):46-48.
    [17]Spilker RL, Jakobs DM, Schultz AB. Material constants for a finite element model of the intervertebral disk with a fiber composite annulus[J]. J Biomech Eng. 1986; 108(1):1-11.
    [18]Wang X, Aubin CE, Labelle H, et al. Biomechanical analysis of corrective forces in spinal instrumentation for scoliosis treatment[J]. Spine.2012; 37(24): E1479-87.
    [19]Niemeyer F, Wilke HJ, Schmidt H. Geometry strongly influences the response of numerical models of the lumbar spine--a probabilistic finite element analysis[J]. J Biomech.2012; 45(8):1414-23.
    [20]Stokes IA, Gardner-Morse M. Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis[J]. Spine.1993; 18(16):2457-64.
    [21]Lin HS, Liu YK, Adams KH. Mechanical response of the lumbar intervertebral joint under physiological (complex) loading[J]. J Bone Joint Surg Am.1978; 60(1):41-55.
    [22]Lin HS, Liu YK, Ray G, et al. Systems identification for material properties of the intervertebral joint[J]. J Biomech.1978; 11(2):1-14.
    [23]Hakim NS, King AI. A three dimensional finite element dynamic response analysis of a vertebra with experimental verification[J]. J Biomech.1979; 12(4): 277-92.
    [24]King HA, Moe JH, Bradford DS, et al. The selection of fusion levels in thoracic idiopathic scoliosis[J]. J Bone Joint Surg Am.1983; 65(9):1302-13.
    [25]Gignac D, Aubin CE, Dansereau J, et al. Optimization method for 3D bracing correction of scoliosis using a finite element model[J]. Eur Spine J.2000; 9(3): 185-90.
    [26]Grealou L, Aubin CE, Sevastik JA, et al. Simulations of rib cage surgery for the management of scoliotic deformities[J]. Stud Health Technol Inform.2002; 88: 345-9.
    [27]Grealou L, Aubin CE, Labelle H. Rib cage surgery for the treatment of scoliosis: a biomechanical study of correction mechanisms[J]. J Orthop Res.2002; 20(5): 1121-8.
    [28]Desbiens-Blais F, Clin J, Parent S, et al. New brace design combining CAD/CAM and biomechanical simulation for the treatment of adolescent idiopathic scoliosis[J]. Clin Biomech (Bristol, Avon).2012; 27(10):999-1005.
    [29]Cahill PJ, Wang W, Asghar J, et al. The use of a transition rod may prevent proximal junctional kyphosis in the thoracic spine after scoliosis surgery:a finite element analysis[J]. Spine.2012; 37(12):E687-95.
    [30]Abolaeha OA, Weber J, Ross LT. Finite element simulation of a scoliotic spine with periodic adjustments of an attached growing rod[J]. Conf Proc IEEE Eng Med Biol Soc.2012; Aug:5781-5.
    [31]Wang X, Aubin CE, Crandall D, Labelle H. Biomechanical modeling and analysis of a direct incremental segmental translation system for the instrumentation of scoliotic deformities[J]. Clin Biomech (Bristol, Avon).2011; 26(6):548-55.
    [32]Wang X, Aubin CE, Crandall D, et al. Biomechanical comparison of force levels in spinal instrumentation using monoaxial versus multi degree of freedom postloading pedicle screws[J]. Spine.2011; 36(2):E95-E104.
    [33]Suk SI. Pedicle screw instrumentation for adolescent idiopathic scoliosis:the insertion technique, the fusion levels and direct vertebral rotation[J]. Clin Orthop Surg.2011; 3(2):89-100.
    [34]Li XF, Liu ZD, Dai LY, et al. Dynamic response of the idiopathic scoliotic spine to axial cyclic loads[J]. Spine.2011; 36(7):521-8.
    [35]Lee SH, Im YJ, Kim KT, et al. Comparison of cervical spine biomechanics after fixed-and mobile-core artificial disc replacement:a finite element analysis[J]. Spine.2011; 36(9):700-8.
    [36]Hsu CC, Lin J, Chao CK. Comparison of multiple linear regression and artificial neural network in developing the objective functions of the orthopaedic screws[J]. Comput Methods Programs Biomed.2011; 104(3):341-8.
    [37]Aubin CE, Descrimes JL, Dansereau J, et al. Geometrical modeling of the spine and the thorax for the biomechanical analysis of scoliotic deformities using the finite element method[J]. Ann Chir.1995; 49(8):749-61.
    [38]Aubin CE, Dansereau J, de Guise JA, et al. Rib cage-spine coupling patterns involved in brace treatment of adolescent idiopathic scoliosis[J]. Spine.1997; 22(6):629-35.
    [39]Aubin CE, Labelle H, Ciolofan OC. Variability of spinal instrumentation configurations in adolescent idiopathic scoliosis[J]. Eur Spine J.2007; 16:57-64.
    [40]Aubin CE, Labelle H, Chevrefils C, et al. Preoperative planning simulator for spinal deformity surgeries[J]. Spine.2008; 33(20):2143-52.
    [41]Carrier J, Aubin CE, Villemure I, et al. Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis[J]. Med Biol Eng Comput.2004; 42(4):541-8.
    [42]Clin J, Aubin CE, Labelle H. Virtual prototyping of a brace design for the correction of scoliotic deformities[J]. Med Biol Eng Comput.2007; 45(5): 467-73.
    [43]Clin J, Aubin CE, Sangole A, et al. Correlation between immediate in-brace correction and biomechanical effectiveness of brace treatment in adolescent idiopathic scoliosis[J]. Spine.2010; 35(18):1706-13.
    [44]Clin J, Aubin CE, Parent S, et al. Biomechanical modeling of brace treatment of scoliosis:effects of gravitational loads[J]. Med Biol Eng Comput.2011; 49(7): 743-53.
    [45]Aubin CE, Dansereau J, Labelle H. Biomechanical simulation of the effect of the Boston brace on a model of the scoliotic spine and thorax [J]. Ann Chir.1993; 47(9):881-7.
    [46]Wang X, Aubin CE, Robitaille I, et al. Biomechanical comparison of alternative densities of pedicle screws for the treatment of adolescent idiopathic scoliosis[J]. Eur Spine J.2012; 21(6):1082-90.
    [47]Perrault FD, Aubin CE, Wang X, et al. Biomechanical analysis of forces sustained by iliac screws in spinal instrumentation for deformity treatment:preliminary results[J]. Stud Health Technol Inform.2012; 176:307-10.
    [48]Martino J, Aubin CE, Labelle H, et al. Biomechanical analysis of vertebral derotation techniques for the surgical correction of thoracic scoliosis. A numerical study through case simulations and a sensitivity analysis[J]. Spine.2013; 38(2): E73-83.
    [49]Pasha S, Aubin CE, Labelle H, et al. Biomechanical analysis of spino-pelvic parameters in adolescent idiopathic scoliosis after spinal instrumentation and fusion:a case study[J]. Stud Health Technol Inform.2012; 176:125-8.
    [50]Rohlmann A, Zander T, Rao M, et al. Applying a follower load delivers realistic results for simulating standing[J]. J Biomech.2009; 42(10):1520-6.
    [51]Dumas R, Lafage V, Lafon Y, et al. Finite element simulation of spinal deformities correction by in situ contouring technique[J]. Comput Methods Biomech Biomed Engin.2005; 8(5):331-7.
    [52]Desroches G, Aubin CE, Sucato DJ, et al. Simulation of an anterior spine instrumentation in adolescent idiopathic scoliosis using a flexible multi-body model[J]. Med Biol Eng Comput.2007; 45(8):759-68.
    [1]Roach JW. Adolescent idiopathic scoliosis[J]. Orthop Clin North Am.1999; 30(3): 353-65.
    [2]Miller H. Cause and natural history of adolescent idiopathic scoliosis[J]. Orthop Clin North Am.1999; 30(3):343-52.
    [3]Lenke LG, Dobbs MB. Management of juvenile idiopathic scoliosis[J]. J Bone Joint Surg Am.2007; 89(Suppl 1):55-63.
    [4]Cotrel Y, Dubousset J. A new technic for segmental spinal osteosynthesis using the posterior approach[J]. Rev Chir Orthop Reparatrice Appar Mot.1984; 70(6): 489-94.
    [5]Chao CK, Hsu CC, Wang JL, et al. Increasing bending strength of tibial locking screws:mechanical tests and finite element analyses[J]. Clin Biomech (Bristol, Avon).200722(1):59-66.
    [6]Chao CK, Hsu CC, Wang JL, et al. Increasing bending strength and pullout strength in conical pedicle screws:biomechanical tests and finite element analyses[J]. J Spinal Disord Tech.2008; 21(2):130-8.
    [7]Lenke LG, Kuklo TR, Ondra S, et al. Rationale behind the current state-of-the-art treatment of scoliosis (in the pedicle screw era)[J]. Spine.2008; 33:1051-1054.
    [8]Wang X, Aubin CE, Labelle H, et al. Biomechanical analysis of corrective forces in spinal instrumentation for scoliosis treatment[J]. Spine.2012; 37(24): E1479-87.
    [9]Martino J, Aubin CE, Labelle H, et al. Biomechanical analysis of vertebral derotation techniques for the surgical correction of thoracic scoliosis. A numerical study through case simulations and a sensitivity analysis[J]. Spine.2013; 38(2): E73-83.
    [10]Helenius I, Remes V, Yrjonen T, et al. Harrington and Cotrel-Dubousset instrumentation in adolescent idiopathic scoliosis. Long-term functional and radiographic outcomes[J]. J Bone Joint Surg Am.2003; 85-A(12):2303-9.
    [11]Bridwell KH. Spinal instrumentation in the management of adolescent scoliosis[J]. Clin Orthop Relat Res.1997; 335:64-72.
    [12]Lou E, Hill D, Raso J, et al. Instrumented rod rotator system for spinal surgery[J]. Med Biol Eng Comput.2002; 40:376-379.
    [13]Parent S, Labelle H, Skalli W et al. Thoracic pedicle morphometry in vertebrae from scoliotic spines[J]. Spine.2004; 29:239-248.
    [14]Hsu CC, Chao CK, Wang JL, et al. Increase of pullout strength of spinal pedicle screws with conical core:biomechanical tests and finite element analyses[J]. J Orthop Res.2005; 23(4):788-94.
    [15]Remes V, Helenius I, Schlenzka D, et al. Cotrel-Dubousset (CD) or Universal Spine System (USS) instrumentation in adolescent idiopathic scoliosis (AIS): comparison of midterm clinical, functional, and radiologic outcomes[J]. Spine. 2004; 29(18):2024-30.
    [16]张国华,林建中,陈鸿昌,等.杠杆力矫正法治疗重度僵硬的脊柱侧凸畸形[J].中华骨科杂志.2007;27(1):43-48.
    [17]Suk SI, Kim JH, Cho KJ, et al. Is anterior release necessary in severe scoliosis treated by posterior segmental pedicle screw fixation?[J]. Eur Spine J.2007; 16(9):1359-65.
    [18]Suk SI, Kim WJ, Lee SM. Thoracic pedicle screw fixation in spinal deformities: are they really safe?[J]. Spine.2001; 26(18):2049-2057.
    [19]Vallespir GP, Flores JB, Trigueros IS. Vertebral coplanar alignment:a standardized technique for three dimensional correction in scoliosis surgery: technical description and preliminary results in Lenke type 1 curves[J]. Spine. 2008; 33(14):1588-1597.
    [20]Viviani GR, Ghista DN, Lozada PJ, et al. Biomechanical analysis and simulation of scoliosis surgical correction[J]. Clin Orthop Relat Res.1986; 208:40-7.
    [21]Stokes IA, Gardner-Morse M. Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis[J]. Spine.1993; 18(16):2457-64.
    [22]Perie D, Hobatho MC. In vivo determination of contact areas and pressure of the femorotibial joint using non-linear finite element analysis[J]. Clin Biomech (Bristol, Avon).1998; 13(6):394-402.
    [23]Aubin CE, Dansereau J, Labelle H. Biomechanical simulation of the effect of the Boston brace on a model of the scoliotic spine and thorax[J]. Ann Chir.1993; 47(9):881-7.
    [24]Aubin CE, Dansereau J, de Guise JA, et al. Rib cage-spine coupling patterns involved in brace treatment of adolescent idiopathic scoliosis[J]. Spine.1997; 22(6):629-35.
    [25]Lafage V, Gangnet N, Senegas J, et al. New interspinous implant evaluation using an in vitro biomechanical study combined with a finite-element analysis[J]. Spine. 2007; 32(16):1706-13.
    [26]Rohlmann A, Zander T, Burra NK, et al. Flexible non-fusion scoliosis correction systems reduce intervertebral rotation less than rigid implants and allow growth of the spine:a finite element analysis of different features of orthobiom[J]. Eur Spine J.2008; 17(2):217-23.
    [27]Rousseau MA, Bonnet X, Skalli W. Influence of the geometry of a ball-and-socket intervertebral prosthesis at the cervical spine:a finite element study[J]. Spine (Phila Pa 1976).2008; 33(1):E10-4.
    [28]]Wang X, Aubin CE, Crandall D, et al. Biomechanical comparison of force levels in spinal instrumentation using monoaxial versus multi degree of freedom postloading pedicle screws[J]. Spine.2011; 36(2):E95-E104.
    [29]Dumas R, Lafage V, Lafon Y, et al. Finite element simulation of spinal deformities correction by in situ contouring technique[J]. Comput Methods Biomech Biomed Engin.2005; 8(5):331-7.
    [30]Lafon Y, Steib JP, Skalli W. Intraoperative three dimensional correction during in situ contouring surgery by using a numerical model[J]. Spine.2010; 35(4):453-9.
    [31]刘小丹,王成熹,王冬梅.人体脊柱的有限元建模及其在脊柱侧凸矫正中的应用[J].医疗卫生装备.2009;30(2):1-3.
    [32]戴力扬,屠开元,徐印坎.腰椎椎体应力分布的三维有限元分析[J].中国临床解剖学杂志.1991;9(1):46-48.
    [33]胡明涛,韦兴,赵红平.后路椎弓根螺钉系统治疗特发性腰椎侧凸的有限元分析[J].医用生物力学.2007;22(4):367-372.
    [34]Li M, Shen Y, Fang X, et al. Coronal and sagittal plane correction in patients with Lenke 1 adolescent idiopathic scoliosis:a comparison of consecutive versus interval pedicle screw placement[J]. J Spinal Disord Tech.2009; 22:251-256.
    [35]Lonner BS, Auerbach JD, Boachie-Adjei O, et al. Treatment of thoracic scoliosis: are monoaxial thoracic pedicle screws the best form of fixation for correction?[J]. Spine.2009; 34:845-851.
    [36]Salmingo R, Tadano S, Fujisaki K, et al. Corrective force analysis for scoliosis from implant rod deformation[J]. Clin Biomech (Bristol, Avon).2012; 27(6): 545-50.
    [37]Seller K, Wahl D, Wild A, et al. Pullout strength of anterior spinal instrumentation: a product comparison of seven screws in calf vertebral bodies[J]. Eur Spine J. 2007(16):1047-1054.
    [38]Li M, Ni J, Fang X, et al. Comparison of selective anterior versus posterior screw instrumentation in Lenke5C adolescent idiopathic scoliosis[J]. Spine.2009; 34(11):1162-6.
    [39]Clements DH, Betz RR, Newton PO, et al. Correlation of scoliosis curve correction with the number and type of fixation anchors[J]. Spine.2009; 34: 2147-2150.
    [40]Cheung KM, Natarajan D, Samartzis D, et al. Predictability of the fulcrum bending radiograph in scoliosis correction with alternate-level pedicle screw fixation[J]. J Bone Joint Surg Am.2010; 92:169-176.
    [41]Wang X, Aubin CE, Robitaille I, et al. Biomechanical comparison of alternative densities of pedicle screws for the treatment of adolescent idiopathic scoliosis[J]. Eur Spine J.2012; 21(6):1082-90.
    [42]Bledsoe JM, Fenton D, Fogelson JL, et al. Accuracy of upper thoracic pedicle screw placement using threedimensional image guidance[J]. Spine J.2009; 9: 817-821.
    [43]Sarlak AY, Tosun B, Atmaca H, et al. Evaluation of thoracic pedicle screw placement in adolescent idiopathic scoliosis[J]. Eur Spine J.2009; 18:1892-1897.
    [44]Amato V, Giannachi L, Irace C, et al. Accuracy of pedicle screw placement in the lumbosacral spine using conventional technique:computed tomography postoperative assessment in 102 consecutive patients[J]. J Neurosurg Spine.2010; 12:306-313.
    [1]Yuan HA, Garfin SR, Dickman CA, et al. A Historical Cohort Study of Pedicle Screw Fixation in Thoracic, Lumbar, and Sacral Spinal Fusions[J]. Spine.1994; 19(20 Suppl):2279S-2296S.
    [2]Wang X, Aubin CE, Robitaille I, et al. Biomechanical comparison of alternative densities of pedicle screws for the treatment of adolescent idiopathic scoliosis[J]. Eur Spine J.2012; 21(6):1082-90.
    [3]Wang X, Aubin CE, Crandall D, et al. Biomechanical modeling and analysis of a direct incremental segmental translation system for the instrumentation of scoliotic deformities[J]. Clin Biomech (Bristol, Avon).2011; 26(6):548-55.
    [4]Behensky H, Cole AA, Freeman BJ, et al. Fixed lumbar apical vertebral rotation predicts spinal decompensation in Lenke type 3C adolescent idiopathic scoliosis after selective posterior thoracic correction and fusion[J]. Eur Spine J.2007; 16(10):1570-8.
    [5]King HA. Selection of fusion levels for posterior instrumentation and fusion in idiopathic scoliosis[J]. Orthop Clin North Am.1988; 19(2):247-55.
    [6]Lenke LG, Betz RR, Bridwell KH, et al. Intraobserver and interobserver reliability of the classification of thoracic adolescent idiopathic scoliosis[J]. J Bone Joint Surg Am.1998; 800(8):1097-106.
    [7]Lenke LG, Betz RR, Bridwell KH, et al. Spontaneous lumbar curve coronal correction after selective anterior or posterior thoracic fusion in adolescent idiopathic scoliosis[J]. Spine.1999; 24(16):1663-71.
    [8]Lenke LG, Betz RR, Clements D, et al. Curve prevalence of a new classification of operative adolescent idiopathic scoliosis:does classification correlate with treatment?[J]. Spine.2002; 27(6):604-11.
    [9]Martino J, Aubin CE, Labelle H, et al. Biomechanical analysis of vertebral derotation techniques for the surgical correction of thoracic scoliosis. A numerical study through case simulations and a sensitivity analysis[J]. Spine.2013; 38(2): E73-83.
    [10]Naderi, Sait Andalkar, Niteen Benzel, et al. History of spine biomechanics:part Ⅰ--the pre-Greco-Roman, Greco-Roman, and medieval roots of spine biomechanics[J]. Neurosurgery.2007; 60(2):382-90; discussion 390-1.
    [11]King HA, Moe JH, Bradford DS, et al. The selection of fusion levels in thoracic idiopathic scoliosis[J]. J Bone Joint Surg Am.1983; 65(9):1302-13.
    [12]Suk SI, Lee SM, Chung ER, et al. Selective thoracic fusion with segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis:more than 5-year follow-up[J]. Spine (Phila Pa 1976).2005; 30(14):1602-9.
    [13]Dobbs MB, Lenke LG, Kim YJ, et al. Selective posterior thoracic fusions for adolescent idiopathic scoliosis:comparison of hooks versus pedicle screws[J]. Spine.2006; 31(20):2400-4.
    [14]Schulte TL, Liljenqvist U, Hierholzer E, et al. Spontaneous correction and derotation of secondary curves after selective anterior fusion of idiopathic scoliosis[J]. Spine.2006; 31(3):315-21.
    [15]Newton PO, Faro FD, Lenke LG, et al. Factors involved in the decision to perform a selective versus nonselective fusion of Lenke 1B and 1C (King-Moe Ⅱ) curves in adolescent idiopathic scoliosis[J]. Spine.2003; 28(20):S217-23.
    [16]Bridwell KH. Spinal instrumentation in the management of adolescent scoliosis[J]. Clin Orthop Relat Res.1997; 335:64-72.
    [17]Lenke LG, Kuklo TR, Ondra S, Polly DW Jr. Rationale behind the current state-of-the-art treatment of scoliosis (in the pedicle screw era)[J]. Spine.2008; 33:1051-1054.
    [18]Lenke LG, Bridwell KH, Baldus C, et al. Preventing decompensation in King type II curves treated with Cotrel-Dubousset instrumentation. Strict guidelines for selective thoracic fusion[J]. Spine.1992; 17(8 Suppl):S274-81.
    [19]Goldstein LA. The surgical treatment of idiopathic scoliosis[J]. Clin Orthop Relat Res.1973; 93:131-57.
    [20]Kim YJ, Lenke LG, Cho SK, et al. Comparative analysis of hook, hybrid, and pedicle screw instrumentation in the posterior treatment of adolescent[J]. Spine. 2004; 29(18):2040-8.
    [21]Kim YJ, Bridwell KH, Lenke LG, et al. Proximal junctional kyphosis in adolescent idiopathic scoliosis following segmental posterior spinal instrumentation and fusion:minimum 5-year follow-up[J]. Spine.2005; 30(18): 2045-50.
    [22]Richards BS. Lumbar curve response in type II idiopathic scoliosis after posterior instrumentation of the thoracic curve[J]. Spine (Phila Pa 1976).1992; 18(8 Suppl): S282-6.
    [23]Roye DP Jr, Farcy JP, Rickert JB, et al. Results of spinal instrumentation of adolescent idiopathic scoliosis by King type[J]. Spine.1992; 17(8 Suppl): S270-3.
    [24]Chang KW, Chang KI, Wu CM. Enhanced capacity for spontaneous correction of lumbar curve in the treatment of major thoracic-compensatory C modifier lumbar curve pattern in idiopathic scoliosis[J]. Spine.2007; 32(26):3020-9.
    [25]Goshi K, Boachie-Adjei O, Moore C, et al. Thoracic scoliosis fusion in adolescent and adult idiopathic scoliosis using posterior translational corrective techniques (Isola):is maximum correction of the thoracic curve detrimental to the unfused lumbar curve?[J]. Spine J.2004; 4(2):192-201.
    [26]Thompson JP, Transfeldt EE, Bradford DS, et al. Decompensation after Cotrel-Dubousset instrumentation of idiopathic scoliosis[J]. Spine.1990; 15(9): 927-31.
    [27]Suk SI, Kim JH, Kim SS, et al. Pedicle screw instrumentation in adolescent idiopathic scoliosis (AIS)[J]. Eur Spine J.2012; 21(1):13-22.
    [28]Suk SI. Pedicle screw instrumentation for adolescent idiopathic scoliosis:the insertion technique, the fusion levels and direct vertebral rotation[J]. Clin Orthop Surg.2011; 3(2):89-100.
    [29]Suk SI, Kim JH, Cho KJ, et al. Is anterior release necessary in severe scoliosis treated by posterior segmental pedicle screw fixation?[J]. Eur Spine J.2007; 16(9):1359-65.
    [30]Sanders AE, Baumann R, Brown H, et al. Selective anterior fusion of thoracolumbar/lumbar curves in adolescents:when can the associated thoracic curve be left unfused?[J]. Spine.2003; 28(7):706-13.
    [31]Li M, Ni J, Fang X, et al. Comparison of selective anterior versus posterior screw instrumentation in Lenke5C adolescent idiopathic scoliosis[J]. Spine.2009; 34(11):1162-6.
    [32]Wang X, Aubin CE, Crandall D, et al. Biomechanical comparison of force levels in spinal instrumentation using monoaxial versus multi degree of freedom postloading pedicle screws[J]. Spine.2011; 36(2):E95-E104.
    [33]Wang X, Aubin CE, Labelle H, et al. Biomechanical analysis of corrective forces in spinal instrumentation for scoliosis treatment[J]. Spine.2012; 37(24): E1479-87.
    [34]Aubin CE, Labelle H, Ciolofan OC. Variability of spinal instrumentation configurations in adolescent idiopathic scoliosis[J]. Eur Spine J.2007; 16:57-64.
    [35]Salmingo R, Tadano S, Fujisaki K, et al. Corrective force analysis for scoliosis from implant rod deformation[J]. Clin Biomech (Bristol, Avon).2012; 27(6): 545-50.
    [36]张宏其,陈凌强,郭超峰,等.采用关键椎置钉及选择性融合治疗Lenke6型AIS可行性的有限元分析[J].中国矫形外科杂志.2012;20(6):541-4.
    [37]刘少华,张宏其,郭超峰,等.半脊椎所致先天性脊柱侧凸三维矫形有限元模拟分析[J].中国组织工程研究与临床康复.2011;15(26):4763-7.
    [38]张宏其,王永福,唐明星,等.Lenke5型青少年特发性脊柱侧凸手术矫形的有限元研究[J].脊柱外科杂志.2011;9(2):112-116.
    [39]张宏其,赵迪,邓盎,等.成人退变性脊柱侧凸后路三维矫形生物力学的有限元分析[J].脊柱外科杂志.2011;9(5):312.
    [40]Yilmaz G, Borkhuu B, Dhawale AA, et al. Comparative analysis of hook, hybrid, and pedicle screw instrumentation in the posterior treatment of adolescent idiopathic scoliosis[J]. J Pediatr Orthop.2012; 32(5):490-9.
    [41]Esses SI, Sachs BL, Dreyzin V. Complications associated with the technique of pedicle screw fixation. A selected survey of ABS members[J]. Spine.1993; 18(15):2231-8.
    [42]Quan GM, Gibson MJ. Correction of main thoracic adolescent idiopathic scoliosis using pedicle screw instrumentation:does higher implant density improve correction?[J]. Spine.2010; 35(5):562-7.
    [1]Naderi, Sait Andalkar, Niteen Benzel, et al. History of spine biomechanics:part 1--the pre-Greco-Roman, Greco-Roman, and medieval roots of spine biomechanics[J]. Neurosurgery.2007; 60(2):382-91.
    [2]Brekelmans WA, Poort HW, Slooff TJ. A new method to analyse the mechanical behaviour of skeletal parts[J]. Acta Orthop Scand.1972; 43(5):301-17.
    [3]Rybicki EF, Simonen FA, Weis EB Jr. On the mathematical analysis of stress in the human femur[J]. J Biomech 1972; 5(2):203-15.
    [4]戴力扬,屠开元,徐印坎.腰椎椎体应力分布的三维有限元分析[J].中国临床解剖学杂志.1991;9(1):46-48.
    [5]Li XF, Dai LY. Three-dimensional finite element model of the cervical spinal cord: preliminary results of injury mechanism analysis[J]. Spine.2009; 34(11):1140-7.
    [6]Liebschner MA, Kopperdahl DL, Rosenberg WS, et al. Finite element modeling of the human thoracolumbar spine[J]. Spine.2003; 28(6):559-65.
    [7]Teo EC, Paul JP, Evans JH. Finite element stress analysis of a cadaver second cervical vertebra[J]. Med Biol Eng Comput.1994; 32(2):236-8.
    [8]Zhang QH, Teo EC, Ng HW, et al. Finite element analysis of moment-rotation relationships for human cervical spine[J]. J Biomech.2006; 39(1):189-93.
    [9]Ng HW, Teo EC. Nonlinear finite-element analysis of the lower cervical spine (C4-C6) under axial loading[J]. J Spinal Disord Tech.2001; 14(3):201-10.
    [10]Brolin K, Halldin P. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics[J]. Spine.2004; 29(4): 376-85.
    [11]Little JP, Adam CJ. The effect of soft tissue properties on spinal flexibility in scoliosis:biomechanical simulation of fulcrum bending[J]. Spine.2009; 34(2): E76-82.
    [12]Polikeit A, Nolte LP, Ferguson SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit:finite-element analysis[J]. Spine. 2003; 28(10):991-6.
    [13]Imai K, Ohnishi I, Bessho M, et al. Nonlinear finite element model predicts vertebral bone strength and fracture site[J]. Spine.2006; 31(16):1789-94.
    [14]Selard E, Shirazi-Adl A, Urban JP. Finite element study of nutrient diffusion in the human intervertebral disc[J]. Spine.2003; 28(17):1945-53.
    [15]Puttlitz CM, Rousseau MA, Xu Z, et al. Intervertebral disc replacement maintains cervical spine kinetics[J]. Spine.2004; 29(24):2809-14.
    [16]Galbusera F, Raimondi MT, Assietti R, et al. Multibody modeling of the cervical spine in the simulation of flexion-extension after disc arthroplasty[J]. J Appl Biomater Biomech.2006; 4(2):110-9.
    [17]Galbusera F, Bellini CM, Raimondi MT, et al. Cervical spine biomechanics following implantation of a disc prosthesis[J]. Med Eng Phys.2008; 30(9): 1127-33.
    [18]Crawford NR, Arnett JD, Butters JA, et al. Biomechanics of a posture-controlling cervical artificial disc:mechanical, in vitro, and finite-element analysis[J]. Neurosurg Focus.2010; 28(6):E11.
    [19]Lee SH, Im YJ, Kim KT, et al. Comparison of cervical spine biomechanics after fixed-and mobile-core artificial disc replacement:a finite element analysis[J]. Spine.2011; 36(9):700-8.
    [20]Rousseau MA, Bonnet X, Skalli W. Influence of the geometry of a ball-and-socket intervertebral prosthesis at the cervical spine:a finite element study[J]. Spine (Phila Pa 1976).2008; 33(1):E10-4.
    [21]Swider P, Pedrono A, Ambard D, et al. Substructuring and poroelastic modelling of the intervertebral disc[J]. J Biomech.2010; 43(7):1287-91.
    [22]Stokes IA, Gardner-Morse M. Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis[J]. Spine.1993; 18(16):2457-64.
    [23]Chen PQ, Lin SJ, Wu SS, et al. Mechanical performance of the new posterior spinal implant:effect of materials, connecting plate, and pedicle screw design[J]. Spine.2003; 28(9):881-6.
    [24]Chao CK, Hsu CC, Wang JL, et al. Increasing bending strength and pullout strength in conical pedicle screws:biomechanical tests and finite element analyses[J]. J Spinal Disord Tech.2008; 21(2):130-8.
    [25]Salmingo R, Tadano S, Fujisaki K, et al. Corrective force analysis for scoliosis from implant rod deformation[J]. Clin Biomech (Bristol, Avon).2012; 27(6): 545-50.
    [26]Cahill PJ, Wang W, Asghar J, et al. The use of a transition rod may prevent proximal junctional kyphosis in the thoracic spine after scoliosis surgery:a finite element analysis[J]. Spine.2012; 37(12):E687-95.
    [27]Abolaeha OA, Weber J, Ross LT. Finite element simulation of a scoliotic spine with periodic adjustments of an attached growing rod[J]. Conf Proc IEEE Eng Med Biol Soc.2012; Aug:5781-5.
    [28]Villemure I, Aubin CE, Dansereau J, et al. Correlation study between spinal curvatures and vertebral and disk deformities in idiopathic scoliosis[J]. Ann Chir. 1999; 53(8):798-807.
    [29]Villemure I, Aubin CE, Grimard G, et al. Progression of vertebral and spinal three-dimensional deformities in adolescent idiopathic scoliosis:a longitudinal study[J]. Spine.2001; 26(20):2244-50.
    [30]Villemure I, Aubin CE, Dansereau J, et al. Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation[J]. J Biomech Eng.2002; 124(6):784-90.
    [31]Villemure I, Aubin CE, Dansereau J, et al. Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses[J]. Eur Spine J.2004; 13(1):83-90.
    [32]van der Plaats A, Veldhuizen AG, Verkerke GJ. Numerical simulation of asymmetrically altered growth as initiation mechanism of scoliosis[J]. Ann Biomed Eng.2007; 35(7):1206-15.
    [33]Huynh AM, Aubin CE, Rajwani T, et al. Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis:a biomechanical study[J]. Eur Spine J.2007; 16(4): 523-9.
    [34]Adam CJ, Askin GN, Pearcy MJ. Gravity-induced torque and intravertebral rotation in idiopathic scoliosis[J]. Spine.2008; 33(2):E30-7.
    [35]Driscoll M, Aubin CE, Moreau A, et al. The role of spinal concave-convex biases in the progression of idiopathic scoliosis[J]. Eur Spine J.2009; 18(2):180-7.
    [36]Driscoll M, Aubin CE, Moreau A, et al. Biomechanical comparison of fusionless growth modulation corrective techniques in pediatric scoliosis[J]. Med Biol Eng Comput.2011; 49(12):1437-45.
    [37]Li XF, Liu ZD, Dai LY, et al. Dynamic response of the idiopathic scoliotic spine to axial cyclic loads[J]. Spine.2011; 36(7):521-8.
    [38]Perie D, Aubin CE, Lacroix M, et al. Personalized biomechanical modeling of Boston brace treatment in idiopathic scoliosis[J]. Stud Health Technol Inform. 2002(91):393-6.
    [39]Perie D, Hobatho MC. In vivo determination of contact areas and pressure of the femorotibial joint using non-linear finite element analysis[J]. Clin Biomech (Bristol, Avon).1998; 13(6):394-402.
    [40]Perie D, Sales De Gauzy J, et al. Tomodensitometry measurements for in vivo quantification of mechanical properties of scoliotic vertebrae[J]. Clin Biomech (Bristol, Avon).2001; 16(5):373-9.
    [41]Perie D, Sales De Gauzy J, Hobatho MC. Biomechanical evaluation of Cheneau-Toulouse-Munster brace in the treatment of scoliosis using optimisation approach and finite element method[J]. Med Biol Eng Comput.2002; 40(3): 296-301.
    [42]Perie D, Aubin CE, Lacroix M, et al. Biomechanical modelling of orthotic treatment of the scoliotic spine including a detailed representation of the brace-torso interface[J]. Med Biol Eng Comput.2004; 42(3):339-44.
    [43]Perie D, Aubin CE, Petit Y, et al. Boston brace correction in idiopathic scoliosis: a biomechanical study[J]. Spine.2003; 28(15):1672-7.
    [44]Perie D, Aubin CE, Petit Y, et al., et al. Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis[J]. Clin Biomech (Bristol, Avon).2004; 19(2):190-5.
    [45]Clin J, Aubin CE, Labelle H. Virtual prototyping of a brace design for the correction of scoliotic deformities [J]. Med Biol Eng Comput.2007; 45(5):467-73.
    [46]Clin J, Aubin CE, Sangole A, et al. Correlation between immediate in-brace correction and biomechanical effectiveness of brace treatment in adolescent idiopathic scoliosis[J]. Spine.2010; 35(18):1706-13.
    [47]Clin J, Aubin CE, Parent S, et al. Biomechanical modeling of brace treatment of scoliosis:effects of gravitational loads[J]. Med Biol Eng Comput.2011; 49(7): 743-53.
    [48]Liao YC, Feng CK, Tsai MW, et al. Shape modification of the Boston brace using a finite-element method with topology optimization[J]. Spine.2007; 32(26): 3014-9.
    [49]Visser D, Xue D, Ronsky JL, et al. Computer-aided optimal design of custom scoliosis braces considering clinical and patient evaluations[J]. Comput Methods Programs Biomed.2012; 107(3):478-89.
    [50]Desbiens-Blais F, Clin J, Parent S, et al. New brace design combining CAD/CAM and biomechanical simulation for the treatment of adolescent idiopathic scoliosis[J]. Clin Biomech (Bristol, Avon).2012; 27(10):999-1005.
    [51]Duke K, Aubin CE, Dansereau J. Computer simulation for the optimization of patient positioning in spinal deformity instrumentation surgery[J]. Med Biol Eng Comput.2007; 46(1):33-41.
    [52]Duke K, Aubin CE, Dansereau J, et al. Dynamic positioning of scoliotic patients during spine instrumentation surgery[J]. J Spinal Dis Tech.2009; 22(3):190-196.
    [53]Delorme S, Labelle H, Poitras B, et al. Pre-, intra-, and postoperative three-dimensional evaluation of adolescent idiopathic scoliosis[J]. J Spinal Dis Tech.2000; 13(2):93-101.
    [54]Labelle H, Dansereau J, Bellefleur C, et al. Preoperative three-dimensional correction of idiopathic scoliosis with the Cotrel-Dubousset procedure[J]. Spine. 1995; 20(12):1406-1409.
    [55]Driscoll CR, Aubin CE, Canet F, et al. Impact of prone surgical positioning on the scoliotic spine[J]. J Spinal Disord Tech.2012; 25(3):173-81.
    [56]Torell G, Nachemson A, Haderspeck K, et al. Standing and supine Cobb measures in girls with idiopathic scoliosis[J]. Spine.1985; 10(5):425-427.
    [57]Aubin CE, Labelle H, Chevrefils C, et al. Preoperative planning simulator for spinal deformity surgeries[J]. Spine.2008; 33(20):2143-52.
    [58]Lafage V, Gangnet N, Senegas J, et al. New interspinous implant evaluation using an in vitro biomechanical study combined with a finite-element analysis[J]. Spine. 2007; 32(16):1706-13.
    [59]Duke K, Aubin CE, Dansereau J, et al. Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation[J]. Clin Biomech.2005; 20(9):923-31.
    [60]Driscoll CR, Aubin CE, Canet F, et al. Intra-operative sternum vertical displacement on the sagittal curves of the spine[J]. Eur Spine J.2010; 19(3): 421-426.
    [61]Stephens GC, Yoo JU, Wilbur G. Comparison of lumbar sagittal alignment produced by different operative positions[J]. Spine.1996; 21(15):1802-6.
    [62]Guanciale AF, Dinsay JM, Watkins RG. Lumbar lordosis in spinal fusion. A comparison of intraoperative results of patient positioning on two different operative table frame types[J]. Spine.1996; 21(8):964-9.
    [63]Tan SB, Kozak JA, Dickson JH, et al. Effect of operative position on sagittal alignment of the lumbar spine[J]. Spine.1994; 19(3):314-8.
    [64]Benfanti PL, Geissele AE. The effect of intraoperative hip position on maintenance of lumbar lordosis:a radiographic study of anesthetized patients and unanesthetized volunteers on the Wilson frame[J]. Spine.1997; 22(19):2299-303.
    [65]Kim YJ, Bridwell KH, Lenke LG, et al. Proximal junctional kyphosis in adolescent idiopathic scoliosis following segmental posterior spinal instrumentation and fusion:minimum 5-year follow-up[J]. Spine.2005; 30(18): 2045-50.
    [66]Marsicano JG, Lenke LG, Bridwell KH, et al. The lordotic effect of the OSI frame on operative adolescent idiopathic scoliosis patients[J]. Spine.1998; 23(12): 1341-8.
    [67]Duke K, Aubin CE, Dansereau J, et al. Computer simulation for the optimization of patient positioning in spinal deformity instrumentation surgery [J]. Med Biol Eng Comput.2008; 46(1):33-41.
    [68]Lalonde NM, Villemure I, Pannetier R, et al. Biomechanical modeling of the lateral decubitus posture during corrective scoliosis surgery[J]. Clin Biomech (Bristol, Avon).2010; 25(6):510-6.
    [69]Lalonde NM, Aubin CE, Pannetier R, et al. Finite element modeling of vertebral body stapling applied for the correction of idiopathic scoliosis:preliminary results[J]. Stud Health Technol Inform.2008; 140:111-5.
    [70]Viviani GR, Ghista DN, Lozada PJ, et al. Biomechanical analysis and simulation of scoliosis surgical correction[J]. Clin Orthop Relat Res.1986; 208:40-7.
    [71]Cotrel Y, Dubousset J. A new technic for segmental spinal osteosynthesis using the posterior approach[J]. Rev Chir Orthop Reparatrice Appar Mot.1984; 70(6): 489-94.
    [72]Farcy JP, Roye DP, Weidenbaum M. Cotrel-Dubousset instrumentation technique for revision of failed lumbosacral fusion[J]. Bull Hosp Jt Dis Orthop Inst.1987; 47(1):1-12.
    [73]Lafon Y, Lafage V, Dubousset J, et al. Intraoperative three-dimensional correction during rod rotation technique[J]. Spine.2009; 34(5):512-9.
    [74]Dumas R, Lafage V, Lafon Y, et al. Finite element simulation of spinal deformities correction by in situ contouring technique[J]. Comput Methods Biomech Biomed Engin.2005; 8(5):331-7.
    [75]Lafon Y, Steib JP, Skalli W. Intraoperative three dimensional correction during in situ contouring surgery by using a numerical model[J]. Spine.2010; 35(4):453-9.
    [76]RohImann A, Richter M, Zander T, et al. Effect of different surgical strategies on screw forces after correction of scoliosis with a VDS implant[J]. Eur Spine J.2006; 15(4):457-64.
    [77]Klockner C, Rohlmann A, Bergmann G. Influence of a screw with a hinge on the pull-out force at the cranial end vertebra in ventral derotation spondylodesis (VDS)[J]. Arch Orthop Trauma Surg.2003; 123(8):410-3.
    [78]K16ckner C, Rohlmann A, Bergmann G. Instrumented forceps for measuring tensile forces in the rod of the VDS implant during correction of scoliosis[J]. Biomed Tech (Berl).2003; 48(12):362-4.
    [79]汪学松,吴志宏,孙伟方,等PUMC Ⅱ d2型青少年特发性脊柱侧凸选择性融合的有限元分析[J].中华医学杂志.2010;90(15):1039-1043.
    [80]Lou E, Hill D, Raso J, et al. Instrumented rod rotator system for spinal surgery[J]. Med Biol Eng Comput.2002; 40 (4):376-9.
    [81]Little J, Adam C. Development of a computer simulation tool for application in adolescent spinal deformity surgery[J]. Lect Notes Comput Sci.2010; 5958: 90-97.
    [82]Di Silvestre M, Parisini P, Lolli F, et al. Complications of thoracic pedicle screws in scoliosis treatment[J]. Spine.2007; 32(15):1655-61.
    [83]Wang X, Aubin CE, Crandall D, et al. Biomechanical comparison of force levels in spinal instrumentation using monoaxial versus multi degree of freedom postloading pedicle screws[J]. Spine.2011; 36(2):E95-E104.
    [84]Wang X, Aubin CE, Robitaille I, et al. Biomechanical comparison of alternative densities of pedicle screws for the treatment of adolescent idiopathic scoliosis[J]. Eur Spine J.2012; 21(6):1082-90.
    [85]Rohlmann A, Zander T, Burra NK, et al. Flexible non-fusion scoliosis correction systems reduce intervertebral rotation less than rigid implants and allow growth of the spine:a finite element analysis of different features of orthobiom[J]. Eur Spine J.2008; 17(2):217-23.