不同超声波测膘仪的准确性和相关性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以金华加华种猪有限公司核心群内的加系大约克为试验对象,按体重分为25、50、75公斤三个阶段,对各阶段的试验猪同时用A超(RenCo)和B超(Ami900)在倒数3-4肋间和腰荐结合处离背中线4-6厘米处,测定背膘厚(B超还在P1点测定眼肌厚),测定时记录其实测体重和测定日期。对25公斤阶段的仔猪,每周称一次体重,直到体重达到50公斤,以绘制生长曲线。试验结束时,选19头上市阉猪先用A超和B超活体测定背膘厚,再用游标卡尺在相同位点测定实际膘厚。所得数据用SAS软件进行平均值计算、方差分析、回归分析及遗传参数的估计。结果表明:所测膘厚在不同测定位点、性别间存在差异,总体情况为P1点处膘厚薄于P2点膘厚;公猪背膘薄于母猪背膘。A超和B超在两个位点所测膘厚对各自的体重存在线性回归现象,并得出A超在P2点膘厚与用B超在N点所测膘厚的回归方程:
     母猪:B超P1点膘厚=6.8503+0.6105A超P2点膘厚;公猪:B超P1点膘厚=2.3447+1.0497A超P2点膘厚,回归模型达到极显著水平(p<0.01)。
     相关分析表明:在25公斤阶段,两个位点的背膘厚的A超测定值之间的表型相关为0.574,B超所测的两个位点的背膘厚之间的表型相关为0.579,都达到极显著(p<0.01)。50公斤阶段实测体重与用A超P2点膘厚的表型相关为0.5628(p<0.01),遗传相关为0.0994;与B超P1点膘厚的表型相关为0.2784(p<0.01),遗传相关为0.2302,75公斤阶段体重与B超P1点膘厚之间的表型相关为0.3239(p<0.01);A超P1点膘厚与B超在两个位点处背膘的表型相关为0.5957和0.335,遗传相关为0.4346和0.74。在50和75公斤阶段B超P1点膘厚之间的表型相关为0.1859,遗传相关为0.247。
     屠宰分析表明:A超P1点膘厚的平均值为13.94±3.32mm,P2点膘厚为14.88±2.93mm;B超所测膘厚分别为15.59±3.02mm和20.79±2.57mm;胴体实际膘厚分别为21.35±2.93mm和24.29±5.01mm。A超P1点与胴体实际背膘厚间的表型相关为0.7007,达到极显著(p<0.01);B超P1点背膘与胴体实际背膘间的表型相关为0.8316达到极显著(p<0.01)。B超的准确性高于A超。
     在50公斤体重阶段,A超在两个位点所测膘厚的遗传力分别为0.366和0.691,B超分别为0.634和0.549;在75公斤阶段,A超在两个位点所测膘厚的h~2分别为0.381和0.695,B超分别为0.641和0.564。
Probing test in Jinhua nucleus herd of Canadian Yorkshire with A mode (Renco, American)and B mode (Ami900,Canada) ultrasonic instrument simultaneity on last 3/4 rib (PI) and the joint-point of the thoracic vertebra and lumber vertebra (P2) off the mid-line 4-6cm when the pigs in their 25,50,75Kg body weight. The loin depth on the last 3/4 rib off the mid-line 4-6cm also was probed by B mode . When the pig's body weight between 25-50 kg , weighted them every week. To probe the 19 barrows (at 95.18 Kg body weight) with A mode and B mode on the two sites and after slaughter, using the caliper testing the backfat thickness on the same sites. SAS program was applied to analyze all the data to get the regression equations and to estimate the genetic parameters.
    The results indicated that the probe site and sex had significant effect on the backfat thickness . The PI backfat thickness thinner than P2's, the boar's thinner than the gilt's.
    The backfat probed by A mode and B mode existed significant linear regression. The regression equation was: the backfat thickness on PI by B mode =6.1657+1.0497 (the backfat thickness on P2 by A mode-4.07) (for the boars); the backfat thickness on Plby B mode =9.0723+0.6105 (the backfat thickness on P2by A mode -3.64) (for the gilts).
    The analyze of correlation shows that in the period of 25Kg live weight ,the phenotype correlation for the two sites by A mode and B mode were 0.574 and 0.579,respectively. The phenotype and genetic correlation between the 50Kg live weight and the backfat on P2 by A mode were 0.5628 and 0.0984, respectively; the phenotype and genetic correlation between the 50Kg live weight and the backfat on PI by B mode were 0.2784 and 0.2302, respectively. The phenotype and genetic correlation between the 75Kg live weight and the backfat on PI by B mode were 0.3239 and -0.3265, respectively. The phenotype and genetic correlation between the backfat on Plby A mode and the backfat on site land P2 by B mode were 0.5957and 0.335, 0.4346 and 0.74, respectively. The phenotype and genetic correlation between the backfat on Plby B mode in 50Kg live weight and in 75Kg live weight were 0.1859 and 0.247, respectively.
    The analyze of carcass shows that the means of the backfat on Plby A mode was 13.94?.32mm,on P2was 14.88?.93mm; the means of the backfat on Plby B mode was
    43
    
    
    
    15.59?.02mm, on P2were 20.79?.57mm; the means of the carcass backfat on the two sites were 21.35?.93mm and 24.29?.01mm, respectively. The phenotype correlation between the backfat on PI by A mode and the carcass's actual backfat was 0.7007, the phenotype correlation between the backfat on Plby B mode and the carcass's actual backfat was 0.8316.The accuracy of B mode is higher than A mode's.
    The heritability of the backfat on the two sites by A mode in 50Kg live weight were 0.366 and 0.691,respectively, for the B mode were 0.634 and 0.549, respectively. In the period of the 75Kg live weight, the heritability of the backfat on the two sites by A mode were 0.381 and 0.695, for the B mode were 0.641 and 0.564, respectively.
引文
1.李学伟.种猪遗传评估软件的研制,第九次全国畜禽遗传育种学术讨论会论文集.中国农业科学出版社,1997,409-413
    2.李学伟等.外种猪选择进展分析.西南农业学报.2000.13卷(增刊)21-23
    3.潭浩强(主编).SAS/PC统计分析软件实用技术[M].国防工业出版社
    4.吴登俊.SAS高级统计分析系统.1997
    5.贵州农学院(主编).生物统计附实验设计(第二版)[M].农业出版社.1991
    6.陈润生(主编).猪生产学[M].中国农业科技出版社.1995
    7.张仲葛等.中国实用养猪学[M].河南科学技术出版社.1990
    8.,赵明生等,机械工程手册10[M),机械工业出版社
    9.方昕等.现代内科学(上)[M].人民军医出版社
    10.吕维雪.医学图像处理[M].高等教育出版社
    11.刘宇飞、孙桂元.集约化养猪用B超进行早期妊娠监测好[J].中国兽医杂志.1997,23(2):30-31
    12.王燕丽.估计育种值BLUP法在猪场的应用效果分析.金华职业技术学院学报.2001.2.38-39
    13.王世清等.BLUP法种猪遗传评定在加拿大.金华职业技术学院学报.2001.2.35-37
    14.刘海良.养猪生产.农业出版社.1998
    15.熊远著等,不同方法测量活猪背膘厚的准确性.华中农学院学报.1984.3(2):78-80
    16.张勤等.猪胴体品质的活体估测.中国畜牧杂志.1995.31(6):3-5
    17.吴立军等.二花脸猪骨骼、肌肉、脂肪、皮肤生长发育的特点.南京农学院学报.1984.1(3):75-83
    18.李剑豪.探针测膘和超声波测膘比较.广东畜牧兽医科技.1994.19(1):20
    19.宋金彩等.不同活体测膘方法效果对比.养猪.1994(1):33-34
    20.何志平等.种猪活体测膘部位研究.西南农业学报.2000.13卷(增刊):15-17
    21.林映才等.赖氨酸水平对肥育猪胴体品质的影响,动物科学与动物医学.2000.17(6):47-49
    22.金海国等.性别对约可夏猪的主要经济性状遗传参数估计的影响.中国畜牧杂志.2002.38(2):9-11
    23.张沅、张勤.畜禽育种中的线性模型.北京农大出版社
    24.盛志廉、陈瑶生.数量遗传学.科学出版社
    25. D.S.Falconer .Introduction to Quantitative Genetics.Longrnan Group Limited
    26. Echevarria,A.I; Parsi,J.A. Evaluation of the live animal, use of ultrasonic and a metal ruler Science. 1985.61:78-82
    
    to estimate the yield of lean in evaluation carcass cuts Genetic-selection,-Evolution 1997,31:149-157
    27. Tom J.Bass .Live animal evaluation.USLGE
    28. Waida,S.; Daski Ewicz.T.; Accuracy of measurements of the thickness of back fat and the longissimus Doris muscle, obtained using a Slide caliper and the Ultrasonic UltraFoM 100 apparatus. Acta Academica Agriculture ac Technicae Olstenensis zootechnica. (1998) No.48:71-78
    29. A.P.Sather, J.A.Newman. The predication of pork carcass composition using live animal echo graphic measurement from the krautkramer USK7, Ⅰtheaca Scanoprobe 731C and Aloka SSD-210DXⅡEcho Camera. Canada Journal of Animal Science (Dec. 1991) 71:1001-1009
    30. J.Krieter and E.Kalm. An evaluation of two ultra sonic instruments for the prediction of carcass lean grade in growing pigs. Animal Production 1991,52:361-366
    31. .Cavalcanti,S.S.; Garcia,S.K. and Andreani,K.C.L. Comparative study of sectal palpation and ultrasound in pregnancy diagnosis in sows. Arquivo Brasiceriro de Medicina Veternaria e zootecha. (1989) 41(2) :155-162
    32. Zykunor-N, Pechkurov-N and Yutkin-E. Pregnancy diagnosis using Ultrasound. Svinovodstvo-Moskva, 1998, No.4:28-29
    33. Adamczyk, J. Estimation of live animal musculature from ultrasonic measure ments of backfat thickness and depth of the longissimus dorsi muscle. Rocznik; Naukowe zootechnik(1996) 23(1) :23-33
    34. N,.N.Aztz,W.A.Kae,J.W.Aclan and R.I.Bacc Relatioships between carcass weights, backfat and lion muscle depth in cull sows .Can.J.Animal science ,70:11411145(1990,DEC)
    35. R.l.Cliplef and R.M Mckay. Carcass quality characteristics of swine selected for reduced backfat thickness and increased growth rate. Canada Animal Science 73:483-494(1993,SEP)
    36. Bak.T.;Denabursk.J.Utility of some linear measurements of carcass performed with a slide contents of pig carcasses. Acta Academiae Agriculture ac Technical Olstenensis zootechnica(1998) No:48,91-101
    37. Bichmann.M.Pregnancy diagnosis with Ultrasonic Land technical (1997) 52(4) 196-197
    38. Hulsegge-B;Mateman-G;Merkus-GSM;Walstra-P. Choice of probing site for classification of live pigs using Ultrasonic measurements. Animal
    
    Science,1998,68:4,641-645
    39. Bak-T; Denabursku-J. Supravital and slaughter measurements of the meat content of pork carcasses determined by the Draminski Minisystem and the Ultra-FOM 100 apparatus. Acta Academiae Agriculture ac Technica Olstenensis zootechnica(l998) No:48,79-89;
    40. Moefller-SJ;Chrestian-LL;Goodwin-RN. Development of adjustment factors for backfat and loin muscle area from serial real-time Ultrasonic measurements on purebred lines of swine Journal of Animal Science .1998. 76:8,2008-2016;
    41. Wilson-DZ; Graser-Hu; Rowse-GH; Amin-V. Prediction of carcass traits using live animal ultrasound . Proceedings of the 6 th World Congress on Genetics Applied to livestock Production Armidale, Australia January 11-16,1998 Volume 23:61-68
    42. Potter-RA; Allen-JM; Crabbe-BJ. The use of Ultrasound scanning to improve the reproductive performance of sows in loose housed and outdoors. Pig-Journal 1998,41:221-226
    43. Colin Whittemore. The science and practice of pig production . Longman scientific &technical.1993
    44. G.Jipson.Estimation of weight adjustments of A-mode probe fat and lean depths.CCSI.1999
    45. B.Sullivan. Suggested protocol for development of conversion for mulae for the Ultrascan 50 .CCSI. 1999
    46. R.L.Cliplef and R.M.Mckay. Carcass quality characteristics of swine selected for reduced backfat thickness and increased growth rate. Canada Journal of Animal Science. 1991. 73:483-494
    47. Buck,S.F.,Harrington,G.and Johnson,R.F. The prediction of lean percentage of pigs of bacon weight from carcass measurements. Animal Production. 1962. 4:25-36
    48. Martin,A.H., Fredeen,H.T., Weiss,G.,Fortin,A. and Sim,D.Yeild of trimmed pork product in relation to weight and backfat thickness of carcass. Canada Journal of Animal Science .1981. 61:299-310
    49. Sather,A.P.,Newman,J.A.,Jones,S.D.M.,Tong,A.K.W.,Zawadski,S.M. and Colpitts,G. The prediction of pork carcass composition using live animal echographic measurements from the Krautkramer USK7,Ithaca Scannoprobe 731C and Aloka SSD-210DXⅡEcho camera. Canada Journal of Animal Science .1991. 71:1001-1009
    50. Fredeen,H.T.,Martin,A.H.and Sather,A.P. Ultrasonic measurement of subcutaneous fat and lion depth as estimators of lean content of pigs. Canada Journal of Animal
    
    Science .1976. 56:830(Abstr.)
    51. Sather,A.P.,Tong,A.K.W.,and Harbison,D.S. Ultrasonic probing of swine. Ⅰ.operator, machine and site effects. Canada Journal of Animal Science .1986. 66:591-598
    52. Sather,A.P.,Tong,A.K.W.,and Harbison,D.S. Ultrasonic probing of swine.Ⅱ.weight ,fat and carcass composition . Canada Journal of Animal Science.1987. 67:381-390
    53. Sather,A.P.,Tong,A.K.W.,and Harbison,D.S. The relationship of live ultrasonic probes to carcass fat measurements in swine . Canada Journal of Animal Science.1988. 68:355-358
    54. Sather,A.P.,Newman,J.A.,Jones,S.D.M.,Tong,A.K.W.,Zawadski,S.M.and Colpitts,G. The prediction of pork carcass composition using the Hennessy grading probe and the Aloka SSD-210DXⅡEcho camera. Canada Journal of Animal Science .1991. 71:993-1000
    55. Mersmann,H.J. The utility of ultrasonic measurements in growing swine. Journal of Animal Science .1982. 54:276-284
    56. Johnson-Z;Chewning-J;Nugent-R Ⅲ;Johnson-ZB(ed.);Kellogg-DW. Estimation of litter environmental and material effects for performance test traits of Large white swine. Arkansas Animal Science Department Report .1999. 470:37-40
    57. Molenaar-BAJ. Results of real time ultrasonic scanning in estimating lean tissue ratios in live pigs.35th Annual Meeting of the EAAP, The Hague, Netherlands, 6-9 August 1984. Vol. 2. Summaries.
    58. Jung-YC; Park-HY; Kim-CJ; Lee-SW; Kim-SL; Lee-ES. Comparisons of ultrasound machines to predict lean percentage through measuring backfat thickness and loin muscle area from live pigs. Korean-Journal-of-Animal-Science. 1999,41:5,497-506
    59. Holck-JT; Schinckel-AP; Coleman-JL; Wilt-VM; Senn-MK; Thacker-BJ; Thacker-EL; Grant-AL. The influence of environment on the growth of commercial finisher pigs. Swine-Health-and-Production. 1998, 6: 4, 141-149
    60. C.Pornar,J.Rivest,P.Jeandit Bailleul,and M.Marcoux. Predicing lion-eye area from ultrasound and grading probe measurements of fat and muscle depths in pork carcasses. Canada Journal of Animal Science .2001. 81:429-434
    61. Tommy Perkins. Study guide for ultrasonic evaluation of beef cattle for carcass merit.
    62. B.W.Kenndy ,Kjell Johnsson and G.F.S.Hudson. Hetitabilities and genetic correlations for backfat and age at 90KG in performance tested pigs.Journal of Animal
    
    
    63. D.G.Mclaren,J.Novakofski,D.F. Parrett,L.L.LO.S.D.Singh,K.R.Neumann and EK.Mckeith. A study of operator effects on ultrasonic measures of fat depth and longissimus muscle area in cattle, sheep and pigs. Journal of Animal Science. 1991.69:54-66
    64. Mersmann,H.J. Ultrasonic determination of backfat depth and lion area in swine. Journal of Animal Science. 1982.54:268-275
    65. Mersmann,H.J. The utility of ultrasonic measurements in growing swine. Journal of Animal Science. 1982.276:283
    66. S.J.Moeuer,LL.Christian and R.N.Goodwin. Development of adjustment factors for backfat and lion muscle area from serial real-time ultrasonic measurements on purebred lines of swine. Journal of Animal Science. 1998.76:2008-2016
    67. Smith,B. S.,W.R.Jones,J.D.Hough,D.L.Huffman,W.B.Mikkle,and D.R.Mulvaney. Prediction of carcass characteristics by real-time ultrasound in barrows and gilts slaughted at three weights. Journal of Animal Science. 1992.70:2304-2308
    66.罗安治(主编).《养猪全书》.四川科学技术出版社.1997
    67.段诚中(主编).《规模化养猪新技术》.中国农业出版社.2000
    68.雍茂龙,猪的选种方法概述,四川畜牧兽医.2000.27.(7):115-116
    69.王秀利.猪的不同生长阶段日增重及料肉比的遗传参数估计.黑龙江畜牧与兽医.1998.7:12-13
    70.春禾译.生长曲线分析:根据猪场具体情况进行决策的实用工具
    71.章胜乔等.长白猪的生长曲线分析.浙江农业科学.2001.1:44-46
    72.郑友民等.大白猪生产和繁殖性状遗传趋势的分析.中国农业科学.1999.32.(3):85-89
    73.梅书棋等.湖北白猪Ⅵ系生长及胴体性状的遗传分析.华中农业大学学报.1999.18.(2):158-162
    74.胡锦平等.自由采食下瘦肉型猪生产性状的遗传和相关.浙江农业学报.1998.10(5):241-244
    75.付茂忠等.父系杜洛克遗传参数估计.四川畜牧兽医.1997.3:8-9
    76.吴常信.我国猪育种的展望.中国畜牧杂志.1997.33:3-7