瘦肉型猪的场内遗传评估及遗传分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们从2000年开始,在湖南省益阳农科所种猪场和正虹种猪场,开展瘦肉型猪选育工作。多性状动物模型BLUP法是当今世界上最先进的育种值估计方法,本研究将多性状动物模型BLUP法应用于种猪选择,运用GBS软件进行了瘦肉型猪的场内遗传评估,对遗传评估中的主选性状的遗传评估效果进行了分析,采用基于Gibbs抽样的贝叶斯方法估计了遗传评估中主选性状的遗传参数及配子印迹效应的方差组分。得到了以下主要研究结果:
     1.拟合了三个瘦肉型品种后备猪体重的Logistic和Gompertz生长曲线,拟合优度很高。根据Logistic生长曲线制定出了种猪四月龄左右测定体重校正达100kg体重日龄的校正系数,通过检验,校正的准确度较高,效果较好,可用于育种实践中。
     2.经过持续五年以性能测定为依据、以遗传评估为手段的开放核心群育种,在两个种猪场都取得了明显的选育效果。2004年与2000年相比,益阳农科所种猪场杜洛克、大白后备猪达100kg体重日龄分别下降了16.37、16.42天,群体EBV分别下降了2.69和2.57天;100kg体重校正背膘厚分别下降了1.26、1.10mm,群体EBV分别下降了0.18和0.21mm;杜洛克猪父系指数提高了7.12,大白猪母系指数提高了5.74。
     2004年与2000年相比,正虹种猪场杜洛克、长白、大白后备猪达100kg体重日龄分别下降了16.67、20.26和20.92天,群体EBV分别下降了2.59、2.67和3.11天;100kg体重校正背膘厚分别下降了0.72、0.84和0.26mm,群体EBV值分别下降了0.15、0.17和0.14mm;杜洛克猪父系指数提高了4.31,长白、大白猪母系指数分别提高了8.09和9.77。
     母猪繁殖性能的选育效果不如后备猪生长发育性能明显,但总的趋势是逐年在提高。
     这些品种及其杂种猪在肥育期间的生长速度逐年提高,料肉比逐年下降,且幅度较大,胴体瘦肉率稳定在一个较理想的水平上。种猪的体形、外貌得到明显改善,后躯及肩背丰满度提高,群体整齐度提高,大大提高了种猪质量。
     3.遗传评估中主选性状的遗传参数估计结果:(1)杜洛克、长白、大白后备猪达100kg体重日龄的窝效应c~2分别为0.160、0.173和0.182,遗传力分别为0.353、0.338和0.346,为中等遗传力。(2)杜洛克、长白、大白后备猪100kg体重校正背膘厚的窝效应c~2分别为0.055、0.061和0.059,遗传力分别为0.482、0.487和0.479,为高遗传力。后备猪达100kg体重日龄的窝效应大于背膘厚的窝效应。(3)杜洛克、长白、大白后备猪达100kg体重日龄与100kg体重校正背膘厚的遗传相关系数分别为-0.259、
Lean type swine breeding has been done in Hunan Yiyang Swine Breeding Farm and Zhenghong Swine Breeding Farm by us since 2000. Multi-trait animal model BLUP is now the best method of estimating breeding value. We use this method in selecting breeding pigs. On-farm genetic evaluation of lean type swine was carried out in the two breeding farms by using GBS software. In this study, the effects of major traits in genetic evaluation are analysed. Genetic parameters and variance components of gametic imprinting effects are estimated for major traits by using Bayesian method based on Gibbs sampling.The main results of this study are as below:1. The growth curves of replacement pigs in Duroc, Landrace and Large White swine are fitted by the equations of Logistic and Gompertz. The goodness(R~2) is great. The adjusted coefficients from pig weights at about the fourth month to age at 100kg are worked out through Logistic equation. These coefficients are precise and can be used in adjustment.2. After five years' selection which is based on performance test and genetic evaluation, the performances of pig improved fast. In Yiyang Swine Breeding Farm, age at 100kg of replacement pig in Duroc and Large White dropped 16.37 and 16.42 days respectively, population EBV dropped 2.69 and 2.57 days respectively. Backfat thickness at 100kg of replacement pig in Duroc and Large White dropped 1.26 and 1.10mm respectively, population EBV dropped 0.18 and 0.21mm respectively. Paternal index in Duroc raised 7. 12 and maternal index in Large White raised 5.74 from 2000 to 2004.In Zhenghong Swine Breeding Farm, age at 100kg of replacement pig in Duroc, Landrace and Large White dropped 16.67, 20.26 and 20.92 days respectively, population EBV dropped 2.59, 2.67 and 3.11 days respectively. Backfat thickness at 100kg of replacement pig in Duroc, Landrace and Large White dropped 0.72, 0.84 and 0.26mm respectively, population EBV dropped 0.15, 0.17 and 0.14mm respectively. Paternal index in Duroc raised 4.31 , maternal index in Landrace and Large White raised 8.09 and 9.77 respectively from 2000 to 2004.Reproductive performances of sow in these two swine breeding farms
    increased from 2000 to 2004, but the rates are slower than that of growth traits of replacement pig.During fattening period, the growth rate and feed conversion of Duroc, Landrace, Large White and their crosses increased fast, lean percentage of carcass is in a good condition. Body conformation, population tidiness and quality of breeding swine are improved.3. The results of estimating genetic parameters for major traits are as below: (1) litter effect(c2) of age at 100kg in Duroc, Landrace and Large White are 0. 160, 0. 173 and 0. 182 respectively, while \\ are 0. 353, 0. 338 and 0. 346 respectively.(2) litter effect (cz) of backfat thickness at 100kg in Duroc, Landrace and Large White are 0.055, 0.061 and 0.059 respectively, while \\ are 0.482, 0.487 and 0.479 respectively, c" of age at 100kg is bigger than c" of backfat thickness at 100kg. (3) Genetic correlation between age at 100kg and backfat thickness in Duroc, Landrace and Large White are -0. 259, -0. 233 and -0. 249 respectively. (4) h2 of total litter size in Duroc, Landrace and Large White are 0. 108,0. 123 and 0. 119 respectively.4. The results of estimating variance components of gametic imprinting: (1) For age at 100kg, estimates of the proportion of total variance accounted for by paternally transmitted gametes are 2. 3%, 2. 7% and 2. 8% in Duroc, Landrace and Large White swine respectively. Corresponding results for maternally transmitted gametes are 4.0%, 4.4% and 4.1%. The expression of imprinting effects in these three breeds is almost the same, but variance components of maternal game tic effects are bigger than that of paternal gametic effects.(2) For backfat thickness at 100kg, estimates of the proportion of total variance accounted for by paternally transmitted gametes are 5.9%, 5.5% and 5. 6% in Duroc, Landrace and Large White swine respectively. Corresponding results for maternally transmitted gametes are 3. 1%, 2. 0% and 2. 5%. Variance components of paternal gametic effects are bigger than that of maternal gametic effects.(3) For total litter size of sow, estimates of the proportion of total
    variance accounted for by paternally transmitted gametes are 1.0%, 0.7% and 0.9% in Duroc, Landrace and Large White swine respectively. Corresponding results for maternally transmitted gametes are 2. 1%N 1.7% fP 1.8%. Variance components of maternal gametic effects are nearly twice than that of paternal gametic effects.
引文
1.陈瑶生,刘海良,刘小红等.我国种猪遗传评估与联合育种进展与策略[C].中国动物遗传育种研究进展.北京:中国农业科学技术出版社,2003,3-11
    2.盛志廉,陈瑶生.数量遗传学[M].北京:科学出版社,1999
    3.施启顺,柳小春主编.养猪业中的杂种优势利用[M].长沙:湖南科技出版社,1997
    4.张沅,张勤.畜禽育种中的线性模型[M].北京:北京农业大学出版社,1993
    5.吴常信,鲁绍雄.现代猪育种技术[J].中国畜牧杂志,2003,39(1):41-42
    6.彭中镇,曹胜炎,杨兴柱,李奎.猪的遗传改良[M].北京:中国农业出版社,1994
    7.彭中镇,甘士明.我国种猪场内性能测定工作刍议[C].中国动物遗传育种研究进展,北京:中国农业科技出版社,1995,8-13
    8.吴常信.我国猪育种的展望[J].中国畜牧杂志,1997,33(3):3-5
    9.熊远著.瘦肉型猪育种的发展与展望[J].中国工程科学,2000,2(9):42-46
    10.彭中镇.再议当前场内种猪的测定与选择[C].中国动物遗传育种研究进展,北京:中国农业科技出版社,2003
    11.李加琪,刘小红,陈瑶生等.瘦肉型种猪中心测定及其性能分析研究[J].中国畜牧杂志,2002,38(3):21-22
    12.刘小红,李加琪,陈瑶生.广东规模化猪场长白猪选育遗传分析[C].中国动物遗传育种研究进展.北京:中国农业科技出版社,2003
    13.吴珍芳,王青来,张豪等.杜洛克猪部分生产性状遗传参数估计[C].中国动物遗传种研究进展,北京:中国农业科技出版社,2003
    14.王爱国.混合线性模型下猪群间遗传联系的度量[J].遗传,2000,22(5):295-297
    15.杨泽明,熊远著,喻传洲.影响猪遗传评估效果的主要因素研究[J].华中农业大学学报,2001,20(6):598-602
    16.汪嘉燮,唐仕强.对今后外种猪育种工作的思考[J].养猪,1999(4):32
    17.张保军,孙超,张丽娟等.猪育种趋势及其研究进展[J].家畜生态,2002,23(4):45-48
    18.张勤.遗传评估软件的使用、评估结果的解释与应用[J].养猪在线,2004,(5):14-15
    19.郭万库,师守堃,鲁绍雄.我国猪育种结构及其发展的探讨[J].中国畜牧杂志,2000,36(5):49-51
    20.刘天飞,李学伟,朱砺.基于Web的四川省外种猪联合育种信息系统的设计与实现[C].中国动物遗传育种研究进展,北京:中国农业科技出版社,2003,556-559
    21.鲁绍雄,吴常信.采用多点核心群联合育种促进引进种猪选育提高的探讨[J].中国畜 牧杂志,2003,37(5):3-4
    22.陈瑶生.中国的猪育种研究现状与发展趋势[J].华南农业大学学报,2005,26(增刊):1-11
    23.余丽明,陈健雄等.瘦肉型猪母系大白猪繁殖性能的选育[C].中国动物遗传育种研究进展,北京:中国农业科技出版社,2003
    24.郑友民,王立贤,张沅.用MTDFREML方法估计大白猪遗传参数[J].养猪,1999,(1):32-33
    25.王青来,王爱国.应用多性状动物模型BLUP和REML对杜洛克猪的遗传分析[D].中国农业大学硕士学位论文,2000
    26.彭中镇,杨茂成.规范场内测定技术,融入遗传评估系统[J].养猪在线,2004,(5):11-12
    27.陈斌,常蒿华.拟合湘南黄牛体重生长曲线探讨[C].中国动物遗传育种研究进展,北京:中国农业科技出版社,2005:81-83
    28.郭万库.不同类群大白猪窝产仔数的遗传分析[J].中国畜牧杂志,2000,36(2):6-8
    29.李学伟.种猪遗传评估软件的研制[J].西南农业大学学报,2000,13(1):67-69
    30.许尚忠.试论21世纪中国畜禽遗传改良的发展战略[J].中国农业科技导报,2001,(3):60-65
    31.师守堃.种猪选育需要测定的主要性状[J].养猪在线,2004,(5):7
    32.GBS工作室.GBS种猪生产管理及育种分析系统[M].北京:中国农业科技出版社,1999
    33.张伟峰,张沅.应用动物模型REML方法估计遗传参数的研究[J].养猪,1999,(3):31-32
    34.储明星,吴常信,张建生等.猪窝产仔数的遗传分析[J].遗传学报,2001,28(4):317-321
    35.张胜利,杨秀文,靳明武.遗传参数不同估计方法的比较[J].遗传,1995,(6):21-23
    36.储明星,吴常信,张建生等.母猪生产力性状的遗传分析[J].遗传学报,1995,(11):947-952
    37.Henning Staun.丹麦种猪测定方案的历史回顾.华南农业大学学报,2005,26(增刊):41-46
    38.常英新,张沅,张勤.估计猪早期生长性状和繁殖性状的动物模型比较[J].黑龙江畜牧兽医,2001,(7):13-15
    39.郑友民,张沅.大白猪繁殖和生产性状母体遗传效应估计[J].畜牧兽医学报,1999,(5):349-398
    40.郑友民,王立贤,张沅.大白猪生产和繁殖性状遗传趋势的分析[J].中国农业科学,1999,32(3):85-89
    41.王楚端,马卫东,陈清明等.利用多性状混合模型估计猪繁殖性状的遗传参数[J].中国 农业大学学报,2001,6(3):96-100
    42.储明星,吴常信,张建生.二花脸猪和大白猪产仔数加性显性遗传模型以及基因效应的研究[J].南京农业大学学报,2001,(1):89-91
    43.徐来仁,王维洪,仇志军等.约克夏猪繁殖性状直接的和母体的加性遗传效应分析[J]畜牧与兽医,1999,31(1):16-17
    44.陈斌,柳小春,施启顺等.长白猪数量性状表型和遗传参数估计[C].中国畜禽遗传育种进展,长沙:湖南科技出版社,1993,19-24
    45.陈斌,柳小春,施启顺等.用多性状BLUP法对长白猪选育中公猪进行逆向再评定的研究[C].中国畜禽遗传育种进展,长沙:湖南科技出版社,1993,24-28
    46.谈永松,徐银学.猪遗传改良的新机遇[J].猪与禽,2002,(2):39-43
    47.李学伟,唐洁,包文玉等.种猪遗传评估的响应分析[C].中国动物遗传育种研究进展,北京:中国农业科技出版社,1999:332-338
    48.白俊艳,李金泉,道尔吉,张勤.用不同模型估计绒山羊早期生长性状遗传参数的比较[J].遗传学报,2004,31(6):578-581
    49.潘晚平,申祥科.美系长白猪、大白猪、杜洛克猪新品系的选育研究[J].养猪,2003,(5):16-17
    50.周铁茅.畜禽育种值估计模型的形成与发展[J].遗传,1998,10(3):46-48
    51.刘增廷.多性状简化动物模型BLUP方法在猪育种工作中的应用[J].畜牧兽医学报,1990,21(1):41-42
    52.金海国,俞美子,姜成国.用动物模型估计草原红牛部分数量性状的遗传参数及育种值[C].中国动物遗传育种研究进展,北京:中国农业科技出版社,2001:174-178
    53.曹小英,谢江明,孙会新.长白猪生长和繁殖性状的遗传趋势分析[C]中国动物遗传育种研究进展.北京:中国农业科技出版社,2001,183-187
    54.王先明,邵俊杰,占应祥.长白猪S_(Ⅳ)系生长发育性状与繁殖性状的遗传分析[C].中国动物遗传育种研究进展,北京:中国农业科技出版社,2001,188-191
    55.石雨,杨宁.构建多性状混合模型方程组的新方法[C].中国动物遗传育种研究进展,北京:中国农业科技出版社,2001,199-203
    56.徐宁迎,章胜乔.利用EXCEL程序拟合Logistic生长曲线.中国动物遗传育种研究进展[C].北京:中国农业科技出版社,2001,277-279
    57.范春国,董国忠.PIC配套系种猪引进、规模化养殖技术开发与产业化示范研究报告[J].养猪,2003(5):16-17
    58.罗旭芳,王青来.长白猪部分生长性状选育趋势[C].北京国际养猪研讨会暨展览会论文集,2003,134-136
    59.李学伟.加拿大种母猪遗传评估体系.http://www.gdswine.org/stech/genetics/evalu_sys/sowebv.htm.2003
    60.楼平儿,李学伟,朱砺.不同年龄阶段活体超声背膘厚的相关和遗传分析[J].中国畜牧杂志,2004,40(3):22-24
    61.曹洪战,吴常信,师守堃.利用MTDFREML估计大约克双肌臀种猪活体背膘厚遗传力时固定效应及水平数的确定[J].中国畜牧杂志,2004,40(3):34-36
    62.欧阳克薰,舒希凡,王文君等.采用开放式群体继代选育法和分子生物技术相结合选育高产大约克夏母系[J].养猪,2004(1):21-23.
    63.徐士清.对猪品系选育方法的评述及对我国猪品系选育工作的一些思考[C].中国动物遗传育种研究进展,北京.中国农业科技出版社,1999,27-31
    64.田可川,张沅,史梅英等.畜禽遗传评定的微机实现方法研究[C].中国动物遗传育种研究进展,北京:中国农业科技出版社,1999,493-498
    65.陈健雄,余丽明.大约克夏猪新品系的选育研究[C].中国动物遗传育种研究进展,北京:中国农业科技出版社,1999:468-471
    66.章元明.动物生长模型参数初值的探讨[C].中国动物遗传育种研究进展,北京:中国农业科技出版社,1995:272-274
    67.Neter J.著(张勇等译).应用线性回归模型[M].北京:中国统计出版社,1990,517-528
    68.Rarkowsky D.A.著(洪雨吉等译).非线性回归模型一统一的实用方法[M].南京:南京大学出版社,1986:1-91
    69.王立贤.遗传评估的经济价值[J].养猪在线,2004,(5):6
    70.章元明,四有庆.四川白鹅产蛋率曲线数学模型最优拟合时间的研究[C].中国动物遗传育种研究进展.北京:中国农业科技出版社,1997:194-198
    71.孙亚慧.种猪遗传评估方法的应用研究[D].甘肃农业大学硕士论文,2004
    72.吴克亮.种猪性能测定发展历程[J].养猪在线,2004,(5):8-9
    73.王立贤.场内测定与中心测定有何异同[J].养猪在线,2004,(5):10
    74.王改芳.概述阈性状的遗传参数估计[J].动物科学与动物医学,2004,21(11):15-16
    75.王改芳.贝叶斯方差组分估计法在畜禽育种中的应用[J].畜禽业,2003,(10):9-10
    76.彭中镇.改进外种猪育种工作的几点建议[C].中国动物遗传育种研究进展,北京:中国农业科技出版社,2005,3-8
    77.曹洪战,芦春莲,吴克亮等.优质猪育种目标的确定[C].中国动物遗传育种进展,北京:中国农业科技出版社,2005,9-12
    78.李金泉,张文广,王纪军.由印迹主基因决定的数量性状选择办法的研究[C].中国动物遗传育种研究进展,北京:中国农业科技出版社,2005,17-20
    79.张豪,卢妍,陈瑶生.表型选择和BLUP选择效率的比较[C].中国动物遗传育种研究进展,北京:中国农业科技出版社,2005,25-28
    80.杨飞来.应用多性状动物模型BLUP法进行猪的遗传评定研究[D].湖南农业大学硕士论文,2002
    81.何俊.瘦肉型猪选育群的遗传分析[D].湖南农业大学硕士论文,2004
    82.唐凡.大白、长白、杜洛克猪选育及杂交利用[D].湖南农业大学硕士论文,2004
    83.师守堃.为什么要推行种猪的遗传评估和场内测定[J].养猪在线,2004,(5):5
    84.王爱国.数据评估与BLUP选种[J].养猪在线,2004,(5):13.
    85.夏宣炎,熊远著.应用动物模型BLUP方法估计个体育种值研究[J].华中农业大学学报,2000,19(2):142-146
    86.肖炜,云鹏,苏雪梅等.我国猪联合育种的现状与存在的问题[J].当代畜牧,2005,(3):1-3
    87.鲁绍雄,连林生,李明丽.动物模型BLUP选择效果的计算机模拟研究[J].畜牧与兽医,2005,37(2):5-7
    88.鲁绍雄,吴常信.动物育种方法的回顾与展望[J].国外畜牧科技,2002,27(1):24-28
    89.吴常信.畜禽遗传育种技术的回顾与展望[J].中国农业科技导报,2005,6(3):1-6
    90.谢丽韫,刘学洪,徐波.准确育种值估计方法的进展[J].现代化农业,2001,(3):29-31
    91.Ignacy Misztal.数量遗传学方法应用于国家猪育种计划.华南农业大学学报,2005,26(增刊):56-60
    92.邓昌彦,张凤伟.分子标记技术在猪育种中的应用[J].动物科学与动物医学,2005,(9):19-21
    93.李学伟,王家圣,赵白力.运用BLUP选种效果的探讨[J].养猪,2001,(3):29-30
    94.Mathur RK.场间“关联”在场间遗传评估中的作用.华南农业大学学报,2005,26(增刊):68-71
    95.鲁绍雄,吴常信,连林生.影响动物模型MBLUP评定准确性的主要因素[J].遗传学报,2003,3(1):35-39
    96. Monchai Daungjinda.动物育种中解决混合模型复杂计算问题的软件应用.华南农业大学学报,2005,26(增刊):83-87
    97. Marois D., J.R. Brisbane, J.P. Laforest. Accounting for lactation length and weaning-to-conception interval in genetic evaluations for litter size in swine[J].J. Anim. Sci., 2000,78(7):1796-1810
    98. Schaeffer L.R. Application of random regression models in animal breeding[J]. Livest. Prod. Sci.,2004, 86:35-45
    99. Jamrozik J. Implementation issues for Markov Chain Monte Carlo methods in random regression test-day models[J]. J. Anim. Breed. Genet.,2004, 121:1-13
    100. Schaeffer L.R. Computing simplifications for non-additive genetic models[J].J. Anim. Breed. Genet.,2003, 120:394-402
    101. Schenkel F.S., L.R. Schaeffer and P.J. Boettcher. Comparison between estimation of breeding values and fixed effects using Bayesian and Empirical BLUP estimation under selection on parents and missing pedigree information [J]. Genet. Sel. Evol.,2002,34:41-59
    102. Jamrozik J. and L.R. Schaeffer. Comparison of two computing algorithms for solving mixed modele quations for multiple trait random regression test day models[J]. Livest. Prod. Sci.,2000,67:143-153
    103. Luo M.F., P.J. Boettcher, L.R. Schaeffer et al. Bayesian inference for categorical traits with an application to variance component estimation[J]. J.Dairy Sci., 2001, 84:694-704
    104. Stella A. Estimation of variances for gametic effects on litter size in Yorkshire and Landrace swine[J]. J. Anim. Sci.,2003,81:2171-2178
    105. De vries A.G. Gametic imprinting effects on rate and composition of pig growth[J]. Theor. Appl. Genet.,1994,88:1037-1042
    106. Noguera J. L. Multivariate analysis of litter size for multiple parties with production traits in pigs:Ⅰ. Bayesian variance component estimation[J]. J. Anim. Sci.,2002, 80:2540-2547
    107. Mehrabani-Yeganeh H., J.P. Gibson and L.R. Schaeffer. Effect of more stringent convergence criterion of estimated breeding values on response to selection[J]. J. Anim. Breed. Genet.,1999,116:339-349
    108. Dekkers J. C, R. Chakraborty, L. Moreau. Optimal selection on two quantitative trait loci with linkage. Genet. Sel. Evol., 2002,34(2):171-192
    109. Koots K.R. and J.P. Gibson. Realized sampling variances of estimates of genetic parameters and the difference between genetic and phenotypic correlations[J]. Genetics, 1996,143:1409-1416
    110. Satoh M., C. Hicks, K. Ishii et al. Prediction of response to selection based on BLUP of breeding values by expected response to family index selection supporting pig selection program [J]. Journal of Animal Science, 2000, 71(1):17-25
    111. Misztal I., L. Varona, M. Culbertson et al. Studies on the value of incorporating effect of dominance in genetic evaluations of dairy cattle, beef cattle and swine[J], http://www.ads.uga.edu/annrpt/.2005
    112. Groeneveld E., L. Csato. Joint genetic evaluation of field and station test in the Hungarian Large White and Landrace populations[J].http://w3.tzv.fal.de/~eg/pub/eg/ungarn/ungarnArch2/ungarnArch2.html.2005
    113. Stewart T. S., D. L. Lofgren, D. L. Harris et al. Genetic improvement programs in livestock: swine testing and genetic evaluation system[J]. Journal of Animal Science, 2002,69(9): 3882-3890
    114. Long T., Brandt H., Hammond K. Application of BLUP to genetic evaluation in pigs[J]. Pig news and information, 1991,12:217-219
    115. Ruvinsky A. Basics of gametic imprinting. J. Anim. Sci., 1999, 77(Suppl2):228-37
    116. Brisbane J. Genetic evaluation for meat and carcass quality[J].http://mark.asci.ncsu.edu/nsif/96proc/.2005
    117. Baas T. J., R. N. Goodwin, L. L. Christian. Design and standards for genetic evaluation of swine seedstock populations[J]. J. Anim. Sci., 2003, 81:2409-2418
    118. Quinton V.M. and C. Smith. An empirical check on Best Linear Unbiased Prediction genetic evaluation using pig field recording data[J]. Can. J. Anim. Sci., 1997,77:211-216
    119. Agriculture Canada. Marbling standards for beef and pork carcasses[M].Publication 1879/F, 1992
    120. Canadian Centre for Swine Improvement. National pork carcass and meat quality evaluation standards handbook[M].1996
    121. Golden B.L., W.M. Shelling, C.H. Mallinckrodt. Animal breeders toolkit and reference manual[M], ftp://cgel.Agsci.Colostate.EDU/pub/abtk.2005
    122. Blasco A, D. Sorensen, J.P. Bidanel. Bayesian inference of genetic parameters and selection response for litter size components in pigs. Genetics. 1998,149(1):301-306
    123. Li, X., B.W. Kennedy. Genetic parameters for growth rate and backfat in Canadian Yorkshire, Landrace, Duroc and Hampshire Pigs [J]. Journal of Animal Science, 1994,72:1450
    124. Nakai H., F. Saito, T. Ikeda et al. Standard models of pork color[J]. Bull. Nat. Inst. Animal Industry, 1995, 29:69-74
    125. Ducos A., J. P. Bidanel, V. Ducrocq, et al. Multivariate restricted maximum likelihood estimation of genetic parameters for growth, carcass and meat quality traits in French Large White and French Landrace Pigs[J]. Genet. Sel. Evol.,1993,25(5):475-493
    126. Groeneveld E. A reparameterization to improve numerical optimization in multivariate REML (co)variance component estimation[J]. Genet. Sel. Evol.,1994,26:537-545
    127. Van Tassell C.P., L.D. Vleck. Multiple-trait Gibbs sampler for animal model: Flexible programs for Bayesian and likelihood (Co)variance component inference. J. Anim. Sci.,1996,74:2586-2597
    128. Moeller S.J., R.N. Goodwin, R.K. Johnson et al. The national pork producers council maternal line national genetic evaluation program: a comparison of six maternal genetic lines for female productivity measures over four parities[J]. J. Anim. Sci., 2004,82(1):41-53
    129. Groeneveld E. VCE- a multivariate, multimodel REML covariance component estimation package[J]. In 5th WorId Congress on Genetics Applied to Livestock Production, Guelph, 1994, 22:47-48
    130. Moeller S.J, R.N. Goodwin,R.K. Johnson. The National Pork Producers Council Maternal Line National Genetic Evaluation Program: a comparison of six maternal genetic lines for female productivity measures over four parities. J. Anim. Sci., 2004,82(1):41-53
    131. SorensenD, A. Vernesen, S. Andersen. Bayesian analysis of response to selection: a case study using litter size in Danish Yorkshire pigs. Genetics, 2000,156(1):283-295
    132. Van Tassell C.P. and L. D. Van Vleck. A manual for use of MTGSAM. A set of FORTGAN programs to apply Gibbs sampling to animal models for variance component estimation[M]. USDA, ARS, Washington, DC. 1995
    133. Misztal I. and M. Perez-Enciso. Sparse matrix inversion for restricted maximum likelihood estimation of variance components by expectation maximization[J]. J. Dairy Science, 1993, 1479-1483
    134. Neumaier A. and E. Groeneveld. Restricted maximum likelihood estimation of covariances in sparse linear models[J]. SIAM J. Sci. Comput., 1995,16:223-232
    135. Wang C.S., R.L. Quaas and E. J. Pollak. Bayesian analysis of calving ease scores and birth weight[J]. Genet. Sel. Evol.,1997,29:117-143
    136. Gianola D. and R.L. Fernando. Bayesian methods in animal breeding theory[J]. J. Anim. Sci.,1986,63:217-244
    137. Tribout T. Continuous genetic evaluation on farm and tested station pigs in France[J]. http://elib.tiho-hannover.de/publications/6wcgalp.2005
    138. John A.M. Use of phenotypic and molecular data for genetic evaluation of livestock[J], http://agbio.cabweb.org/.2005
    139. Grzegorz Z. Pig breeding and testing in Poland[J].http://agri.bfro.uni-lj.si/delavnice/pigworkshop_4th/15 GZ BLUP in Poland.pdf.2005
    140. Poigner J. Estimation of breeding values for meat quality traits by pig[J].http://agri.bfro.uni-lj.si/delavnice/pigworkshop_4th/15_GZ_BLUP_in_Poland.pdf.2005
    141. Prins D. Model to include carcass quality in pig[J].http://agri.bfro.uni-lj.si/delavnice/pigworkshop_4th/15_GZ_BLUP_in_Poland.pdf.2005
    142. Tom J., T.J. Baas, J. W. Mabry. Genetic Trends for Reproductive Traits in Duroc Swine[J]. http://mark.asci.ncsu.edu/nsif/00proc/baasposter.htm.2005
    143. Chen P., T. J. Baas, J. W. Mabry. Genetic correlations between lean growth and litter traits in U.S. Yorkshire, Duroc, Hampshire, and Landrace pigs[J]. J.Anim. Sci., 2003, 81:1700-1705
    144. Surensen D.A., A.S. Anderson, J. Jensen et al. Inferences about genetic parameters using Gibbs sampler[C]. Proceedings of the 5th World Congress of Genet. Applied to Livestock Production. 1994,18:321-328
    145. Van der Lugt A.W., L.L.G. Jansa and J.A. M Van Arendonk. Estimates of variance components in Large animal models using Gibbs sampling[C]. Proceedings of the 5th World Congress of Genet. Applied to Livestock Production. 1994,18:329-332
    146. Falconer D. S. and T. F. C. Mackay. Introduction to Quantitative Genetics[M]. Fourth edition, Longman Group Ltd., Essex, 1996
    147. Lee C. and Wang C.D. Estimates of variance components for teat number in swine using REML and Gibbs sampler[J]. J. Anim. Sci.,1999,77(suppl.1):148
    148. Boldman K.G., L.A. Kriese, L.D. Van Vleck et al. A manual for use of MTDFREML. A set of programs to obtain estimates of variances and covariances(draft). U.S. Dept. of Agriculture[M]. Agriculture Research Services, 1995
    149. Hobert J.P. and G. Casella. The effect of improper priors on Gibbs sampling in hierarchical linear mixed models[J]. J. Am. Stat. Assoc.,1996, 91:1461-1473
    150. Wang C.S. Implementation issues in Bayesian analysis in animal breeding[C].Proceedings of the 6th World Congress of Genet. Applied to Livestock Production. 1998,25:481-488
    151. Hofer A. Variance component estimation in animal breeding: a review[J]. J. Anim. Breed. and Genet.,1998, 115:247-265
    152. Wang C.S.,J.J. Rutledge and D. Gianola. Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs[J]. Genet. Sel..Evol.,1994,26:91-115
    153. Van Tassell C.P. and L.D. Van Vleck. Multi-trait Gibbs sampler for animal models: Flexible programs for Bayesian and likelihood-based (co)variance component inference[J]. J. Anim. Sci.,1996,74:2586-2597
    154. Roche R. Genetic determination of individual birth weight and its association with sow productivity traits using Bayesian analysis[J].J. Anim. Sci.,1999,77:330-343
    155. Rodriguez M.C., M. Toro and 1. Silio. Selection on lean growth in a nucleus of Landrace pigs: an analysis using Gibbs sampling[J]. Anim. Sci.,1996,63:243-253
    156. Stella A.,K.J. Stalder, A.M. Saxton, et al. Estimation of variance for gametic effects on litter size in Yorksgire and Landrace swine[J]. J. Anim. Sci.,2003,81:2171-2178
    157. Barlow D.P. Gametic imprinting in mammals[J]. Science, 1995,270:1610-1613 Chen P.,T. J. Baas, J.W. Mabry et al. Genetic parameters and trends for litter traits in U.S. Yorkshire, Doroc, Hampshire and Landrace pigs[J]. J. Anim. Sci.,2003,81:46-53
    158. De Vries A.G., B. Kerr, B. Tier. Gametic imprinting effects on rate and composition of pig growth[J]. Theor. Appl. Gene.,1994,18:1037-1042
    159. Drogemuller C., H. Hamann, O. Distl. Candidate gene markers for litter size in different German pig lines[J]. J. Anim. Sci.,2001,79:2565-2570
    160. Engellandt T.H. and B. Tier. Genetic variances due to imprinted genes in cattle[J]. J. Anim. Breed. Genet.,2002, 119:154-165
    161. Essl A. and K. Voith. Estimation of variance components due to imprinting effects: Results of simulation study[J]. J. Anim. Breed. Genet.,2002, 119: 1-14
    162. Essl A. and K. Voith. Gametic imprinting effects on dairy and fitness-related traits in cattle[J]. J. Anim. Breed. Genet., 2002, 119: 182-189
    163. Gama L.T., K.G. Boldman and R.K. Johnson. Estimates of genetic parameters for direct and maternal effects on embryonic survival in swine[J]. J. Anim. Sci., 1991, 69: 4802-4809
    164. Noguera J. L., L. Varona and D. Babot. Multivariate analysis of litter size for multiple parties with production traits in pigs: Ⅰ. Bayesian variance component estimation[J]. J.Anim. Sci., 2002, 80: 2540-2547
    165. Alfonso L., Noguera J. L. and D. Babot. Estimates of genetic parameters for litter size at different parities in pigs[J]. Livest. Prod. Sci., 1997, 47: 149-156
    166. Bidanel J.P. and A. Ducos. Genetic parameters of backfat thickness, age at 100kg and ultimate pH in on-farm tested French and Large White pigs[J]. Livest. Prod. Sci., 1994, 40: 291-301
    167. Garcia-Cortes L.A.,M. Rico and E. Groeneveld. Using coupling with the Gibbs sampler to assess convergence in animal models[J]. J. Anim. Sci., 1998, 76: 441-447
    168. Naya H, D. Gianola, H. Romero. Inferring Parameters Shaping Amino-Acid Usage in Prokaryotic Genomes via Bayesian MCMC Methods. Mol. Biol. Evol., 2005, (9): 14-20
    169. Holm B, M. Bakken, O Vangen, R. Rekaya. Genetic analysis of litter size, parturition length, and birth assistance requirements in primiparous sows using a joint linear-threshold animal model. J. Anim. Sci., 2004, 82(9): 2528-33
    170. Totir L. R, R. L. Fernando, J. C. Dekkers. A comparison of alternative methods to compute conditional genotype probabilities for genetic evaluation with finite locus models. Genet. Sel. Evol., 2003, 35(6): 585-604
    171. Villanueva B, R. Pong-Wong, J. A. Woolliams. Marker assisted selection with optimised contributions of the candidates to selection. Genet. Sel. Evol., 2002, 34(6): 679-703