混凝土结构地震需求估计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于性能抗震工程PBSE理论是21世纪国际地震工程界的重要课题,而准确有效地评估结构在地震作用下的最大反应(地震需求)则是其关键所在。围绕混凝土结构的地震需求估计方法,本文进行了以下几个方面的研究工作:
     1.在对常规Pushover分析方法的精度以及适用范围进行详细分析的基础上,考虑模态Pushover分析和自适应Pushover分析当中一些值得借鉴的思想,对常规Pushover分析方法提出改进,建议了两种修正的Pushover分析方法。修正方法Ⅰ考虑了结构屈服后振动特性的改变,推覆分析过程中根据结构的屈服振型对其屈服后的形状向量及水平荷载模式进行修正,减小了Pushover方法对结构楼层及层间位移的估计误差。修正方法Ⅱ在修正方法Ⅰ的基础上,考虑多阶振型的组合效应,进一步提高了其估计精度。对于以整体机制失效的框架,修正方法Ⅱ的估计误差约为5%左右;而对于以局部机制失效的框架,该方法的估计误差也能控制在10%左右的范围。
     2.收集30组双分量近场地震加速度记录,分别计算其水平及竖向分量的加速度反应均值谱,发现近场地震的确具有明显高于远场地震的竖向效应。对6层和10层框架结构算例按是(否)考虑竖向效应两种情况进行动力时程分析,分析结果表明,近场地震竖向效应对结构的楼层和层间位移需求具有明显的增大作用。合理考虑近场地震竖向效应对结构水平方向位移需求的影响,对传统Pushover分析方法提出了改进,改进后的方法首先按一定方式在结构的每一个集中质量处施加竖向地震力,然后对结构进行水平方向的Pushover分析。采用4种Pushover分析方法估计了两个框架结构算例的楼层及层间位移需求,并根据时程分析统计结果对4种方法的准确性进行了评估。
     3.基于Pushover理论的基本假定,推导了多自由度体系结构与其等效单自由度体系之间的能量转换关系,建议了一种估计多自由度体系结构变形能及地震耗能的近似方法。在此基础上,借鉴混凝土构件损伤性能评估的基本思想,提出一种评价混凝土结构整体抗震性能的简化方法。该方法综合考虑结构的最大变形及地震耗能对其整体抗震性能的影响,基于Park-Ang损伤模型计算结构的整体损伤指数,并据此对其整体抗震性能进行综合评估。算例分析表明,简化方法估计所得结构地震耗能与时程分析结果较为接近,且估计结果偏于安全。
     4.分析了基本不确定因素通过结构体系进行传递,并使结构的地震需求参数也出现不确定性的过程。探讨了将FOSM法、Tornado图形法和直接统计法应用于敏感性分析的优势和局限性。以一个典型混凝土框架结构为例,综合运用一次二阶矩方法、Tornado图表法和直接统计法,估计了4种结构地震需求参数对于一系列基本不确定因素的敏感度,进而对基本不确定因素的重要性进行了排序。分析结果表明,结构的地震需求对地震动的强度和特征最为敏感。
     5.提出一种新的地震动随机模型,并根据不同的场地类别和设计地震分组,参照现行抗震规范谱对地震动随机模型中的参数进行了标定。从新的地震随机动模型出发,基于概率可靠度理论确定了结构弹性及弹塑性位移需求的概率分布函数,并以此为基础建立了结构的概率弹性及弹塑性位移需求谱。结合本文理论和Pushover分析方法,建议了结构随机地震反应分析和概率地震需求分析的简化方法,建议方法与和数值方法的分析结果比较接近,但计算工作量大大小于以大量动力时程分析为基础的数值方法。
Performance-based seismic engineering (PBSE) is a very important research project in the field of international earthquake engineering, and estimating the maximum response of structures under seismic action accurately and efficiently is the key point of PBSE exactly. Focused on the structural seismic demand estimation method, this dissertation involves the following work:
     1. The estimation precision and the application range of the ordinary Pushover Analysis Method are discussed in detail. Using some recommendable idea of Model Pushover Analysis and Adaptive Pushover Analysis for reference, two kinds of Modified Pushover Analysis Method (MPAM) are proposed based on ordinary pushover analysis procedures. Considering the structural vibration characteristics after yielding, MPAMⅠcorrect the lateral loading pattern and the shape vector according to the yielding mode during Pushover Analysis procedures, hence the estimation error of floor displacement and the inter-story drift is reduced significantly. Compared to MPAMⅠ, MPAMⅡconsider the effect of Hmodal combination H, its estimation precision is Improved further more. For the frame damaged with integral mode , the estimation error of MPAMⅡis about 5%, For the frame damaged with local mode , the estimation error of MPAMⅡis about 10%.
     2. Based on 30 sets of two-component acceleration records of near-fault earthquake, the mean acceleration response spectrums are calculated in horizontal and vertical direction, the results shows that, compared to the far-fault earthquake, the near-fault earthquake really have much higher vertical effect. Using each set of near-fault acceleration records, a set of dynamic time-history analyses is carried out to determine the displacement responses of 6 story and 10 story frames, the results show that the vertical effect of near-fault earthquake will remarkably amplify the floor displacement and the inter-story drift demands of frame structures. Therefore, considering the vertical effect of near-fault earthquake properly, the modified pushover analysis procedures are proposed in this paper. According to the modified pushover method, the vertical seismic force should be loaded on every lumped mass of multi-degree-of-freedom structures at first, after that the pushover analysis in horizontal direction could be carried out as ordinary. To evaluate the accuracy of the modified and unmodified method, the floor displacement and the story drift demands of six story and ten story frames are estimated using 4 kinds of Pushover Analysis Methods, and compared with the results obtained from the dynamic time-history analysis.
     3. On the basis of the basic assumptions of pushover theory, the approximate relationship for converting the energy between the MDOF system structure and its equivalent SDOF system is deduced, and an approximate method is suggested to estimate the deformation energy and hysteretic energy of multi-degree-of-freedom system. In light of the idea of seismic damage evaluation of concrete members, a simplified approach is proposed to evaluate the overall seismic performance of concrete structures. The simplified approach synthetically considers the influences of maximum deformation and energy dissipation of structures, and evaluates the overall seismic performance of structures according to structural damage index calculated by Park-Ang damage model. The numerical example indicates that the results of simplified method are very close to the results obtained from time-history analysis, and are safe to some extent.
     4. The uncertainty generation of earthquake demand parameters caused by a series of basic uncertain factors is analyzed. At the same time, the Hadvantages H and limitations of FOSM method, Tornado Diagram method and Mathematical Statistics method are discussed for the purpose of sensitivity analysis. Illustrated by the case of a frame structure, the sensitivity of four kinds of earthquake demand parameters to a series of basic uncertain factors are estimated using three kinds of methods mentioned above, and the basic uncertain factors are arranged in important order. The result shows that the uncertainty of earthquake demand parameters is most sensitive to the intensity and the profile of ground motion.
     5. A new seismic random model is proposed, and the model parameters are determined according to different site classifications and design earthquake effects specified in current seismic code. In terms of the new seismic random model, the probabilistic distribution of structural elastic and elastic-plastic displacement demand is deduced based on reliability theory, and the elastic and elastic-plastic displacement spectrum are established. Integrating the theory in this paper and the pushover analysis procedure, the simplified methods for random seismic response analysis and the probabilistic seismic demand analysis are suggested, moreover on the basis of the SDOF and MDOF system case ,the numerical verification are carried out for validating the accuracy of simplified methods. The calculating results of simplified method are very close to which of the numerical method, while the working amount of simplified method is much less than which of the numerical method.
引文
[1]中华人民共和国国家标准.建筑抗震设计规范(GBJ11-89).北京:中国建筑工业出版社, 1989, 1-64
    [2]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001)).北京:中国建筑工业出版社, 2001,1-62
    [3] Uniform Building Code 1997. Structural engineering design provisions. Volume 2. Whittier: International Conference of Building Officials, 1997
    [4]小谷俊介.日本基于性能结构抗震设计方法的发展.建筑结构, 2000, 30 (6): 3-9
    [5] Hiraishi H, Midorikawa M, Teshigawara M, et al. Development of performance -based building code in Japan: framework of seismic and structure provisions. In: Joint Meeting of the U.S./Japan Cooperative Program in Natural Resources Panel on Wind and Seismic Effects. Gaithersburg, 1998, 260-271
    [6]王亚勇.我国2000年抗震设计模式规范展望.建筑结构, 1999, 6: 32-36
    [7] Priestley M J N. Performance based seismic design. In: 12WCEE. Paper 2831, Auckland, 2000, 1-22
    [8] Bertero R D, Bertero V. Performance-based seismic engineering: the need for a reliable conceptual comprehensive approach. Earthquake Engineering and Structural Dynamics, 2002, 31: 627-652
    [9]程斌,薛伟辰.基于性能的框架结构抗震设计研究.地震工程与工程振动, 2003, 23 (4): 50-55
    [10] SEAOC. Performance-based seismic engineering of building. Vision 2000. Sacramento: Structural Engineers Association of California, 1995
    [11] FEMA. NEHRP guidelines for the seismic rehabilitation of buildings. FEMA-273. Washington, D.C: Federal Emergency Management Agency, 1996
    [12] FEMA. NEHRP Commentary on the guidelines for the seismic rehabilitation of buildings. FEMA-274. Washington, D.C: Federal Emergency Management Agency, 1997
    [13] ATC. Seismic evaluation and retrofit of existing concrete building. Report ATC-40. Redwood City: Applied Technology Council, 1996
    [14]王亚勇.我国2000年工程抗震设计模式规范基本问题研究综述.建筑结构学报, 2000, 21 (1): 2-4,
    [15] Potuan C, Collins K R. Some observations on performance-based andreliability- based seismic design of asymmetric building structures,2001,23 (8):1005- 1010
    [16] Bertero R D, Bertero V. Performance-based seismic engineering: the need for a reliable conceptual comprehensive approach. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 627-652
    [17]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题.同济大学学报, 2002, 30 (12): 1429-1434
    [18]张静怡,李春祥.抗震性能设计的发展.自然灾害学报.2004,13 (5): 128-134
    [19]马玉宏,谢礼立.考虑地震环境的设计常遇地震和罕遇地震的确定.建筑结构学报, 2002, 23 (1): 43-47
    [20] Smith K G. Innovation in earthquake resistant concrete structure design philosophies;a century of progress since Hennebique’s patent. Engineering Structure , 2001, 23(1): 72–81
    [21] Park Y J, Ang A H S, Wen Y K. Damage-limiting seismic design of building. Earthquake Spectra.1987, 31 (1) : 1-26
    [22] Ghobarah A, Abou-Elfath H, Biddah A. Response-based damage assessment of structures. Earthquake Engineering and Structure Dynamics,1999,28(l):79-104
    [23] Valles R E, Reinhorn A M, Kunnath S K, et al. IDARC 2D Version 4.0: A program for the inelastic damage analysis of building. Technical Report NCEER-96-0010. Buffalo: National Center for Earthquake Engineering Research, 1996, section3: 1-92
    [24]牛狄涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型.地震工程与工程振动, 1996, 16 (4) : 27-37
    [25]欧进萍,牛荻涛,王光远.多层非线性抗震钢结构的模糊动力可靠度分析与设计.地震工程与工程振动, 1990, 10 (4) : 27-37
    [26]刘伯权,白绍良,赖明.抗震结构的破坏准则评述及探讨,重庆建筑大学学报,1993, 15(4) : 1-8
    [27]江近仁,孙景江.砖结构的地震破坏模型,地震工程与工程振动, 1987, 7 (1) : 20-34
    [28]周定松.钢筋混凝土框架结构基于性能的抗震设计方法: [同济大学博士学位论文].上海:同济大学, 2004, 1-148
    [29]欧进萍,何政,吴斌,等.钢筋混凝土结构的地震损伤控制设计.建筑结构学报, 2000, 21 (1) : 63–70
    [30] Veletsos A S, Newmark N M. Effect of inelastic behavior on the response of simple systems to earthquake motions. In: Proceeding of the second WCEE.Tokyo and Kyoto, 1960, 895-912
    [31] Newmark N N.高耸结构的地震分析和设计的新趋势.见:地震工程学(中译本),北京:科学出版社, 1978, 1-550
    [32] Chopra A K. Dynamics of structures: theory and applications to earthquake engineering. Beijing: Tsinghua University Press,2005,1-305
    [33]白绍良,李刚强,李英民.从R-μ-T关系研究成果看我国钢筋混凝土结构的抗震措施.地震工程与工程振动, 2006, 26 (5) : 144-151
    [34] Miranda E. Site-dependent strength-reduction factors. Journal of Structural Engineering, 1993,119 (12) : 3503-3519
    [35] Miranda E, Bertero V V. Evaluation of strength reduction factors for earthqu- ake-resistant design. Earthquake Spectra. 1994, 10(2):123 -131
    [36] Vidic T, Fajfar P, Fischinger M. Consistent inelastic design spectra: strength and displacement. Earthquake Engineering and Structural Dynamics, 1994, 23 (5): 507-521
    [37] Kappos A J. Evaluation of behavior factors on the basis of ductility and over - strength studies. Engineering Structures , 1999, 21(9): 823-835
    [38] Borzi B, Elnashai A S. Refined force reduction factors for seismic design. Journal of Engineering Structures, 2000, 22 (5) : 1244-1260
    [39] Mwafy A M, Elnashai A S . Calibration of force reduction factors of RC Buildings. Journal of Structure Engineering , 2002, 6 (2): 239-273
    [40]翟长海,公茂盛,张茂花等人.工程结构等延性地震抗力谱研究.地震工程与工程振动, 2004,24(1):22-29
    [41] Chopra A K, Goel R K. Capacity-demand-diagram methods for estimating seismic deformation of inelastic structures: SDF systems. Report No. PEER -1999/02, Berkeley: Pacific Earthquake Engineering Research Center, 1999, 1-65
    [42] Fajfar P. Capacity spectrum method based on inelastic demand spectra. Earthquake Engineering and Structure Dynamics, 1999, 23: 979-993
    [43] Miranda E. Evaluation of site-dependent inelastic seismic design spectra. Journal of Struct. Engng.,ASCE, 1993, 119 (5): 1319-1339
    [44] Lee L H, Han S W, Oh Y H. Determination of ductility factor considering different hysteretic models. Earthquake Engineering and Structural Dynamics, 1999, 28: 957-977
    [45]张海燕.基于位移的概率地震需求分析与结构抗震设计研究:[湖南大学博士学位论文].长沙:湖南大学,2005,1-120
    [46] Wei-Jian Y, Hai-Yan Z, Kunnath S K. Probabilistic Constant-Strength Ductility Demand Spectra. Journal of Structural Engineering, 2007, 133(4) : 567-575
    [47] Farrow K T. Capacity-demand index relationship for performance-based seismic design: [Dissertation]. Notre Dame: University of Notre Dame, 2001
    [48] Miranda E. Inelastic displacement ratios for structures on firm sites. Journal of Structural Engineering, 2000, 126 (10): 1150-1159
    [49]吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱.地震工程与工程振动, 2004, 24 (1): 39-48
    [50]翟长海,谢礼立,张敏政.工程结构等强度位移谱研究.哈尔滨工业大学学报, 2005, 37 (1):45-48
    [51] Zhai C H,Li S, Xie L L. Study on inelastic displacement ratio spectra for near-fault pulse-type ground motions. Earthquake Engineering and Engineering Vibration,2007, 6 (4): 351-355
    [52] Chung-Che C, Chia-Ming U. Establishing absorbed energy spectra an attenuation approach. Earthquake Engineering and Structure Dynamics, 2000, 29(10): 1441-1455
    [53] Riddell R, Garcia J E. Hysteretic energy spectrum and damage control. Earthquake Engineering and Structural Dynamics ,2001,30(12):1791-1816
    [54]刘哲锋,沈蒲生,胡习兵.地震总输入能量与瞬时输入能量谱的研究.地震工程与工程振动.2006, 26(6) : 31-36
    [55]程光煜,叶列平.弹塑性SDOF系统的地震输入能量谱.工程力学, 2008, 25(2) : 28-39
    [56] Wang Y Y, Liu X D, Cheng M X. The earthquake input for time-history analysis of structure.地震研究, 1992, 15 (1): 104-118
    [57]李英民,杨溥,赖明等.结构时程分析法输入地震动样本容量及响应设计取值的确定.地震工程与工程振动, 1999, 19 (增刊): 156-163
    [58]程民宪.结构动力分析中几种逐步积分法在负刚度条件下的收敛性和稳定性.工程力学, 1989, 6 (2): 35-47
    [59] Mao J M,Zhai C H,Xie L L. An improved modal pushover analysis procedure for estimating seismic demands of structures. Earthquake Engineering and Engineering Vibration. 2008, 7 (1): 25-31
    [60]马千里,叶列平,陆新征. MPA法与Pushover法的准确性对比.华南理工大学学报. 2008, 36(1):121-128
    [61] Lawson R S, Vance V L, Krawinkler H. Nonlinear static pushover analysis: why, when, and how?. In:5th U. S. National Conference on EarthquakeEngineering. Chicago, Illinois, 1994 , 58-66
    [62] Paret T F, Sasaki K K, Eilbeck D H, et al. Approximate inelastic procedures to identify failure mechanisms from higher mode effects. In: Proceedings of the 11th World Conference in Earthquake Engineering. Acapulco, Mexico: Oxford, 1996, 966
    [63] Krawinkler H. Pros and cons of a pushover analysis of seismic performance evaluation. Engineering Structures, 1998, 20(6): 452-464
    [64] Goel R K, Chopra A K .Role of higher-mode pushover analyses in seismic analysis of buildings. Earthquake Spectra. 2004, 21(4): 1027-1041
    [65] Chopra A K, Goel R K. A modal pushover analysis procedure for estimating seismic demands for building. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 561-582
    [66] Chopra A K, Goel R K.A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings. Earthquake Engineering and Structu- ral Dynamics, 2004, 33(15): 903-927
    [67]马千里,叶列平,陆新征,等人.采用逐步增量弹塑性时程方法对RC框架结构推覆分析侧力模式的研究.建筑结构学报, 2008, 29(2):132-140
    [68] Gupta B, Kunnath S K. Adaptive spectra-based pushover procedure for seismic evaluation of structures. Earthquake Spectra, 2000, 16(2):367-391
    [69] Faella G. Evaluation of the R/C structures seismic response by means of nonlinear static push-over analysis. In: 11th WCEE. Paper No. 1146, 1996, 1-8
    [70]尹华伟.钢筋混凝土框架—剪力墙结构非线性抗震计算方法的研究及其应用: [湖南大学硕士学位论文].长沙:湖南大学, 2001, 55-73
    [71]尹华伟,汪梦甫,周锡元.结构静力弹塑性分析方法的研究和改进.湖南大学学报.2003,20(4):46-49
    [72]经杰,叶列平,钱稼茹.基于能量概念的剪切型多自由度体系弹塑性地震位移反应分析.工程力学, 2003, 20(3): 31-37
    [73]经杰,叶列平,钱稼茹.不均匀剪切型层模型结构基于能量概念的弹塑性地震位移反应分析.土木工程学报, 2003, 36(12): 14-19
    [74] Chung-Che C, Chia-Ming U. A procedure for evaluating seismic energy demand of framed structures. Earthquake engineering and structural dynamics. 2003, 32(2):229-244
    [75]龚胡广,沈蒲生.一种基于位移的改进静力弹塑性分析方法.地震工程与工程振动. 2005, 25(3):19-23
    [76]侯爽,欧进萍.结构Pushover分析的侧向力分布及高阶振型影响.地震工程与工程振动. 2004, 24(3):89-97
    [77] Chopra A K, Goel R K. Capacity-demand-diagram methods for estimating seismic deformation of inelastic structures: SDF systems. Report No. PEER -1999/02, Berkeley: Pacific Earthquake Engineering Research Center, 1999, 1-65
    [78]刘海卿,陈小波,王学庆.基于损伤指数的框架结构倒塌分析综述.自然灾害学报. 2008, 17(1): 186-190
    [79] Chung Y S, Meyer C, Shinozuka M. Modeling of concrete damage. ACI Structure Journal, 1989, 186 (3) : 259 - 271
    [80] Mehanny S S F, Deierlein G G. Seismic damage and collapse assessment of co- mposite moment frames. Journal of Structural Engineering,2001,127(9): 1045 -1053
    [81]李洪泉,欧进萍.剪切型钢筋混凝土结构的地震损伤识别方法.哈尔滨建筑大学学报, 1996, 29 (2) : 8-12
    [82] Park Y J, Ang H S. Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering, 1985, l10(4): 722-739
    [83] Park Y J, Ang H S, WenY K. Seismic damage analysis of reinforced concrete building. Journal of Structural Engineering ,1985, 10(4):740-756
    [84]欧进萍,牛荻涛,王光远.多层非线性抗震钢结构的模糊动力可靠度分析与设计.地震工程与工程振动, 1990, 10 (4) : 27-37
    [85]牛狄涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型.地震工程与工程振动, 1996, 16 (4) : 27-37
    [86]吕大刚,王光远.基于损伤性能的抗震结构最优设防水准的决策方法.土木工程学报, 2001, 7 (1) : 44 - 49
    [87] Ghobarah A, Abou-Elfath H, Biddah A. Response based damage assessment of structures. Earthquake Engineering and Structural Dynamics, 1999, 28 (1): 79- 104
    [88] Fintel M, Ghosh S K. Explicit inelastic dynamic design procedure for aseismic structures. ACI Journal, 1979, 2: 110-118
    [89] Kowalsky M J,Priestley M J N, Macrae G A. Displacement-based design of RC bridge column in seismic regions. Earthquake Engineering and Structural Dynamics, 1995, 24 (12): 1623-1643
    [90] Calvi G M, Kingsley G R. Displacement-based seismic design of multi-degree- of-freedom bridge structures. Earthquake Engineering and Structural Dynamics, 1995, 24 (9) : 1247-1266
    [91] Priestley M J N and Kowalsky M J. Direct displacement-based seismic design of concrete buildings. Bulletin of the New Zealand National Society for Earthquake Engineering, 2000, 33 (4) : 421- 444
    [92]欧进萍,何政,吴斌.钢筋混凝土结构基于地震损伤性能的设计.地震工程与工程振动. 1999, 19 (1) : 21–30
    [93]罗文斌,钱稼茹.钢筋混凝土框架基于位移的抗震设计.土木工程学报, 2003, 36 (5) :22-29
    [94] Cornell C A, Krawinkler H. Progress and challenges in seismic performance assessment. PEER Center News, 2000: 3(2): 1-2. URL http://peer.berkeley.edu /news/2000springs /index. html, 2004-1-5
    [95] Hyung T L.Probabilistic seismic evaluation of reinforced concrete structural components and systems:[Doctoral Dissertation].Berkeley:Department of Civil and Environmental Engineering, University of California, 2005, 1-220
    [96] Porter K A. An overview of PEER’s performance-based earthquake engineer- ing methodology. In: Proceeding of Ninth International Conference on Applications of Statistics and Probability in Civil Engineering. San Francisco, CA: Civil Engineering Risk and Reliability Association, 2003, 973-980
    [97]欧进萍,王光远.结构随机振动.北京:高等教育出版社,1998, 1-380
    [98]张治勇,孙柏涛,宋天舒.新抗震规范地震动功率谱模型参数的研究.世界地震工程, 2000, 16 (3): 33-38
    [99] Clough R W, Penzien J. Dynamics of structures.2nd edition. New York: McGraw-Hill, Inc., 1993, 288-317
    [100]欧进萍,牛获涛,杜修力.设计用随机地震动的模型及其参数确定.地震工程与工程振动, 1991, 11 (3): 45-54
    [101] Amin M, Ang A H S. Nonstationary stochastic model of earthquake motion. Engineering Mechanics Division, ASCE. 1968, 94(EM2):559-584
    [102] Mircea G. Martingale approach to Monte Carlo simulation and linear random vibration.1999, 125(12):1395-1402
    [103]张新培,董娜.抗震结构时程可靠度的遗传模拟退火算法.西南交通大学学报2004, 39(4) : 419-422
    [104] Xue S D. Wang X S, Cao Z. Multi-dimensional Pseudo Excitation Method for nonstationary random seismic analysis of spatial lattice shells. International Journal of Space Structures.2004, 19(3):129-136
    [105]林家浩,夏杰,张亚辉等.非平稳随机摄动分析中的久期项效应.振动工程学报, 2003, 16 (3): 124-128
    [106]戴宗信.结构动力学的概率分析.上海:上海交通大学出版社, 1989, 227-296
    [107]张明.非线性随机振动等效线性化的一种推广.西南交通大学学报, 1998, 33 (1): 77-81
    [108] Cramer C H, Petersen M D, Reichle M S. A Monte Carlo approach in estimating uncertainty for a seismic hazard assessment of Los Angeles, Ventura, and Orange counties, California. Bulletin of the Seismological Society of America. 1996, 86(6),1681-1691
    [109] Bake J W, Cornell C A. Uncertainty specification and propagation for loss estimation using FOSM methods. In: Proceedings of Ninth International Conference on Application of Statistics and Probability in Civil Engineering, San Francisco, California, USA,2003,669-676
    [110] Porter K A, Beck J L, Shaikhutdinov R V. Sensitivity of building loss estimate to major uncertain variables. Earthquake Spectra, 2002, 18(4):719-743
    [111] Housner G W, Hudson D E. The Port Hueneme [California] earthquake of March 18, 1957. Bulletin of the Seismological Society of America, 1958, 48(2): 163-168
    [112] Bolt B A. The San Fernando Valley earthquake of February 9, 1971-data on seismic hazards. Bulletin of the Seismological Society of America,1971, 61(2): 501-510
    [113] Bertero V V, Mahin S A, Herrera R A. Aseismic design implications of near-fault San Fernando earthquake records. Earthquake Engineering and Structural Dynamics, 1978, 6 (1): 31-42
    [114] Wang G Q , Zhou X Y, Zhang P Z , et al .Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi Taiwan earthquake. Soil Dynamics and Earthquake Engineering, 2002, 22 (1): 73-96
    [115]倪永军,朱晞.近断层地震动的加速度峰值比和反应谱分析.北方交通大学学报, 2004, 28(4) : 1-5
    [116] Bozorgnia Y, Niazi M, Campbell K W. Characteristics of free-field vertical ground motion during the Northridge Earthquake. Earthquake Spectra, 1995, 11 (4): 515-525
    [117] Kikuchi M, Dan K, Yashiro K. Seismic behavior of a reinforced concrete building due to large vertical ground motions in near-source regions. In:Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, New Zealand: New Zealand Society for Earthquake Engineering,2000, 100.1-100.8
    [118] Kunnath S K, Erduran E, Chai Y H, Yashinsky M. Effect of near-Fault vertical ground motions on seismic response of highway overcrossings. Bridge Engineering. 2008,13, 283-290
    [119]毛建猛,谢礼立,翟长海.模态Pushover分析方法的研究和改进.地震工程与工程振动, 2006, 26(6): 49-55
    [120]叶列平,曲哲,马千里等人.从汶川地震中框架结构震害谈“强柱弱梁”屈服机制的实现.建筑结构, 2008, 38(11): 52-59
    [121]蔡健,周靖,方小丹.柱端弯矩增大系数取值对RC框架结构抗震性能影响的评估.土木工程学报, 2007, 40(1): 6-14
    [122]高小旺.地震作用下多层剪切型结构弹塑性位移反应的实用计算方法.土木工程学报, 1984, 17 (3):79-84
    [123]陈光华.地震作用下多层剪切型结构弹塑性位移反应的简化计算.建筑结构学报, 1984(2), 45-57
    [124]侯爽,欧进萍.钢筋混凝土框架结构体系抗震可靠度及其抗力衰减影响分析.地震工程与工程振动.2006, 26(5): 114-119
    [125]朱俊锋,王东炜,霍达.基于位移的RC多层框架结构失效模式相关性分析.郑州大学学报(理学版). 2007, 29(1): 110-115
    [126] Ghobarah A, EI-Attar M, Aly N M. Evaluation of retrofit strategies for reinforced concrete columns: a case study. Engineering Structures, 2000, 22(5): 490-501
    [127]叶献国.多层建筑结构抗震性能的近似评估—改进的能力谱方法.工程抗震, 1998, 4: 10-14
    [128] Fajfar P. Capacity spectrum method based on inelastic demand spectra. Earthquake Engineering and Structure Dynamics, 1999, 28(9): 979-993
    [129]卢文生,吕西林.模态静力非线性分析中模态选择的研究.地震工程与工程振动, 2004, 24(6): 32-38
    [130]沈聚敏,周锡元,高小旺,刘晶波.抗震工程学.北京:中国建筑工业出版社,2000,322-352
    [131]辛娅云.竖向地震作用的重要性.工程抗震与加固改造.2005,27(增刊):48-50
    [132] Bozorgnia Y, Niazi M. Distance Scaling of Vertical and Horizontal Response Spectra of the Loma Prieta Earthquake.Earthquake Engineering & Structural Dynamics.1993,22(8):695-707
    [133] Bozorgnia Y, Niazi M, Campbell K W. Characteristics of free-field verticalground motion during the Northridge Earthquake.Earthquake Spectra.1995,11(4):515-525
    [134] Niazi M, Bozorgnia Y.Behavior of Near-Source Peak Horizontal and Vertical Ground Motion over SMART-1 Array,Taiwan.Bulletin of Seismological Society of America.1991,81(3):715-732
    [135] Niazi M, Bozorgnia Y. Behavior of Near Source Vertical and Horizontal Response Spectra at SMART-1 Array, Taiwan. Earthquake Engineering & Structural Dynamics.1992,21(1):37-50
    [136]胡庆昌.1995年1月17日日本阪神大地震中神户市房屋结构震害简介.建筑结构学报.1995,16(3):10-12
    [137] Hall J F, Heaton T H, Halling M W, et al. Near-source ground motions and its effects on flexible buildings. Earthquake Spectra, 1995, 11(4): 569-605
    [138] Chopra A K, Chintanapakdee C. Accuracy of response spectrum estimates of structural response to near-field earthquake ground motions: Preliminary results. In: Proceedings of the ASCE Structures World Conference. Oxford , England : Elsevier Science Ltd , 1998, T136-1
    [139] International Council of Building Officials. 1997 Uniform Building Code . Whittier , California : International Conference of Building Officials, 1997. Vol. 2 : 34-35
    [140]徐龙军,谢礼立.近断层地区抗震设计谱研究.东南大学学报.2005,35(增刊Ⅰ):105-108
    [141]李新乐,窦慧娟,孙建刚.缺乏近断层强震观测资料地区抗震设计规范反应谱研究.地震学报.2007,29(4):419-425
    [142] Chopra A K, Chintanapakdee C. Comparing response of SDOF systems to near-fault and far-fault earthquake motions in the context of spectral regions. Earthquake Engineering and Structural Dynamics. 2001, 30(12) : 1769-1789
    [143] Shome N. Probabilistic seismic demand analysis of nonlinear structures: [dissertation]. Stanford: Department of civil and environmental engineering of Stanford University, 1999, 1-320
    [144] Bazzurro P. Probabilistic seismic demand analysis: [dissertation]. Stanford: Department of civil and environmental engineering of Stanford University, 1998, 1-329
    [145] Kurama Y C, Farrow K T. Ground motion scaling methods for different site conditions and structure characteristics. Earthquake Engineering and Structural Dynamics. 2003,32(15): 2425-2450
    [146] Holmes W T. The 1997 NEHRP recommended provisions for seismic regulat- ions for new buildings and other structures. Earthquake Spectra. 2000, 16(1): 101-114
    [147]周文峰,黄宗明,白绍良.约束混凝土几种有代表性应力-应变模型及其比较.重庆建筑大学学报,2003,25(4):121-12
    [148] Park R, Kent D C, Sampson R A. Reinforced concrete members with cyclic loading. Journal of the Structural Division.1972, 98(7): 1341-1360
    [149] Park R, Priestley M J N, Gil1 W D. Ductility of square-confined concrete columns. Journal of Structural Divition,1982,108(4):929-950
    [150]叶列平.混凝土结构.北京:清华大学出版社,2000,12-18
    [151]江见鲸,陆新征,叶列平.混凝土结构有限元分析.北京:清华大学出版社, 2005.50-53
    [152]钱培风.水塔的竖向与水平地震力.四川建筑科学研究.2002,28(3):66-74
    [153]李创第,邹万杰,黄天立,李暾.结构在水平与竖向地震同时作用的非平稳响应.土木工程学报.2005,38(6) :25-53
    [154] Saadeghvaziri M A, Foutch D A. Dynamic behavior of R/C highway bridges under the combined effect of vertical and horizontal earthquake motions. Earthquake Engineering and Structural Dynamics. 1991, 20, 535-549
    [155] Papazoglou A J, Elnashai A S. Analytical and field evidence of the damaging effect of vertical earthquake ground motion. Earthquake Engineering and Structural Dynamics. 1996,25, 1109-1137
    [156] Collier C J, Elnashai A S. A procedure for combining vertical and horizontal seismic action effects. Journal of Earthquake Engineering. 2001,5(4), 521–539
    [157] Kunnath S K, Erduran E, Chai Y H, Yashinsky M. Effect of near-Fault vertical ground motions on seismic response of highway overcrossings. Bridge Engineering. 2008,13, 283-290
    [158] Ye L P, Otani S. Maximum seismic displacement of inelastic systems based on energy concept. Earthquake Engineering and Structure Dynamics, 1999, 28(12): 1483-1499
    [159]傅剑平,王敏,白绍良.对用于钢筋混凝土结构的Park-Ang双参数破坏准则的识别和修正.地震工程与工程振动,2005,25(5):73-79
    [160]王东升,冯启民,王国新.考虑低周疲劳寿命的改进Park-Ang地震损伤模型.土木工程学报, 2004,37(11):41-49
    [161] Kunnath S K, Reinhorn A M, Park Y J. Analytical modeling of inelastic seismic response of R/C structures. Journal of Structural Engineering. 1990, 116(4):123-128
    [162] Trifunac M D, Brady A G. A study on the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America, 1975, 65 (3): 581- 626
    [163] Aslani H, Miranda E. Probabilistic response assessment for building-specific loss estimation. Technical Report No.PEER2003/03, Pacific Earthquake Engineering Research Center, University of California,Berkeley,2003,1-49
    [164] Roberto M, Enrique C, Carmen C. Optimal cost design with sensitivity analysis using decomposition techniques. Application to composite breakwaters. Structural safety, 2006, 28(4): 321-340
    [165] Frangopol D M, Spacone E, Iwaki I. A new look at reliability of reinforced concrete columns. Journal of Structural Safety, 1996, 18(2):123–150
    [166] Grant L H, Mirza S A, Macgregor J G. Monte carlo study of strength of concrete columns, ACI Journal, 1978, 75(8):348–35
    [167] Singhal A, Kiremidjian A S. Method for probabilistic evaluation of seismic structural damage. Journal of Structural Engineering, 1996, 122(2):1459-1467
    [168] Mirza S A, Hatzinikolas M, MacGregor J G. Statistical descriptions of strength of concrete. Journal of Structural Division, 1979, 105(6):1021-1037
    [169]中华人民共和国国家标准.混凝土结构设计规范(GB50010-2002).北京:中国建筑工业出版社, 2002, 1-198
    [170] Vrouwenvelder T. The JCSS probabilistic model code. Structural Safety, 1997, 19(3):245-251
    [171] Mirza S A, MacGregor J G. Variability of mechanical properties of reinforced bars. Journal of Structural Division, 1979, 105(5):921-937
    [172]胡晓鹏,牛获涛,薛国辉.住宅结构抗力的调查与统计分析.哈尔滨工业大学学报,2008,40(6):978-981
    [173]欧进萍,段宇博,刘会仪.结构随机地震作用及其统计参数.哈尔滨建筑工程学院学报.1994,27(5):1-10
    [174] McVerry G H. Structural identification in the frequency domain from earthquake records. Earthquake Engineering and Structural Dynamics. 1980,8(2):161-180
    [175] Taoko G T. Damping measurements of tall structures. In: Second Specialty Conference on Dynamic Response of Structures: Experimentation, Observation, Prediction, and Control. New York, USA: American Society of Civil Engineers, 1981, 308-322
    [176]欧进萍,刘会仪.基于随机地震动模型的结构随机地震反应谱及其应用.地震工程与工程振动, 1994, 14 (3):14-22
    [177]李大华.随机地震反应谱的统计分析.土木工程学报, 1990, 23 (4): 60-67
    [178] Vamvatsikos D, Cornell C A. Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics, 2002, 31(3):491-514
    [179] International Standard. General principles on reliability for structures (IS02394). Switzerland: International Organization for Standardization, 1998, 1-73
    [180]中国人民共和国国家标准.建筑结构可靠度设计统一标准(GB50068-2001).北京:中国建筑工业出版社, 2001, 1-47
    [181] Jalayer F. Direct probabilistic seismic analysis: implementing non-linear dynamic assessments: [Dissertation]. Stanford: Department of Civil and Environmental Engineering of Stanford University, 2003, 1-238
    [182]洪峰,江近仁,李玉亭.地震地面运动的功率谱模型及参数的确定.地震工程与工程动.1994,14(2):46-51
    [183]张治勇,孙伯涛,宋天舒.新抗震规范地震动功率谱模型参数的研究.世界地震工程.2000,16(3):33-38
    [184]朱丽华,白国良,豆攀乔.随机地震反应谱研究及其应用.西安建筑科技大学学报.2006,38(4):473-479
    [185]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定.地震工程与工程振动.1991,11(3):45-53
    [186]欧进萍,刘会仪.基于随机地震动模型的结构随机地震反应谱及其应用.地震工程与工程振动.1994,14(1):16-22
    [187]薛树则,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究.土木工程学报.2003,36(5): 5-10
    [188] Cornell C A. Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 1968, 58(5):1583-1606
    [189]高小旺,鲍霭斌.地震作用的概率模型及统计参数.地震工程与工程振动, 1985, 5(1): 13-21
    [190]李杰.几类反应谱的概念差异及其意义.世界地震工程,1993,10(4) :9-14
    [191] Seed H B, Ugas C, Lysmer J. Site-dependent spectra for earthquake resistance design. Bulletin of the Seismological Society of America ,1976,66 (1):221 -243
    [192] Mohraz B. A study of earthquake response spectra for different geological condit- ions. Bulletin of the Seismological Society of America, 1976,66 (3):915- 935
    [193] Crouse C B, McGuire J W. Site response studies for purpose of revisingNEHRP seismic provisions. Earthquake Spectra,1996,12(3):407-439
    [194]徐龙军,谢礼立.双规准化地震动加速度反应谱研究.地震工程与工程振动, 2004, 24(2): 2-8
    [195]章在墉,居荣初.关于标准加速度反应谱问题.中国科学院土木建筑研究所地震工程报告集,第一集.北京:科学出版社,1965,17-35
    [196]陈达生.关于地面运动最大加速度与加速度反应谱的若干资料.中国科学院土木建筑研究所地震工程报告集,第二集.北京:科学出版社, 1965,53-84
    [197]周锡元,王广军,苏经宇.场地分类和平均反应谱.岩土工程学报,1984, 6(5):59-68
    [198]郭玉学,王治山.随场地指数连续变化的标准反应谱.地震工程与工程振动,1991, 11(4): 39-50
    [199]徐龙军,谢礼立.双规准化地震动加速度反应谱研究.地震工程与工程振动,2004, 24(2):1-7
    [200]江近仁,洪峰.功率谱与反应谱的转换和人造地震波.地震工程与工程振动,1984,4(3):1-11
    [201]江近仁,洪峰.功率谱与反应谱的转换和人造地震波.地震工程与工程振动,1984,4(3):1-11
    [202]胡聿贤.地震工程学.北京:地震出版社,2006,148-158
    [203] Vamvatsikos D, Cornell C A. Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics, 2002, 31: 491-514
    [204] Zhang Y Y, Acero G, Conte J, et al. Seismic reliability assessment of a bridge ground system. In: 13th World Conference on Earthquake Engineering. Paper No 2978. Vancouver, 2004, 1-15
    [205] FEMA. Recommended seismic design criteria for new steel moment-frame buildings. Report No. FEMA-350. Washington, D. C: Federal Emergency Management Agency, 2000
    [206] FEMA. Recommended seismic evaluation and upgrade criteria for existing welded steel moment-frame buildings. Report No. FEMA-351. Washington, D. C: Federal Emergency Management Agency, 2000