碳化硅电热元件的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统工艺条件下生产的碳化硅电热元件存在着电阻离散性大、成品率低、强度低、使用温度低、致密度差等问题。这些难题长期以来制约着碳化硅电热元件行业的技术进步、产业升级、节能降耗、经济效益提高和出口创汇。因此摸索碳化硅电热元件的新型制备工艺与探讨其结晶性能,对于改善其使用性能、提高成品率、使用温度以及发展新型碳化硅电热元件都是非常必要的。近年来由于环保的需要,传统煤烧、油烧窑炉、逐渐向气烧和电烧转变,加之建筑材料、耐火材料、电子陶瓷产品的更新换代,大部分电子陶瓷产品、高级建筑材料、高级耐火材料都开始使用电热窑炉烧成,随着我国工业窑炉和高温技术的发展,对碳化硅电热元件的使用温度和使用寿命也提出了更高要求。本文的主要研究内容包括:
     (1) 通过优化素烧和烧成窑中的保温料配方,改善保温料的导热和保温性能,扩大并均匀温场,以提高成品率、扩大产量。
     (2) 用现代测温技术、控温技术,严格控制烧成曲线,解决素坯温度梯度大造成的素烧变形问题,以达到提高成品率的目的。
     (3) 利用单热源和双热源碳化硅合成炉,进行碳化硅电热元件的烧成试验。解决碳化硅电热元件热端烧成中窑内温差大、温度不能精确控制,制品过烧和生烧造成的单体结晶性能差异大、电阻离散性大、力学性能差、成品率低的问题。
     (4) 使用X-射线粉末衍射仪对制品的物相进行分析,使用电子扫描显微镜对制品表面形貌、孔道结构与分布、晶体结构进行分析。
     通过对制备工艺的研究和制品性能的测试,找出最佳的素烧温度和最佳素烧填充料,并对比了单热源烧成和多热源烧成的温度场的特点,找出了烧成的最佳温度区域。通过对制品的物相分析和结构表征,进一步探讨烧成机理:碳化硅电热元件的再结晶反应,就是在高温还原气氛中,棒体中次生碳化硅晶粒生成、长大、原碳化硅长大,而后相互接触成为紧密堆积的聚集体的过程。探讨了碳化硅电热元件高温失效的主要原因,
Silicon carbide electro-heating element under conventional production technology have some disadvantages of big resistance discreteness, the low rate of finished products, low intensity, low usage temperature and bad density. These problems restrict the technology development and upgrade of silicon carbide electro-heating element industry. So those are necessary to grope new preparation technology and probe into crystal property for improving application properties and increasing the rate of finished products and developing new style electro-heating element. Currently, because of environment's problem, the furnace using coal and oil gradually converts using gas and electricity. Architectural material, fire-resistant material, electronic ceramics begin to renovate, the most of these products need to be sintered in the electro-heating furnace. With the development of Chinese industry furnace and high temperature technology, the usage temperature and life of silicon carbide electro-heating element need to be heightened. The article mainly researching content including:
    (1) By optimizing the heat preservation materials compounding of the biscuit firing and sintering furnace, the heat conduction and preservation characteristics are improved. Temperature field is enlarged and uniformed for increasing the rate of finished products and increasing yield.
    (2)Applying modern measuring and controlling temperature technology, sintering curve is strictly controlled. The biscuit deformation brought by big temperature gradient is solved.
    (3) Applying single thermal source and double thermal sources SiC synthesizing technology, Silicon carbide electro-heating element sintering are experimented. Because there are big temperature difference in furnace and temperature can't be controlled accurately, the heating rod are sintered excessively or greenly, which brings different crystal properties and big resistance discreteness and low intensity, these problems are solved.
引文
[1] 李晓池.碳化硅电热元件结晶性和电阻离散性研究可行性报告.西安:西安科技大学,2003
    [2] 邵名承.硅碳棒成型工艺学[M] 北京:机械工业出版社,1987
    [3] 邵名承.硅碳棒素烧工艺学[M] 北京:机械工业出版社,1987
    [4] 许伟.硅碳棒烧成工艺学[M] 北京:机械工业出版社,1987
    [5] 国兴杰.硅碳棒成型素烧工艺学[M] 郑州:国家机械委机床工业局,1987
    [6] E. G. Acherica. America, US Patent No.492767, 1893
    [7] Kuriakose, Areekattuthazhayil K. United States Patent No4419336, 1983
    [8] K. Pelissier, T. Chartier. M. Laurent. Silicon Carbide heating Elements. Ceramics International [J], 1998, 24: 371-377
    [9] 常春等.碳化硅电热元件的高温失效分析.金属热处理[J],1999,8:36-38
    [10] 张国梁等.碳化硅电热陶瓷的组成与导电性.陶瓷研究[J],1999,14(4):9-14
    [11] 朱兴宏等。等直径硅碳棒的工业试验.轻合金加工技术[J],1997,25(4):18-19
    [12] Lee. G. Carbide and Nitride Ceramics by Carbothermal Reduction of Silica Diss Asber InT.B, 1976, 37(7): 1379
    [13] 张会兵,刘加善等.SiC电热元件用高温防氧化涂料的研制[J],工业加热,2004,33(6)
    [14] 谷兰成.硅碳棒使用中应注意的问题.轻合金加工技术[J],1994,22
    [15] 吕振林,李世斌,高积强等.碳化硅发热元件失效分析.机械工程材料[J],2002,26(6)
    [16] 王蕾,敖青,付贵福等.碳化硅发热材料微观结构特征.机械工程材料[J],2004,28(2)
    [17] 许可强.我国碳化硅出口产品现状及问题分析.金刚石与磨料磨具工程[J],1995,5
    [18] 刘芳,范文捷等.高品质硅钼电热元件的研制.耐火材料[J] 2003,5
    [19] 何恩广等.SiC工业生产中的环境问题及其防治对策.环境技术[J],1999,3(39)
    [20] 王晓刚主编.碳化硅合成理论与技术.[M] 西安:陕西科学技术出版社,2001
    [21] P. O. Robert, J. Fouletier and L. Menneron New Experiment Approaches to Characterise Silicon Carbide Hot Rods Jounnal of the European Ceramic Society [J], 1999, (19): 875-878
    [22] C. J. Smith, M. A. Merers, V. F. NESTERENKO. And S. J. Chen Damage Evolution in Dynamic Deformation of Silicon Carbide. Acta. Material [J], 2000, (48): 2399-2420
    [23] Guanjun Qiao, Jiqiang Gao, Zhihao Jin Resources consumption and wastes emission analysis for two manufacture progress of siliconit Resources, Conservation and Recycling[J] 2002, (36): 355-363
    [24] Yutake Shiraishi, Shoei Kurosake, Masato Imai. Silicon crystal growth using a liquide-feeding Czochralski method. Journal of Crystal Growth [J], 1996, (166): 685-688
    [25] D. L. Orphal and R. R. Franen. Peneteration of Confined Silicon Carbide targers by Tungsten Long Rods At Impact Velocities from 1.5 TO 4.6krn/s Int. Impact Engang[J], 1997, 19(1): 1-33
    [26] Nishikawa and Nobuo. Continuous preparation of silicon carbide. Chemical Abstract [J], 1976, 85(4): 162-168
    [27] 刘永胜.多热源合成碳化硅冶炼炉温度场数值模拟及实验研究:[学位论文.西安:西安科技学院,2002,4
    [28] 郭际华.多热源工业合成SiC新技术节能提质优化理论与应用:[学位论文].西安:西安科技大学,2004,4
    [29] 彭伟良.碳化硅冶炼工艺平衡技术讨论(Ⅰ)[M].金刚石与磨料磨具工程,1995,4
    [30] 彭伟良.碳化硅冶炼工艺平衡技术讨论(Ⅱ)[M].金刚石与磨料磨具工程,1995,4
    [31] 黄运生.孙奇兵,陈学.硅碳炉温度与表面负荷的最优控制.微机计算机信息[J],2002,18(12)
    [32] 杨斌.多热源多向流合成电工碳化硅的中试实验研究:[学位论文].西安:西安科技大学,2005,4
    [33] 樊子民.电致发热多孔陶瓷的制备及其性能研究.[学位论文].西安:西安科技大学,2004,4
    [34] 魏云静.泡沫碳化硅陶瓷的制备工艺和性能研究:[学位论文].西安:西安科技大学,2004,4
    [35] 詹永玲,杨银堂.SiC器件与电路的若干关键技术.微电子学[J],2001,08
    [36] 唐连安.6H—SiC块状单晶的升华发生长.上海硅酸盐[J],1995,12
    [37] 陈之战,施尔畏,肖兵,庄击勇.SiC单晶生长研究进展.材料导报[J],2002,02
    [38] 周强.炉体表面温度对单位电耗的影响—对碳化硅冶炼炉送电量选择的研究.工业炉[J],1998,20(4):16-19
    [39] 周强.碳化硅冶炼炉透气炉底的设计.工业炉[J],2000,22(3):24-25
    [40] 李志宏等.碳化硅冶炼优化控制的试验研究.金刚石与磨料磨具工程,2000,1(115):36-38
    [41] 郝旭生.亚洲SiC生产状况.装备技术[J],1997,(4):224