非线性的耦合系统一致性问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耦合是指两个或两个以上的系统进行交互作用。把这些耦合的系统看成一个整体,若相互作用的系统本身是非线性的,或者耦合方式是非线性的,则称为非线性的耦合系统。本论文研究的主体内容是如何使非线性的耦合系统所有子系统的最终动力学行为趋于一致。以这一视角出发,针对不同的应用背景,本论文研究了动态神经网络对形状记忆合金的迟滞行为在线建模、自治的混沌系统与非自治的混沌系统同步和中立型时滞耦合复杂网络中联接点状态同步。
     本论文的主要内容如下:
     ①动态神经网络与未知函数的耦合。在对基于智能材料的机械系统精确建模与控制的应用课题中,将形状记忆合金的高度非线性迟滞现象当作未知函数,利用迟滞行为的输入信号、输出信号与建模系统的交互耦合,使建模系统能够重构迟滞行为的输入信号与输出信号之间的函数关系,即建模系统体现的函数关系与迟滞行为函数关系要一致。将形状记忆合金的位移变化作为动态神经网络的输入,相应的预测电压变化作为动态神经网络的输出,从而实现动态神经网络对迟滞现象的逆函数观察。针对这个耦合系统,利用逆函数的观察结果,提出自适应逆控制策略,驱使形状记忆合金按照理想的轨迹运动,实现对形状记忆合金的精确控制。
     ②非自治混沌系统与自治混沌系统的耦合。在混沌同步的应用课题中,针对驱动系统的外部激励是一个相位与幅度都不确定的正弦类项,结合正弦类函数的特性,构造了一个比驱动系统更高阶的响应系统,实现了这两个系统的同步。与传统的响应系统的构造方式即和驱动系统同阶的构造方式相比,本论文的构造方式不用再假定响应系统与驱动系统的相位误差范围为已知,然后研究混沌同步的条件。仿真实验表明:对于带有任何相位和幅度激励项的驱动系统,本论文高阶的自治系统都能正确追踪驱动系统,最终两个系统都能在一定误差范围内保持一致。
     ③复杂系统中多个联节点状态之间的中立型时滞耦合。在复杂系统同步的应用课题中处理复杂网络联节点状态耦合方式时,不仅考虑了联节点过去状态对彼此的影响,还考虑联结过去状态的变化情况对彼此的影响,即考虑了联节点之间状态离散时滞耦合和中立型时滞耦合的情况。具体方法是先通过模型变换,把复杂网络模型的同步性问题转换成中立系统的稳定性问题。通过时滞分段方法构造了新颖的Lyapunov-Krasovskii泛函,得到了具有较少约束的渐近稳定性条件和指数稳定性条件,也即得到判定复杂网络内状态行为最终是否一致的条件。数值模拟结果表明本论文能证明的一致性条件的限制性比现有文献条件的限制性更宽松。
The nonlinear coupling system is defined as two or more than two nonlinearsubsystems coupling together or the coupling way among these nonlinearity. How tomake sure these systems reach consensus is the topic of this paper. In this field, westudied modeling shape memory effect by dynamical neural networks, chaossynchronization between non-autonomous master system and autonomous slave system,neutral coupling complex networks.
     The main contents of this dissertation are as follows:
     ①Dynamical neural network (DNN) couples unknown function. In the project ofmodeling and controlling the smart materials and structure, regarding the shape memoryalloy’s hysteresis behavior as unknown function, coupling the dynamic neural networkand the unknown function, make sure that the two systems could reach consensus andthe dynamical neural network could accurately model the hysteresis behavior. That is,the consensus between the DNN and the unknown function could be reached withreasonable accuracy. When predicting voltage, the DNN acts as the inverse function ofthe shape memory effect. This kind of DNN is called IDNN. Based on the IDNN, weproposed an adaptive inverse control strategy which driven the shape memory alloyaccurately tracking the desired command.
     ②Time delay dynamic neural network (TDDNN) couples unknown function.Considering the past states’ effect on the hysteresis, a new TDDNN which introduces atime delay between the input and output response is proposed for modeling thehysteresis online. Experimental results demonstrated the time delay’s importance andthe effectiveness of the TDDNN. That is, the consensus between the TDDNN and theunknown function could be reached with reasonable accuracy.
     ③Autonomous slave system couples non-autonomous master system. In thefield of robust synchronization of chaotic systems with unknown phase term in thetriangular function of master chaos system, through using the properties of thetriangular function, a novel slave system whose dimension is larger than the mastersystem is proposed. Most literatures investigated the synchronization effects with theassumed phase difference and the assumed amplitude of the sinusoidal forcing term.With unknown phase difference and unknown amplitude of the sinusoidal forcing termin the master system, numerical simulations show that the effectiveness of the proposed and novel slave system. That is, the consensus between the master system and the novelslave system could be reached with reasonable accuracy.
     ④The neutral coupling among nodes in complex networks. The coupling waysnot only include the past states of one node’s effect on each other, but also include thederivative past states of one node’s effect on each other. In other words, the complexnetworks not only consider the delay coupling but also the neutral delay coupling.Using the transformation, we can transform the synchronization problem intostabilization problem. Based on these new complex models, we derive asymptotical andexponential criteria via delay fraction approach. Numerical examples are given toillustrate the effectiveness of our scheme, which shows that our results are better thanthat of the recent proposals.
引文
[1] L.C.Chang, T.A. Read, Plastic deformation and diffusionless phase changes in metals thegold-cadmium beta-phase[J]. Transactions of the American Institute of Mining andMetallurgical Engineering.1951,191(1):47–52.
    [2] L.C. Chang., T.A. Read.Experimental evidence of relaxation diffusionless phase changes ofsignal crystal beta-AU-CD alloys containing47.5atomic percent CD [J]. Physical Review.1951,82(5):770.
    [3] W.H.Buehler, J.V.Gilfrich, R.C.Wiley. Effect of low temperature phase changes on themechanical properties of alloys near composition TiNi[J]. Journal of Applied Physics.1963,341475–1477.
    [4] W.J.Buehler, F.E. Wang. A summary of recent research on the Nitinol alloys and theirpotential application in ocean engineering. Ocean Engineering.1968,1:105–120
    [5] K.Otsuka, Superelasticity effects and stress-induced martensitictransformation in Cu-AI-Nialloys [J]. Acta Metall.1976,24:207-226.
    [6] S.Miyazaki, K.Otsuka, Y.Suzuki: Transformation pseudoelasticity and deformation behaviorin a Ti-50.6at%Ni alloy [J]..Scripta Metallurgica.1981,15:287-292.
    [7]郑海,朱振安,镍钦形状记忆合金特性及骨科应用[J]。国际骨科学杂志。2006,27(4):226-229.
    [8] X.M.Qiu,M.G.Li,D.Q.Sun and W.H.Liu.Study on Brazing of TiNi Shape Memory Alloy withStainless Steels [J].Journal of Materials Processing Technology,2006,176:8-12.
    [9]金挺形状记忆合金的力学性能及其耗能研究[D]中国科技大学硕士学位论文2007
    [10] E.N.Lorenz. Deterministic non-period flow [J]. Journal of The Atmospheric Sciences.1963,20:130-141.
    [11] T.Y.LI, J.A.Yorke. Period three implies chaos [J]. American Mathmatics Monthly,1975,82:985-992.
    [12] J.Ford. Long-time prediction in dynamics [J]. W.J.Horton et al eds. John wiley,1983:79-80.
    [13] M.J.Feigenbaum.Quntitative universality for a class of nonlinear transformations [J]. Journalof Statistical Physics.1978,19:25-52.
    [14] P.Grassberger, I.Procaccic. Measuring the strangeness of strange attractors [J]. Physica D,1983,9:189-208
    [15] R.M. May. Simple mathematical models with very complicated dynamics [J].Nature,1976,261:459-467.
    [16]郝柏林。从抛物线谈起---混沌动力学引论[M]。上海:上海科技教育出版社,1993.
    [17] R.Devaney.An introduction to chaotic dynamical systems [M]. NewYork: Addison-WesleyPublishing Conmpany,1989.
    [18] R H.Day. The emergence of chaos from classical economic growth [J].Quarterly JoumalofEconimics.1983,97(2):201一213.
    [19] G.John, H.Philip. Nonlinear Oscillations, Dynamical systems, and bifurcations of vectorfields[M]. New York:Springer-Verlag,1983.
    [20] G.Huygenii.Horoloquim Oscilatorium [M].France:Parisiis,1673.
    [21] A.T.Winfree.Geometry of biological time [M].New York: Springer-Verlag,1990.
    [22] L.Glass, M.C.Mackay.From clocks to chaos:the rhythms of life [M].Princeton NJ:PrincetonUniversity Press,1988.
    [23] L.M.Pecora, T.L.Carroll.Synchronization in chaotic systems [M].Physical Review Letters1990,64:821-825
    [24] L.Kocariv, K S Halle,Eckertk.Experimental demon-stration of secure communications viachaotic synchronization [J]. International Journal of Bifurcation and Chaos,1998,8(4):647-659.1992,2(3):709-713.
    [25] Halerm.Synchronization of chaotic systems and transmission of information [J]. InternationalJournal of Bifurcation and Chaos,1998,8(4):647-659.
    [26] H.D.Dedieu, M.P.Kennedy, M.Hasler.Chaos shift keying:modulation and Demodulation of achaotic carrier using self-synehronizing Chua’s circuits[J]. IEEE Transactions on Circuits andSystems ii-Analog and Digital Signal Processing,1993,40(10):634-642.
    [27] P. ErdH s, A. RIēnyi. On the evolution of random graphs [J]. Publiction of theMathematical Institute of the Hungarian Academy of Sciences.1960,5:17–61.
    [28] D.J. Watts, S.H. Strogatz, Collective dynamics of small-world networks [J], Nature1998,393:440–442.
    [29] A.L.Barabási, R.Albert,Emergence of scaling in random networks [J]. Science,1999,286:509-512.
    [30] T. Binzegger, R.J. Douglas, K.A.C. Martin, A quantitative map of the circuit of cat primaryvisual cortex [J]. Journal of Neuroscience.2004,24:8441-8453.
    [31] F.L. da Silva, A. Hoek, H. Smith, L. Zetterberg. Model of brain rhythmic activity [J].Kybernetik,1974,15:27-37.
    [32] R. Hekmat, Ad-hoc Networks: Fundamental Properties and Network Topologies [M], Berlin,Germany: Springer,2006.
    [33] Simeone, U. Spagnolini. Distributed time synchronization in wireless sensor networks withcoupled discrete-time oscillators [J]. Eurasip Journal on Wireless Commun. and Networking.2007,57054.
    [34]方锦清.驾驭混沌与发展高新技术[J].北京:原子能出版社,2002:1一180页
    [35] B.J.Kim,A.Trusina,P.Holme,P.Minnhagen,J.S.Chung,M.Y.Choi,Dynamic instabilitiesinduced by asymmetric influence: Prisoners’dilemma game on small world networks [J],Phys.Rev.2002,(66):021907.
    [36]王文旭复杂网络的演化动力学及网络上的动力学过程研究[D].中国科学技术大学,2007.
    [37] R.P. Satorras,A. Vespignani.Epidemic sreading in scale-free networks [J]. Physical ReviewLetters.2001,56:3200.
    [38] P.Holme, B.J. Kim, Yoon C N. Attack vulnerability of complex networks [J]. Physical ReviewE.2002,(65):056109.
    [39] R.Albert, H.Jeong, A.L.Barabási. Error and attrack tolerance of complex networks [J].Nature.2000,406:378-382.
    [40] J. A.Fax, R.M. Murray. Information flow and cooperative control of vehicle formations [J].IEEE Transaction.on Automatic Control,2004,49:1465-1476.
    [41] W.Ren, R.W.Beard. Decentralized scheme for spacecraft formation flying via the virtualstructure approach [J]. AIAA Journal of Guidance Control and Dynamics.2004,27:73–82.
    [42] J.Lin, A.S.Morse,B.Anderson.The multi-agent rendezvous problem [C]. In Proc.of CDC.Maui, Hawaii,2003:1508–1513.
    [43]徐德刚基于复杂网络理论的复杂系统同步控制研究[D],浙江大学,2007
    [44] H.Guclu,G.Korniss., M.A. Novotny, Z.Toroczkai, Z. Rácz. Synchronization landscapes insmall-world-connected computer networks[J]. Physical Review E.2006,73(6):066115。
    [45] G.Filatrella,A.H.Nielsen,N.F.Pedersen.Analysis of a power grid using a Kuramoto-like model[J]. European Physical Journal B.2008,61(4):485-491.
    [46] G.Silberberg,S.Grillner,F.E.Lebeau,R.Maex,H.Markram.Synaptic pathways in neuralmicrocircuits [J]. Trends in Neurosciences.2005,28(10):541-551.
    [47] J.P.Onnela,A.Chakraborti,K.Kaski,J.Kert′esz,A.Kanto.Dynamics of market correlations:Taxonomy and portfolio analysis [J]. Physical.Review.E.2003,68(5):056110.
    [48] J.Zhou,J.Lu,J.Lu. Adaptive synchronization of an uncertain complex dynamical network [J].IEEE Transactions on Automatic Control.2006,51(4):652-656.
    [49] G.Zhang,Z.Liu,Z.Ma.Synchronization of complex dynamical networks via impulsive control[J]. Chaos,2007,17(4):043126.
    [50] X.Li,X.Wang,G.Chen.Pinning a complex dynamical network to its equilibrium [J]. IEEETransactions on Circuits and Systems I-Fundamental Theory and Applications.2004,51(10):2074-2087.
    [51]方锦清,超混沌.混沌的控制与同步[J].科技导报(北京).1996(4):6一8
    [52] K.Ikuta, M.Tsukamoto S.Hirose. Mathematical model and experimental verification of shapememory alloy for designing micro actuator [C], Proc. IEEE Int. Conf. On Micro ElectroMechanical Systems.Nara,1991:103–111.
    [53] D. C.Jiles, D. L Atherton. Theory of ferromagnetic hysteresis [J]. Journal of Magnetism andMagnetic Materials.1986,61:48–60.
    [54] R.C.Smith, S.Seelecke, Z.Ounaies,J.Smith.A free energy model for hysteresis in ferroelectricmaterials [J]. Journal of Intelligent Material Systems and Structures.2003,14:719–739.
    [55] K. A. Kyoung, B.K.Nguyen Modeling and control of shape memory alloy actuators usingPreisach model [J]. Genetic algorithm and fuzzy logic Mechatronics.2008,18:141-152.
    [56] C.Natale, F.Velardi, C. Visone. Identification and compensation of Preisach hysteresis modelsfor magnetostrictive actuators [J]. Physica B2001,2001306:161–165.
    [57] M.A.Krasnosel'skil, A. V. Pokrovskii.Systems with hysteresis [M].New York: Springer,1980.
    [58] M.Brokate, J. Sprekels. Hysteresis and Phase Transitions [M]. New York: Springer,1996.
    [59] Y.Feng, C.A.Rabbath, T.Chai, C.Su. Robust adaptive control of systems with hystereticnonlinearities: A Duhem hysteresis modelling approach [C]. AFRICON2009AFRICON '09Nairobi,2009,1-6.
    [60] M. A.Janaideh, J.Mao, S. Rakheja, W.Xie, and C. Y.Su.2008Generalized Prandtl-Ishlinskiihysteresis model: hysteresis modeling and its inverse for compensation in smart actuators [C].Proceedings. IEEE Conference.on Advanced intelligent Mechatronics. Xian.2008,5182–5187.
    [61] R.Ben Mrad, H. Hu.2002A model for voltage-to-displacement dynamics in piezoceramicactuators subject to dynamic-voltage excitations [J]. IEEE Transactions on Mechatronics.2002,7(4):479–489.
    [62] M. A.Janaideh, J.Mao, S.Rakheja and C. Y.Su. Experimental characterization and modeling ofrate-dependent hysteresis of a piezoceramic actuator [J]. Mechatronics.2009,19:656–670.
    [63] C.Li, Y.Tan. A neural networks model for hysteresis nonlinearity [J]. Sensors and Actuatorsa-physical.2004,112(1):1549–1554.
    [64] J.Wei, C.Sun. Constructing hysteretic memory in neural networks [J]. IEEE Transactions onSystems Man and Cybernetics Part b-Cybernetics.2000.30(4):601-609.
    [65] Song G, Chaudhry V and Batur C. A Neural network inverse model for a shape memory alloywire actuator[J]. Smart Materials and Structures.2003,14:371-377
    [66] L.Ma, Y.Tan,Y.Shen.A neural networks based model of inverse hysteresis [J]. Physica B2011,406:4109–4114
    [67] E.Asua,V. Etxebarria,A. Garca-Arribas. Micropositioning using shape memory alloy actuators[J]. Eur. Phys. J. Special Topics2008,158:231-236
    [68] R.Dong, Y.Tan, H.Chen and Y.Xie. A neural networks based model for rate-dependenthysteresis for piezoceramic actuators Sensor [J]. Actuat A-Phys2008,143:370–376.
    [69] X.Zhao, Y.Tan. Modeling rate-dependent hysteresis in piezoelectric actuators using neuralnetworks based on expanded input space method [C]. Proceedings IEEE Internationl.Conference On Control and Automation.2010,Xiamen,2229-2233.
    [70] L.Tian and C.Collins. A dynamic recurrent neural network-based controller for arigid–flexible manipulator system [J]. Mechatronics.2004,14:471–490.
    [71] T.H.TSAI, C.K LEE. Design of dynamic neural networks to forecast short-item railwaypassenger demand[J]. Journal of the Eastern Asia Society for Transportation Studies.2005,6:1651–1666.
    [72] P.Campolucci, A. Uncini, F.Piazza, and B.D. Rao.On-line learning algorithms for locallyrecurrent neural networks[J].IEEE transactions on neural networks1999,10:253-271.
    [73] Y.Oysal. A comparative study of adaptive load frequency controller designs in a power systemwith dynamic neural network models [J]. Energy Conversion and Management,2005,46:2656–2668.
    [74] S.Beyhan, M.Alci. Stable modeling based control methods using a new RBF network[J],ISATransactions2010,49:510-518.
    [75] Q.Fan, W.LI, Y.Wang, L.Zhou, X.Yang, G.Ye Control strategy for an intelligent shearer heightadjusting system [J]. Mining Science and Technology.2010,20:0908–0912.
    [76] L.Tian and C.Collins. A dynamic recurrent neural network-based controller for arigid–flexible. manipulator system [J]. Mechatronics.2004,14:471–90.
    [77] L.LI, G.Song, J.OU. Nonlinear structural vibration suppression using dynamic neural networkobserver and adaptive fuzzy sliding mode control [J].Journal of Vibration and Control.2010,16:1503-1526.
    [78] Ferdose Ahammad Shaik, Shubhi Purwar, Bhanu Pratap. Real-time implementation ofChebyshev neural network observer for twin rotor control system [J]. Expert Systems withApplications.2011,38:13043-13049.
    [79] J.C.Patra, A.C.Kot. Nonlinear dynamic system identification using chebyshev functional LinkArtificial Neural Networks, IEEE Transactions on Systems Man and CyberneticsPart B.2002,32(4)505-11
    [80] X.Xu. Impulsive control in continuous and discrete-continuous[J]. IEEE Trans. Autom.Control.2003,48:2288-2289.
    [81] B.Widrow,E.Walaeh.Adaptive inverse control[M]. NewJersey: Prentiee-HallIne.1996
    [82] Q.Wang, X.Li, Adaptive Inverse Control of a Generic Hypersonic Vehicle Based on ImprovedEMRAN[J]. Procedia Engineering,2011,15:277–281.
    [83] H.Wang, D. Pi, Y.Sun. Online SVM regression algorithm-based adaptive inverse control[J].Neurocomputing,2007,70:952–959.
    [84] H. Karim. Youssef, Hasan A. Yousef, Omar A. Sebakhy, Manal A. Wahba Adaptive fuzzyAPSO based inverse tracking-controller with an application to DC motors [J]. Expert Systemswith Applications.2009,36:3454–3458.
    [85] A.Kaelin.On the use of a priori knowledge in adaptive inverse control [J]. IEEE Transactionson circuits and systemsⅠ: Fundamental theory and applications,2000,47(1):54-62.
    [86] L.Li,Q.He,Adaptive inverse control based on an incremental linear regression model in oneunknown [J]. Systems Engineering and Electronics.2002,24(10):53-58
    [87] H.Yu,H.Zhu,Y.Shi.Active noise control FXLMS Algorithm based on Non-minimum phaseadaptive inverse control [J]. Journal of Vibration Engineering.2003,16(3):331-336.
    [88] H Wang, Y Xie. Adaptive inverse dynmics control of robots with uncertain kinematics anddynamics [J]. Automatica,2009,45:2114-2119.
    [89] S.Aryza, A.N.Abdalla, Z. Khalidin, Z.Lubis. Adaptive speed estimation of induction motorbased on neural network inverse control [J]. Procedia engineering2011,15:4188–4193.
    [90]钱克昌,陈自力,李建。多变量非线性飞行控制系统的神经网络动态逆控制方法.计算机系统应用[J].2010,19(11):56-59
    [91]吴振顺,付丙勤,冯玉宾,赖海江。自适应逆控制在电液伺服系统中的应用[J].哈尔滨工业大学学报,2005,37(3):385一387.
    [92]于灵慧,房建成。 Henon混沌同步的自适应逆控制.控制理论与应用[J].2005,22(4):624-631.
    [93]曲东升,孙立宁,高有将。压电陶瓷致动器自适应逆控制方法的研究[J].压电与声光。2002,2(5):354-35
    [94] Liu Q, Cao J, Xia Y. A delayed neural network for solving linear projection equations and itsanalysis [J]. IEEE Trans. Neural Netw.2005,16(4)834–43
    [95] T. Roska, L.O. Chua. Cellular neural networks with nonlinear and delay-type template [J].International Journal of Circuit Theory Appl,1992,22(4):69-181.
    [96] J. Y. Tian, J. Q. Liu. Apnea detection based on time delay neural network [C]. In Proceedingsof the2005IEEE engineering in Medicine and Biology27th Annual Conference, Shanghai,China,2005:2571-2574.
    [97] F. Lavagetto. Time-delay neural network for estimating lip movements from speech analysis:a useful tool in audio-videl synchronization [J]. IEEE Trans. Circuits Syst. Video Technol.1997.7(5):786-800.
    [98] W. L Ran, J. F. Qiao, X. D. Ye. Soft-measuring approach to on-line predict BOD based onPCA time-delay neural network [C]. In: Proceedings of the5th World Congress on IntelligentControl and Automation, Hangzhou, China,2004:3483-3487.
    [99] Y.Becerikli, Y.Oysal. Modeling and prediction with a class of time delay dynamic neuralnetworks [J]. Applied Soft Computing.2007,7:1164–1169.
    [100] J.Na, X. Ren, and H.Huang. Time-delay Positive Feedback Control for Nonlinear Time-delaySystems with Neural Network Compensation [J]. Acta Automatic Sinica,2008,34(9):1196-1203.
    [101] S.Boyd, L. Ghaoui, E.Feron,V. Balakrishnan. Linear Matrix Inequalities in System andControl Theory[M]. SIAM, Phiadelphia,1994.
    [102] L.M.Pecora,T.L.Carroll. Synchronization in chaotic systems [J]. Physical ReviewLetter.1990,64:821-824.
    [103] W.Li, X. Chen,Projective synchronization of Chua’s chaotic system with dead-zone in thecontrol input [J]. Communications in Nonlinear Science and Numerical Simulation,2008,14:3100-3107
    [104] M.MostafaAsheghan, M.TaghiHamidiBeheshti, M.SalehTavazoei,Robust synchronization ofperturbed Chen’s fractional-order chaotic systems [J]. Communications in Nonlinear Scienceand Numerical Simulation,2011,16:1044-1051.
    [105] S. Hammami, M. Benrejeb, M. Feki, P. Borne,Feedback control design for R ssler and Chenchaotic systems anti-synchronization [J]. Physics Letters A,2010,374,2835-2840.
    [106] Q.Zhang, J.Lü, S. Chen. Coexistence of anti-phase and complete synchronization in thegeneralized Lorenz system [J], Communications in Nonlinear Science and NumericalSimulation,2010,15,3067-3072.
    [107] H. Yin, J.Dai, Phase effect of two coupled periodically driven Duffing oscillators [J].Physical Review,1998,58:5683-5689.
    [108] M. Rameshi, S. Narayanan, Chaos Control by Nonfeedback Methods in the Presence of Noise[J]. Chaos, Solitons and Fractals1999,10:1473-1489
    [109] Y.A. Amer, H.S. Bauomy Vibration reduction in a2DOF twin-tail system to parametricexcitations [J]. Communications in Nonlinear Science and NumericalSimulation:2009,14:560-573
    [110] Z.Ge, M. Hsu, Chaos in a generalized van der Pol systemand in its fractional order system [J].Chaos, Solitons and Fractals.2007,33:1711–1745
    [111] M. Kyprianidia, I. N. Stouboulous. Synchronization in a chaotic neural network [C].14thInternational Conference on digital signal processing.2002,2:1057-1060
    [112] T.L. Carroll, L. M. Pecora. Synchronizing nonautonomous chaotic circuits [J]. IEEETranscations circuits and systems-Ⅱ, Analog and digital signal processing,1993,40:646-656.
    [113] K. Kusumoto and J.Ohtsubo. Anticipating Synchronization Based on OpticalInjection-Locking in Chaotic Semiconductor Lasers [J]. IEEE journal of quantum electronics,2003,39:1531-1536.
    [114] C.R. Nayak, V.C. Kuriakose.Dynamics of coupled Josephson junctions under the influence ofapplied fields [J]. Physics Letters A.2007,365:284–289.
    [115] Z. Ge, T. Yu, Y. Chen. Chaos synchronization of a horizontal platform system [J]. Journal ofSound and Vibration.2003,268:731–749.
    [116] Xiaofeng Wu, JianpingCai, Muhong Wang. Robust synchronization of chaotic horizontalplatform systems with phase difference [J]. Journal of Sound and Vibration2007,305:481–491
    [117] Michael T. Rosenstein, James J. Collins, Carlo J. De Luca. A practical method for calculatinglargest Lyapunov exponents from small data sets [J]. Physica D: Nonlinear Phenomena.1993,65:117-134
    [118] H.S Kim, R. Eykholt, J. D. Salas. Nonlinear dynamics, delay times, and embedding windows[J]. Physica D127(1999)48-60
    [119] Z. Ge, Y.Sheng.Chen Synchronization of unidirectional coupled chaotic systems via partialstability [J]. Chaos, Solitons and Fractals.2004,21:101–111.
    [120] M. G. Rosenblum, A. S. Pikovsky, J. Kurths. From phase to lag synchronization in coupledchaotic oscillators[J]. Physical review letters.1997,78:4194-4196.
    [121] X. Yang, W. Xu, Z.Sun. Estimating model parameters in nonautonomous chaotic systemsusing synchronization[J]. Physics Letters A.2007,364:378–388
    [122] B. Jovic, S. Berber, C.P. Unsworth. A novel mathematical analysis for predicting master–slavesynchronization for the simplest quadratic chaotic flow and Ueda chaotic system withapplication to communications[J]. Physica D.2006,213:31–50.
    [123] M.Ramsh, S.Narayanan. Chaos Control by Non feedback Methods in the Presence of Noise[J]. Chaos,Solitons, Fractals.1999,09:1473-1489.
    [124] Z.Li, G.Chen.Global Synchronization and Asymptotic Stability of Complex DynamicalNetworks [J]. IEEE Trans. CAS-II2006,53:28-33.
    [125] W.Lu, T. Chen. Synchronization analysis of linearly coupled networks of discrete timesystems [J]. Physica D2004,198:148–168.
    [126] X.Wang, G.Chen. Synchronization in Scale-Free Dynamical Networks: Robustness andFragility [J]. IEEE Trans. CAS-I2002,49(1),54–62.
    [127] S.Wen, S.Chen, W.Guo. Adaptive global synchronization of a general complex dynamicalnetwork with non-delayed and delayed coupling[J]. Physics Letters A2008,372:6340–6346.
    [128] S. Xu,Y.Yang. Synchronization for a class of complex dynamical networks with time-delay[J]. Communications in nonlinear science and numerical simulation.2009,14(8):3230–3238
    [129] P.Li, Z.Yi, L. Zhang.Global synchronization of a class of delayed complex networks[J].Chaos, Solitons and Fractals.2006,30:903–908.
    [130] L.Tu, J. Lu. Delay-dependent synchronization in general complex delayed dynamicalnetworks [J]. Computers and Mathematics with Applications.2009,57:28-36.
    [131] C. Lia, G. Chen. Synchronization in general complex dynamical networks with couplingdelays [J]. Physica A2004,343:263-278.
    [132] Y. Wang, Z. Wang, J. Liang. A delay fractioning approach to global synchronization ofdelayed complex networks with stochastic disturbances [J]. Physics Letters A.2008,372:6066–6073.
    [133] K.Li, S. Guan, X. Gong, C. H. Lai. Synchronization stability of general complex dynamicalnetworks with time-varying delays [J]. Physics Letters A.2008,372:7133–7139.
    [134] P. Li, Z.Yi. Synchronization analysis of delayed complex networks with time-varyingcouplings [J]. Physica A.2008,387:3729–3737.
    [135] Y. Dai, Y.Cai, X. Xu. Synchronization criteria for complex dynamical networks withneutral-type coupling delay [J]. Physica A.2008,387:4673–4682.
    [136] G. Solís-Perales, E. Ruiz-Velázquez, D. Valle-Rodríguez. Synchronization in complexnetworks with distinct chaotic nodes [J]. Commun Nonlinear Sci Numer Simulat.2009,14:2528–2535.
    [137] K.Q. Gu, V.L. Kharitonov, J. Chen. Stability of Time-Delay Systems [M]. Birkhauser, Boston,2003.