生物质全降解一次性餐饮具制品关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
严重的环境污染、大量的资源能源消耗,足制约21世纪可持续发展的重大问题。为治理“白色污染”,目前国内外已有多种绿色产品推出:淀粉基塑料类、纸浆模塑类、生物质全降解类等。其中,生物质全降解类餐盒是以植物纤维(稻草纤维、秸秆纤维、蔗渣纤维)和淀粉为主料,其他添加剂为辅料,经过发泡成型、喷涂防水防油胶、杀菌包装等工艺生产出的绿色环保产品。该绿色产品具有原料可再生、环境污染小、生产成本低等优点,是塑料产品的最佳替代品。目前,生物质全降解一次性餐饮具制品存在着成型机理不明确、成分配伍不成熟、核心生产装备不完善、生物质全降解材料基础性能研究较少和国内外缺乏有效的评价标准等问题。因此,发展生物质全降解一次性餐饮具制品关键技术成为当前亟需解决的课题。本论文在综合国内外相关研究基础上,以生物质全降解一次性餐饮具制品“成分配伍技术及成型机理-成型工艺技术-产品性能”为主线,对课题中生物质全降解制品成分配伍技术及成型机理、成型工艺技术及成型模具、力学性能、降解机理和环境友好性分析等关键技术进行了重点研究。
     针对生物质全降解一次性餐饮具材料成型机理、成分配伍方案不成熟问题,本文首先以热力学理论、高分子理论和胶体与界面化学理论等为指导,提出了生物质全降解材料的四步式发泡机理,研究了发泡过程中发泡剂的共混、气泡成核阶段、气泡增长阶段和固化成型阶段等四阶段相变机制。其次提出了生物质全降解材料均相成核-水桥联接成型机理,研究了成型过程中纤维、淀粉和添加剂的水桥联结成型机理及植物纤维在成型过程中的“巢拱”转变机制。最后在研究生物质全降解制品各原料物理化学特性的基础上,初步确定了几种典型生物质全降解一次性餐饮具制品成分配伍技术方案,为后续研究提供了理论基础。
     针对生物全降解制品的成型工艺及成型模具不成熟问题,本文首先研究了生物质全降解制品的制备过程及影响制品成型的因素,研究开发了新型模具,研究了生物质全降解制品成型工艺参数选择原则,并初步开发了几种典型生物质全降解产品的工艺参数;然后以有限元理论为基础,结合成型模具的实际工况,对模具工作过程的热场、热力耦合场进行仿真分析研究,分析了模具工作表面的温度场、应力场和应变场的工况,为模具结构优化和成型参数的优化提供了理论基础。
     针对生物质全降解材料缺乏基础力学性能研究的问题。本文首先研究了生物质全降解材料的微观组织形式形成机理,并采用SEM技术对生物质全降解材料的微观组织形式进行分析。其次,以生物质全降解餐盒为研究对象,通过力学性能试验,获得生物质全降解材料的力学性能参数,并利用有限元法对餐盒进行仿真,模拟餐盒在使用过程中的受压状况,确定生物质全降解餐盒的应力集中情况,并和餐盒在实验室受压状态下的情况进行对照,验证了计算机仿真的正确性,为该产品的使用和运输提供了理论基础。最后,以《GB/T 18006.1-1999一次性可降解餐饮具通用技术条件》为标准,研究生物质全降解餐盒的使用性能,主要包括:质量测定、容积测定、耐水试验、耐油试验、负重性能试验、盒盖折次试验、含水率和跌落实验等,并与淀粉基塑料餐盒、纸浆模塑餐盒的使用性能进行了对比。
     针对生物质全降解制品在自然环境中的降解机理问题,本文首先提出了生物质全降解材料在自然界中的双阶段降解机理,废弃制品进入到自然环境中,填埋之前以纤维素光降解和热降解为主,填埋进土壤后以微生物降解和水解为主,最后实现完全生物降解。然后以霉菌实验的方法,研究了生物质全降解餐盒在整个降解周期内的微生物生长程度和质量损失率,探讨了试样大小、环境条件对降解性能的影响,并把这些降解指标与作为阳性对照的滤纸和作为阴性对照的聚乙烯塑料进行了对比分析。同时,还与纸浆模塑餐盒、淀粉基塑料餐盒的降解性能进行了对比。
     针对生物质全降解制品缺乏有力环境友好性评价的问题,本文首先建立了可降解包装材料的绿色度评价指标模型,运用全生命周期理论和模糊层次分析对其进行了评价和分析;其次,通过问卷调查得到定性评价后,利用概率统计的原理对数据进行了处理,构造比较矩阵,并采用和积法计算最大特征根和特征向量,得到各指标的相对重要度。然后又计算得到各指标相对于被评价产品的综合重要度。用逻辑推理指派法确定各指标的隶属函数后,得到该指标的隶属度。根据各评价指标的隶属度和综合重要度运用线形加权的方法得到的生物质全降解可降解包装材料的绿色度;最后,把6种典型可降解包装材料和传统发泡塑料包装材料的绿色度进行了对比,认为生物质类全降解包装材料具有很好的发展前景。
Serious environmental pollution, a lot of resource and energy consumption are major issues that restrict the sustainable development of the world in the 21st century. At present, in order to mount environmental and legislative pressure to reduce plastic and packaging wastes, various biodegraded materials become emerge as the time requires, which include starch based plastics, pulp molding packing materials and fully-degradable packing materials, etc. Nowadays, the fully-degradable packing materials are the best substitutes for plastic packaging materials in the world. Wide application of these materials can control or eliminate the increasing white pollution problems effectively in the world. The fully-degradable packing materials derived from starch and plant fiber, such as corn starch, straw fiber and bagasse fiber, which take advantage of full biodegradability, controlled degradation, enough raw materials, reuse and mass production. However, the fully-degradable packing materials have not been put into industrialization due to some crucial problems, such as immature compatibility, imperfect core equipments, few basic researches and insufficient evaluation criterion, etc. In this study, with the synthesis and refining of relevant researches at home and abroad, main efforts have been made on the methodology and key technologies of the fully-degradable packing materials, based on the strategy of"compatibility mechanism-forming process and mechanism-product performance"'
     Due to the immature compatibility of the fully-degradable packing materials, the forming process and mechanism of the fully-degradable packing materials were investigated on the basis of analysis of molecular structure and physical-chemical characteristic of plant fiber and corn starch. Combined with the working principle of core equipment mould, the technological parameters of forming process were studied. The technological process of fully-degradable packing materials was introduced, which established the foundation for the following study.
     Aiming at the imperfect design of core equipment molding, the hot-force coupling field of the mould in the working process was simulated. And the temperature field, the stress field and the strain field of the working surface of the molding were accomplished, which provided theoretical basis for the mould structure and processing parameters optimization.
     In this paper, the mechanical properties of the fully-degradable dishware were presented by tensile tests, which included Elastic Modulus, Poisson's Ratio and Tensile Strength. Finite element models of the fully-degradable dishware were established by using the experimental results of the mechanical properties. The rule of the stress and strain distribution of the plant fiber and starch dishware under outside load was found with finite element method, which was verified by the experimental results, and the force-deformation curve of the fully-degradable dishware was found The results were of significance to its design, transport and application. Meanwhile, The performance of the fully-degradable dishware was studied, which included gravimetry, volume, weight bearing experiment, dropping experiment, hot water resistance experiment, hot oil resistance experiment, fold experiment and moisture content, etc.
     The biodegradability of the fully-degradable dishware was studied by isolating funguses from compost. The fungal growth degree and the weight loss rate of these materials were analyzed in experimental period. The experimental results showed that the growth grade of these materials was the V grade and the weight loss rate was 41.59%. These results revealed the fast degradation of these materials in the presence of funguses. In addition, the experimental results indicated that the size of sample had no significant influence on the biodegradability of these materials. As a contrast, the biodegradability of other materials, such as pulp model dishware, starch-plastic dishware, cellulose filter paper and polypropylene, were also analyzed.
     The indexes system of green degree of the fully-degradable packaging materials was built and the Fuzzy Analytical Hierarchy Process (FAHP) methodology was employed to analyze and assess this system. The qualitative assessment gained by survey and the statistics theory were both employed to deal with the qualitative data. The pair-comparison matrix was built and the maximum characteristic root and vector were computed using the sum-product method. Then the relative importance degree of every influence factor was computed, and also the composite importance degree of every influence factor was gained. The membership function of every influence factor was established by logical reasoning assignment method, and then the membership degree was gained. According to the composite importance degree and the membership degree of every influence factors, the green degree of biodegradable packaging materials was generally assessed. Finally, Comparing with the green degrees of six kinds of biodegradable packaging materials with foamed plastics materials, we are convinced that the biodegradable packaging materials had wide development prospects.
引文
[1]陈绯.生物降解塑料的研究进展[J].鞍山科技大学学报.2003.26(3):164-168.
    [2]杜忠学.刘曼丽.生物降解塑料的开发状况和评价.试验方法[J].国外塑料,1996.14(1):11-13.
    [3]郭安福,李剑峰.李方义,等.植物纤维淀粉餐盒的降解性能研究[J].功能材料,2009,v.40;No.266(11):1929-1932.
    [4]吴勇.生物降解塑料及其检测方法[J].塑料.1997.26(4):48-51.
    [5]Kyrikou I. Briassoulis D. Biodegradation of agricultural plastic films:A critical review[J]. Journal of Polymers and the Environment.2007,15(2):125-150.
    [6]戈进杰.生物降解高分子材料及其应用[M].北京:化学工业出版社,2002.
    [7]Cinelli P, Chiellini E, Lawton J W, et al. Foamed articles based on potato starch, corn fibers and poly(vinyl alcohol)[J]. Polymer Degradation and Stability, 2006,91(5):1147-1155.
    [8]Chiellini E, Cinelli P, Ilieva V I,et al. Environmentally compatible foamed articles based on potato starch, corn fiber, and poly(vinyl alcohol)[J]. Journal of Cellular Plastics, 2009,45(1):17-32.
    [9]Valente S. Sustainable development, renewable resources and technological progress[J]. Environmental and Resource Economics,2005.30(1):115-125.
    [10]Chiellini E, Cinelli P, Magni S, et al. Fluid biomulching based on poly(vinyl alcohol) and fillers from renewable resources[J]. Journal of Applied Polymer Science. 2008,108(1):295-301.
    [11]郭东宇,陈赘.一次性可降解餐具的研究现状及前景分析[J].资源节约与环保,2007,23(2):40-41.
    [12]Cinelli P, Chiellini E, Lawton J W, et al. Properties of injection molded composites containing corn fiber and poly(vinyl alcohol)[J]. Journal of Polymer Research, 2006,13(2):107-113.
    [13]Imam S H. Cinelli P, Gordon S H, et al. Characterization of biodegradable composite films prepared from blends of poly(vinyl alcohol), cornstarch, and lignocellulosic fiber[J]. Journal of Polymers and the Environment,2005,13(1):47-55.
    [14]Chen J, Zheng X, Xing S, et al. Influence of plastic film mulching on infiltration into seasonal freezing-thawing soil[J]. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering,2006.22(7):18-21.
    [15]Yang Q, He D, Liu H. Effect of liquid film mulching on cotton yield and soil environment[J]. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering,2005,21(5):123-126.
    [16]Wei H, Shao S. Study on wheat hill-drop planter used for perpendicularly inserting film mulching field[J]. Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery,2001,32(6):34-37.
    [17]赵科,孙培勤,等.一次性可降解餐具转化为生产力的影响因素[J].郑州工业大学学报:社会科学版,2001,19(1):81-84.
    [18]Shey J, Imam S H, Glenn G M, et al. Properties of baked starch foam with natural rubber latex[J]. Industrial Crops and Products,2006,24(1):34-40.
    [19]Rutiaga M O. Galan L J. Morales L H. et al. Mechanical property and biodegradability of cast films prepared from blends of oppositely charged biopolymers[J]. Journal of Polymers and the Environment.2005.13(2):185-191.
    [20]Glenn G M. Orts W J. Butter R. et al. Mechanical and physical properties of microcellular starch-based foams formed from gels[J]. ACS Symposium Series.2001.786:42-60.
    [21]赵科,孙培勤.等.可降解餐具工业化进展[J].化工进展,2001.20(11):46-48.
    [22]Ludvik C N, Glenn G M. Klamczynski A P. et al. Cellulose fiber/bentonite clay/biodegradable thermoplastic composites[J]. Journal of Polymers and the Environment, 2007.15(4):251-257.
    [23]Imam S H, Gordon S H, Mohamed A, et al. Enzyme catalysis of insoluble cornstarch granules:Impact on surface morphology, properties and biodegradability[J]. Polymer Degradation and Stability,2006.91(12):2894-2900.
    [24]郭文静,鲍甫成,王正.可降解生物质复合材料的发展现状与前景[J].木材工业,2008,22(1):12-14.
    [25]张耀东,马彦龙,卫爱丽.废旧塑料改性再生技术研究现状及进展[J].中外医疗,2007(5):36-37.
    [26]Li Z, Li W, Du Y. Effect of water control and plastic-film mulch on growth in spring wheat populations[J]. International Water and Irrigation,2007.27(4):18-24.
    [27]Zhou J, Zhu H. Study on environmentally friendly agricultural mulching films[J], Zhongguo Zaozhi Xuebao/Transactions of China Pulp and Paper,2003.18(2):101-105.
    [28]Krishnaswamy R K, Kelly P, Schwier C E, et al. The effectiveness of biodegradable poly(hydroxy butanoic acid) copolymers in agricultural mulch film applications:66th Annual Technical Conference of the Society of Plastics Engineers, Plastics Encounter at ANTEC 2008, Brookfield, CT 06804-0403, United States,2008[C]. Society of Plastics Engineers.
    [29]王军.生物质化学品[M].北京:化学工业出版社,2008.
    [30]史吉平,杜风光,闫德冉,等.我国可降解塑料研究与生产现状[J].上海塑料.2006(2):4-8.
    [31]俞文灿.可降解塑料的应用、研究现状及其发展方向[J].中山大学研究生学刊(自然科学、医学版),2007(1):22-32.
    [32]一次性餐具行业基本情况及采购要求--食品资讯--中国食品产业网[EB/OL].[2010-12-24]. http://www.foodqs.cn/news/gnspzs01/2008616102823127.htm.
    [33]Miladinov V D, Hanna M A. Temperatures and ethanol effects on the properties of extruded modified starch[J]. Industrial Crops and Products.2001,13(1):21-28.
    [34]Biswas A, Saha B C, Lawton J W, et al. Process for obtaining cellulose acetate from agricultural by-products[J]. Carbohydrate Polymers,2006,64(]):134-137.
    [35]Lawton J W, Shogren R L, Tiefenbacher K F. Aspen fiber addition improves the mechanical properties of baked cornstarch foams[J]. Industrial Crops and Products, 2004,19(1):41-48.
    [36]Nabar Y, Narayan R. Biodegradable starch foam packaging for automotive applications: Global Plastics Environmental Conference 2004-Plastics:Helping Grow a Greener Environment, GPEC 2004, Detroit. MI, United states,2004[C].
    [37]Frank H, Ying W C. Method for making disposable bowls and trays[J]. Journal of Cleaner Production,1996,4(2):128.
    [38]Marechal V, Rigal L. Characterization of by-products of sunflower culture-commercial applications for stalks and heads[J]. Industrial Crops and Products.1999.10(3):185-200.
    [39]李媛媛,戴宏民.植物纤维缓冲制品的改性及发泡技术探讨[J].重庆工商大学学报:自然科学版.2008.25(3):281-285.
    [40]未友国,敖宁建,张渊明.植物纤维/蒙脱土/橡胶发泡复合材料微孔结构的研究[J].电子显微学报.2008,27(5):379-383.
    [41]宋晓利,武军.增塑剂对以天然植物纤维类为填料的发泡缓冲材料性能的影响[J].包装工程,2005,26(3):42-44.
    [42]CHINNASWAMY R, HANNA M A. Optimum Extrusion-Cooking Conditions for Maximum Expansion of Com Starch[J]. Journal of Food Science,1988,53(3):834-836.
    [43]Wang L, Ganjyal G M, Jones D D, et al. Modeling of bubble growth dynamics and nonisothermal expansion in starch-based foams during extrusion[J]. Advances in Polymer Technology,2005,24(1):29-45.
    [44]杨文斌,谢拥群.植物纤维发泡包装材料的干燥[J].干燥技术与设备2007.5(6):279-283.
    [45]刘建龙.生物全降解淀粉快餐具生产技术及设备[J].山东食品发酵,2000,02:42-44.
    [46]李超民.美国生物质能源政策激励与粮食消费展望[J].农业展望,2010,6(3):37-41.
    [47]林宗虎.生物质能的利用现况及展望[J].自然杂志.2010.32(4):196-201.
    [48]肖烈.张忠河,何永梅,等.国内外生物质裂解技术发展和应用现状[J].安徽农业科学.2008,36(36):16102-]6]04.
    [49]林维纪,张大雪.生物质固化成型技术及其展望[J].新能源,1999,2(4):39-42.
    [50]莫海军,胡青春.我国一次性可降解环保餐具的发展概况与应用前景[J].包装与食品机械,2000,18(6):25-27.
    [51]王文生.纸浆模压纸餐具生产自动线简介[J].纸和造纸.2000(3):23-24.
    [52]刘志忱.纸浆模塑机理及其模具设计研究[J].包装世界,2002(06):31-35.
    [53]刘刚.生物质全降解制品生产线仿真与优化研究[D].山东大学,2010.
    [54]黄英,张以忱,曹恒仁.真空纸浆模塑机自动控制系统研究[J].轻工机械,2003(1):47-50.
    [55]黄英,张以忱,杨广衍. DZJ-A型全自动真空纸浆模塑制品生产线及工艺的研究[J].真空,2001(3):39-42.
    [56]张以忱,房也,黄英,等.纸浆模塑机热压模具仿真模拟分析[J].轻工机械,2004(01).
    [57]陈耀武,赵良知,黄锦强.基于Pro/E与ANSYS的一模多腔模具热分析[J].模具技术,2007(6):50-53.
    [58]焦安勇.基于有限元模拟分析的生物质压缩成型机的研发[D].吉林大学,2009.
    [59]鲁海宁.生物质全降解餐饮具模具结构分析及优化[D].山东大学,2010.
    [60]鲁海宁,贾秀杰,李剑峰,等.全降解餐盒成型模具热分析与优化[J].模具工业,2010(3):45-49.
    [61]胡玉峰,曾健华.稻壳制一次性餐具成形工艺R值研究[J].现代机械,2004(02):48,66.
    [62]Preechawong D, Peesan M, Supaphol P, et al. Characterization of starch/poly([var epsilon]-caprolactone) hybrid foams[J]. Polymer Testing,2004,23(6):651-657.
    [63]Preechawong D, Peesan M, Supaphol P. et al. Preparation and characterization of starch/poly(L-lactic acid) hybrid foams[J]. Carbohydrate Polymers,2005,59(3):329-337.
    [64]Soykeabkaew N, Supaphol P, Rujiravanit R. Preparation and characterization of jute-and flax-reinforced starch-based composite foams[J]. Carbohydrate Polymers, 2004.58(1):53-63.
    [65]Shey J. Imam S H. Glenn G M. et al. Properties of baked starch foam with natural rubber latex[J]. Industrial Crops and Products.2006,24(1):34-40.
    [66]Rosa M F. Medeiros E S. Malmonge J A, et al. Cellulose nanowhiskers from coconut husk fibers:Effect of preparation conditions on their thermal and morphological behavior[J], Carbohydrate Polymers.2010.81 (1):83-92.
    [67]Alavi S H. Rizvi S S H, Harriott P. Process dynamics of starch-based microcellular foams produced by supercritical fluid extrusion.11:Numerical simulation and experimental evaluation[J]. Food Research International.2003.36(4):321-330.
    [68]Alavi S H, Rizvi S S H, Harriott P. Process dynamics of starch-based microcellular foams produced by supercritical fluid extrusion. I:model developmen[J]. Food Research International.2003.36(4):309-319.
    [69]谢拥群,陈彦,魏起华,等.机械发泡技术制备网状植物纤维材料的研究[J].福建林学院学报,2008,28(3):203-207.
    [70]张以忱,黄英,姜翠宁.纸浆模塑真空吸滤成形机理研究[J].真空.2003(3):52-58.
    [71]张以忱,蒋代君,黄英,等.纸浆真空模塑成型技术及应用[J].真空,2002(4):7-13.
    [72]Shey J, Imam S H. Glenn G M, et al. Properties of baked starch foam with natural rubber Iatex[J]. Industrial Crops and Products,2006,24(1):34-40.
    [73]Ludvik C N. Glenn G M, Klamczynski A P. et al. Cellulose fiber/bentonite clay/biodegradable thermoplastic composites[J]. Journal of Polymers and the Environment, 2007.15(4):251-257.
    [74]Imam S H. Gordon S H, Mohamed A, et al. Enzyme catalysis of insoluble cornstarch granules:Impact on surface morphology, properties and biodegradability[J]. Polymer Degradation and Stability,2006,91 (12):2894-2900.
    [75]Gomes A M M, Da Silva P L. E Moura C D L, et al. Study of the mechanical and biodegradable properties of cassava starch/chitosan/PVA blends, P.O. Box 101161, Weinheim, D-69451, Germany,2011 [C]. Wiley-VCH Verlag.
    [76]Scarascia-Mugnozza G, Schettini E, Vox G, et al. Mechanical properties decay and morphological behaviour of biodegradable films for agricultural mulching in real scale experiment[J]. Polymer Degradation and Stability,2006,91(11):2801-2808.
    [77]Briassoulis D. Mechanical behaviour of biodegradable agricultural films under real field conditions[J]. Polymer Degradation and Stability,2006,91(6):1256-1272.
    [78]Casavola C, Lamberti L. Mastrandrea G, et al. Mechanical characterisation of a new biodegradable film[J]. Strain,2010,46(3):215-226.
    [79]赵东,孙艳玲,赵小津.植物秸秆杯型容器成型过程的计算机模拟[J].北京林业大学学报,2002:212-214.
    [80]徐锋,高德,景全荣.基于有限元法的可降解餐具力学性能分析[J].包装工程,2008(10):71-73.
    [81]景全荣,刘壮,高德.可降解餐具碗压缩特性及有限元分析[J].包装工程,2007(09):94-95.
    [82]曹世普,郭奕崇,马玉林.纸浆模塑工业包装制品缓冲机理研究及有限元模拟[J].中国包装工业,2002(7).
    [83]Mohee R, Unmar G D, Mudhoo A, et al. Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions[J]. Waste Management, 2008,28(9):1624-1629.
    [84]Unmar G. Mohee R. Assessing the effect of biodegradable and degradable plastics on the composting of green wastes and compost quality[J]. Bioresource Technology. 2008.99(15):6738-6744.
    [85]Joo S B. Kim M N, Im S S, et al. Biodegradation of plastics in compost prepared at different composting conditions[J]. Macromolecular Symposia,2005,224:355-365.
    [86]Zhao J, Wang X, Zeng J, et al. Biodegradation of poly(butylene succinate-co-butylene adipate) by Aspergillus versicolor[J]. Polymer Degradation and Stability. 2005,90(1):173-179.
    [87]赵黔榕.刘应隆,傅昀,等.S-P新型塑料生物降解性能的研究[J].云南化工2000(3):45-46.
    [88]Briassoulis D. Analysis of the mechanical and degradation performances of optimised agricultural biodegradable films[J]. Polymer Degradation and Stability, 2007.92(6):1115-1132.
    [89]Briassoulis D. Mechanical performance and design criteria of biodegradable low-tunnel films[J]. Journal of Polymers and the Environment,2006.14(3):289-307.
    [90]Briassoulis D. Mistriotis A. Eleftherakis D. Mechanical behaviour and properties of agricultural nets-Part Ⅰ:Testing methods for agricultural nets[J]. Polymer Testing. 2007,26(6):822-832.
    [91]Briassoulis D, Mistriotis A, Eleftherakis D. Mechanical behaviour and properties of agricultural nets. Part Ⅱ:Analysis of the performance of the main categories of agricultural nets[J]. Polymer Testing,2007,26(8):970-984.
    [92]Briassoulis D. An overview on the mechanical behaviour of biodegradable agricultural films[J]. Journal of Polymers and the Environment,2004,12(2):65-81.
    [93]Briassoulis D, Mistriotis A. Integrated structural design methodology for agricultural protecting structures covered with nets[J]. Biosystems Engineering,2010,105(2):205-220.
    [94]Briassoulis D. Mechanical behaviour of biodegradable agricultural films under real field conditions[J]. Polymer Degradation and Stability,2006.91(6):1256-1272.
    [95]Giannoulis A, Mistriotis T, Briassoulis D. Experimental and numerical investigation of the airflow around a raised permeable panel[J]. Journal of Wind Engineering and Industrial Aerodynamics.2010,98(12):808-817.
    [96]Rudnik E, Briassoulis D. Comparative Biodegradation in Soil Behaviour of two Biodegradable Polymers Based on Renewable Resources[J]. Journal of Polymers and the Environment,2010:1-22.
    [97]肖荔人.聚乙烯可环境消纳塑料的生物降解性能研究[J].环境工程学报,2007(5):129-133.
    [98]Lim H, Raku T. Tokiwa Y. A new method for the evaluation of biodegradable plastic using coated cellulose paper[J]. Macromolecular Bioscience,2004,4(9):875-881.
    [99]李海花,单爱琴,周海霞.石油降解菌的筛选及降解性能研究[J].污染防治技术.2008,21(5):10-12.
    [100]张文.王沣浩,王东洋,等.LCA理论及其在制冷空调领域中的应用[J].制冷与空调(北京),2007,7(6):52-56.
    [101]Guinee J. Handbook on life cycle assessment operational guide to the ISO standards[J]. The International Journal of Life Cycle Assessment,2002,7(5):311-313.
    [102]Teulon H, Boidot Forget M, Epelly O. Life cycle assessment[J]. Automotive Engineering International,1995,103(12):49-51.
    [103]乔振江.层次分析法在通信保障风险管理中的应用[J].科技情报开发与经济,2009(9):183-185.
    [104]Saaty T. Fundamentals of Decision Making and Priority Therory with the Analytic Hierarchy Process[M].6. RWS Publications.2000.
    [105]Saaty T L. Decision making with the analytic hierarchy process[J]. International Journal of Services Sciences.2008,1(1):83-98.
    [106]马茂冬,韩尧,张倩.基于模糊层次分析法的应急能力评估方法探讨[J].中国安全生产科学技术,2009,5(2):98-102.
    [107]Saaty T L. How to make a decision:The analytic hierarchy process[J]. European Journal of Operational Research,1990.48(1):9-26.
    [108]胡海军,程光旭.禹盛林,等.一种基于层次分析法的危险化学品源安全评价综合模型[J].安全与环境学报.2007(3):141-144.
    [109]杜栋,庞庆华.现代综合评价方法与案例精选[M].北京:清华大学出版社.2005.
    [110]Fija T. An environmental assessment method for cleaner production technologie[J]. Journal of Cleaner Production,2007.15(10):914-919.
    [111]Williams H, Wikstrom F. Environmental impact of packaging and food losses in a life cycle perspective:A comparative analysis of five food items[J]. Journal of Cleaner Production.2011.19(1):43-48.
    [112]Engul H, Theis T L. An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use[J]. Journal of Cleaner Production, 2011,19(1):21-31.
    [113]李敏秀,李克忠.张响三.基于全生命周期的家具产品绿色度综合评价[J].中南林业科技大学学报:自然科学版,2008,28(1):134-138.
    [114]李敏秀.李克忠.以节约材料为目标的木质家具产品设计方法初探[J].林业实用技术,2009(7):57-58.
    [115]周胜.基于模糊层次分析法的机电产品绿色度综合评价的研究与实现[D].浙江大学机械设计及理论.2002.
    [116]Jones C I, McManus M C. Life-cycle assessment of 11 kV electrical overhead lines and underground cables[J]. Journal of Cleaner Production,2010,18(14):1464-1477.
    [117]Hammond G P. Harajli H A, Jones C I, et al. Integrated appraisal of a building integrated photovoltaic (BIPV) system:1st International Conference on Sustainable Power Generation and Supply, SUPERGEN'09, April 6,2009-April 7.2009. Nanjing, China, 2009[C]. IEEE Computer Society.
    [118]Hammond G P, Jones C I. Embodied energy and carbon in construction materials[J]. Proceedings of Institution of Civil Engineers:Energy,2008,161 (2):87-98.
    [119]何良菊,李培杰,王晓强.塑料与镁合金移动电话外壳材料的生命周期评价[J].机械工程学报,2003(8):44-48.
    [120]xie M H. Li L, Huang Z C, et al. Environmental impacts of milk packaging made from polythene using life cycle assessment:2010 4th International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2010, Chengdu, China,2010[C].
    [121]Xie M. Li L, Huang Z, et al. Study on fuzzy evaluation of packaging rationality based on life cycle assessment:3rd International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2009, June 11,2009-June 13,2009, Beijing, China,2009[C]. IEEE Computer Society.
    [122]Tarantini M. Loprieno A D. Cucchi E. et al. Life Cycle Assessment of waste management systems in Italian industrial areas:Case study of 1st Macrolotto of Prato[J]. Energy, 2009.34(5):613-622.
    [123]Tarantini M, Scalbi S. Misceo M. et al. Life Cycle Assessment as a tool for water management optimization in textile finishing industry:Environmentally Conscious Manufacturing Ⅳ, October 26.2004-October 27.2004, Philadelphia, PA, United states, 2004[C]. SPIE.
    [124]Mattioli D, De F L. Giordano A, et al. Per un uso efficiente della risorsa idrica nell'industria tessileThe efficient use of water resources in the weaving industry[J]. Tinctoria,2004,101(7):40-49.
    [125]姜峰,李剑峰,李方义,等.基于层次分析法的包装材料综合效益分析评价[J].包装工程.2007,28(12):32-34.
    [126]李媛媛,戴宏民.韩敏,等.塑料编织袋制造工艺资源环境性能评价[J].重庆工商大学学报(自然科学版),2008(4):403-407.
    [127]谢明辉,李丽,黄泽春,等.纸塑铝复合包装处置方式的生命周期评价[J].环境科学研究.2009(11):1299-1304.
    [128]谢明辉,李丽,黄泽春,等.典型复合包装的全生命周期环境影响评价研究[J].中国环境科学,2009(7):773-779.
    [129]孟宪策.聚碳酸酯和聚乳酸的生命周期评价[D].北京T业大学,2010.
    [130]关于发布“十一五”国家科技支撑计划重大项目“绿色制造关键技术与装备”课题申请指南的通知[EB/OL]. [2010-12-26]. http://www.most.gov.cn/tztg/200610/t20061025_36729.htm.
    [131]王世荣,李祥高,刘东志.表面活性剂化学[M].北京:化学工业出版社教材出版中心,2009.
    [132]张玉龙,王化银.淀粉胶黏剂[M].北京:化学工业出版社.2008.
    [133]魏邦柱.胶乳乳液应用技术[M].北京:化学工业出版社.2003.
    [134]辛忠.合成材料添加剂化学[M].北京市:化学工业出版社,2005.
    [135]吴辉煌.表面化学[M].北京:北京大学出版社,1991.
    [136]刘温霞,邱纪元.造纸湿部化学[M].北京市:化学工业出版社,2005.
    [137]佘彬莺.网状结构植物纤维缓冲材料特性的研究[D].福建农林大学,2007.
    [138]史锃瑛.刘晔.缓冲包装材料发泡机理及泡体破坏因素的研究[J].包装工程,2007(7):31-33.
    [139]王向东.不同聚内烯发泡体系的挤出发泡行为研究[D].北京化工大学,2008.
    [140]Colton J S, Suh N P. NUCLEATION OF MICROCELLULAR FOAM:THEORY AND PRACTICE.[J]. Polymer Engineering and Science.1987,27(7):500-503.
    [141]Colton J S, Suh N P. NUCLEATION OF MICROCELLULAR THERMOPLASTIC FOAM WITH ADDITIVES:PART Ⅰ:THEORETICAL CONSIDERATIONS.[J]. Polymer Engineering and Science,1987,27(7):485-492.
    [142]Colton J S, Suh N P. NUCLEATION OF MICROCELLULAR THERMOPLASTIC FOAM WITH ADDITIVES:PART Ⅱ:EXPERIMENTAL RESULTS AND DISCUSSION.[J]. Polymer Engineering and Science,1987,27(7):493-499.
    [143]Amon M, Denson C D. STUDY OF THE DYNAMICS OF FOAM GROWTH: SIMPLIFIED ANALYSIS AND EXPERIMENTAL RESULTS FOR BULK DENSITY IN STRUCTURAL FOAM MOLDING. [J]. Polymer Engineering and Science. 1986.26(3):255-267.
    [144]Amon M, Denson C D. STUDY OF THE DYNAMICS OF FOAM GROWTH: ANALYSIS OF THE GROWTH OF CLOSELY SPACED SPHERICAL BUBBLES.[J]. Polymer Engineering and Science,1984.24(13):1026-1034.
    [145]吴舜英.徐敬 .泡沫塑料成型[M].北京:化学工业出版社,1999.
    [146]张玉亭,吕彤.胶体与界面化学[M].北京:中国纺织出版社,2008.
    [147]张德智.植物纤维缓冲材料浆料流变特性的研究[D].福建农林大学,2009.
    [148]吴其叶,曹绍文,等.植物纤维发泡制品及成型技术[J].轻工机械,2002(3):22-25.
    [149]李依依.金属材料制备工艺的计算机模拟[M].北京市:科学出版社,2005.
    [150]刘汉武.铝型材挤压模具智能设计理论研究[D].东北大学材料成犁与控制工程,2000.
    [151]Hu Z, Zhu L, Wang B, et al. Computer simulation of the deep extrusion of a thin-walled cup using the thermo-mechanically coupled elasto-plastic FEM[J]. Journal of Materials Processing Technology,2000,102(1):128-137.
    [152]倪正顺,帅词俊,钟掘.基于热力耦合的热挤压模具结构参数优化设计[J].中国机械工程,2004(09):5-8.
    [153]陶文铨,李永堂.工程热力学[M].武汉:武汉理工大学出版社,2001.
    [154]张京珍.泡沫塑料成型加工[M].北京:化学工业出版社,2005.
    [155]何继敏.新型聚合物发泡材料及技术[M].北京:化学工业出版社,2008.
    [156]杨淑蕙.植物纤维化学[M].北京:中国轻工业出版社,2001.
    [157]吴宗华,陈少平.植物纤维表面光致黄化及其反应机理的研究[J].高分子学报,2000(2):247-249.
    [158]戴燕,欧义芳,鲁杰,等.纸质餐具中纤维素纤维在紫外光光照下的降解研究[J].纤维素科学与技术,2002(1):32-39.
    [159]赵文元,王亦军.功能高分子材料化学[M].北京:化学工业出版社,2003.
    [160]胡琳娜.玄武岩纤维复合型体材料及降解机理研究[D].河北工业大学,2003.
    [161]吕贻忠,李保国.土壤学[M].北京:中国农业出版社,2006.
    [162]陈玉放,郭元强,谢来苏.植物纤维有氧条件下的热稳定特性的研究[J].纤维素科学与技术,1999(3):13-19.
    [163]戴燕,鲁杰,石淑兰,等.新型纸质快餐具热降解性能研究[J].纸和造纸,2002(2):26-28.
    [164]Maddever W J, Chapman G M. Modified starch based biodegradable plastics:ANTEC 89-47th Annual Technical Conference of SPE, May 1,1989-May 4,1989, New York, NY, USA,1989[C]. Publ by Soc of Plastics Engineers.
    [165]Maddever W J. Making polymers biodegradable with modified starch additions:Third Chemical Congress of North America, June 6,1988-June 10,1988, Toronto, Ont, Can, 1988[C]. Publ by ACS.
    [166]GB/T 18006.2-1999, Test method for determining the degradability of single use and degradable lunch container and drinking set[S].1999.
    [167]翁云烜,陈家琪,刘山生.降解PE膜、发泡PS餐盒评价方法的研究[J].中国塑料,1999.
    [168]丁浩.塑料应用技术[M].北京:化学工业出版社,1999.
    [169]刘光复,刘志峰,李钢.绿色设计与绿色制造[M].北京:机械工业出版社,1999.
    [170]赵焕臣.层次分析法[M].北京:科学出版社.1986.