纳米氧化铝模板和稀土荧光材料量子点阵的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模板法制备纳米结构体系是20世纪90年代中期发展起来的一种靠自组装构筑纳米结构体系的新工艺。即在一定的工艺环境(液相或气相)中,直接在模板的微孔内进行纳米结构的原位复制,从原子或分子开始生长纳米结构。且这种纳米结构的物性,可通过改变模板的结构参数进行调制。这种概念上创新的纳米结构制备方法,现在国际上称之为纳米复制(Nano-copy),这是当今国际热门研究之一,这为设计下一代纳米结构的元器件奠定了基础,具有重要的科学意义和实用价值。
     本论文以阳极氧化铝模板(AAO,Anodic Aluminium Oxide)为模板,采用准分子脉冲激光溅射(PLD,Pulse Laser Deposition)法来制备稀土荧光材料的量子点阵。该技术路线是以前未见报道过的,是我们首创的。因此存在一些问题和困难,主要是:
     (1)氧化铝(AAO)模板的薄膜厚度与孔径的比例要小,以使制备材料能顺利通过氧化铝(AAO)模板到达衬底。但是常用的氧化铝(AAO)模板的长径比高达5000,要使靶材物质穿过这么长的“隧道”到达衬底是很困难的。这就要求我们适当控制长径比。
     (2)孔径可控的氧化铝(AAO)模板制备比较困难。要制备尺寸为40~200nm的纳米结构体系、量子点阵均需尺寸可控的AAO模板。
     (3)氧化铝(AAO)模板上微孔排列通常是不规则性的。只有微孔排列规则,才能得到规则排列的量子点阵、纳米结构体系。
     (4)氧化铝(AAO)模板是一种厚度很薄(仅有几十个微米)的薄膜,虽然有相对高的硬度和耐冲击性,但是比较脆、易碎。
     本文综述了当前国际上应用模板纳米结构研究的最新进展,概括了阳极氧化铝模板的产生、发展历史及制备机理模型等,提出我们的方案,比较了一步阳极氧化法、两步阳极氧化法实验结果并,在此基础上总结出我们制备阳极氧化铝(AAO)模板的最佳工艺,获得了尺寸(Φ40~200nm)可精确控制的AAO模板。并以阳极氧化铝模板为掩模板用准分子激光溅射(PLD)制备稀土荧光材料量子点阵的开展研究工作,主要取得了以下成绩:
     (1)我们开创性地提出了氧化铝模板和准分子脉冲激光溅射结合这一思
    
    路,并成功地实现了这一方法,以AAO为掩模板,在MgO单晶衬底上
    成功地生长了稀土荧光材料Lao.95Euo.o5BaBgol6的量子点阵。实验证明
    此方法是可行的,这为未来合成其他纳米结构体系材料开辟了一条新的
    途径。在目前的基础上可以合成发光阵列体系作为显示材料。还可以利
    用纳米结构体系的新效应、新性能来制作各种功能器件等。这一方法的
    实现,可以真正做到纳米复制(Nan。一copy),这是当今国际热门研究之
    (2)分别采用一步阳极氧化法和两步阳极氧化法制备纳米孔洞尺寸
    (巾40~ZO0nm)可控的双通氧化铝模板。实验结果表明,要想制备获得高
    度规则有序的AAO模板,两步阳极氧化法优于一步阳极氧化法。通过
    摸索制备阳极氧化铝模板(AAO,Anodi。Aluminum oxide)的工艺条件,
    找到了我们设备下,外加电压对模板有序性(纳米孔径)、氧化时间对模
    板厚度的影响、pH值对模板有序性的影响关系。
    (3)用固相反应法制备合成稀土荧光材料,并分别在不同烧结条件下烧结
    制备PLD溅射用的靶材,找到其最佳烧结工艺条件。
    (4)对纯度为99.996%的铝箔进行一系列的退火处理,适当的退火使铝
    箔晶粒长大,消除内应力,对形成规则纳米孔洞结构是有利的。
Template-synthesis method is a kind of new technology to preparateof nanostructure system. It carries out in certain environment (liquid or gas phase) by atom's moving . Therefore nanostructure system can be fabricated. The physical properties of a nano structure material is controlled by changing structure size of the anodic aluminum oxide(AAO) templates. This method has been playing an important role in the fabrication of many kinds of nanostructure system. Recently this method is named Nano-copy. This synthesis method has been attracting more and more attention of the researchers.
    In this work, matrix of quantum dots of fabricated using AAO template and pulse laser deposition (PLD). The cylindrical pore array structure of AAO serves as a template for the preparation of the quantum dots. This new technical route is initiated by our research group. But there are some difficulties in the experimentation as follows :
    (1)the proportion of the AAO film thickness and diameter of nano-pores must be small. The proportion produced by normal method is too high about 5000. To make target materials to penetrate such a long "tunnel" is very
    difficult.
    (2)the diameter size of nano-pores must be controlled. So that the quantum dot size can be different.
    (3) the AAO template should have a structure of highly hexagonal pore array structure.
    (4)the AAO templates demonstrate some weakness in application, such as, the low mechanical strength and low thermal stability.
    This thesis has summarized the newest progress of the AAO template application, technology and mechanism. The main results and conclusions can be summarized as follows :
    (l)we have put forward a new ideal of using the AAO template and PLD
    
    
    
    synthesize matrix of quantum dots. And we successfully fabricate the fluorescence material quantum dots on the MgO substrate by this method. With realization of this method, nano-copy really come true. This research is one of international hot issue.
    (2)the AAO templates with highly ordered hexagonal nano-pores were synthesized by One-Step Anodization method and Two-Step Anodization method . The experiment results show that Two-Step Anodization method is better than One-Step Anodization method. The effects of reaction time , anodize voltage, pH value concentration, temperature have all been studied. Therefore precise hole-size 40~200nm controll has been realized.
    (3)the rare earth fluorescence material and the target for PLD were synthesized by high temperature solid state reaction .
    (4)the aluminum foil (99.996%) is annealed under controlled temperatures and duration. So the grain sizes were increased and the stress in the foil was released.
引文
[1] 潘金生,《材料科学基础》,北京:清华大学出版社,1998
    [2] 张立德,纳米材料研究的新进展及21世纪的战略地位,中国粉体技术,2000,6(1)
    [3] 潘钰娴,樊琳.纳米材料的研究和应用,苏州大学学报(工科版),第22卷第5期,2002,71~75
    [4] R. P. F eynman, Engineering and Science, 1960, 22
    [5] Bendnorz J G, Müller K A. Z, Phys, 1996, B64:198~201
    [6] Wu M K et al. Phys Rev Lett., 1987, 58:908~915
    [7] 张立德,纳米材料,北京:化学工业出版社,2000
    [8] Z. W. Pan, Z. R. Dai, Z. Wang, Science 291, 1947(2001)
    [9] 曹茂盛,关长斌,徐甲强,纳米材料导论,哈尔滨:哈尔滨工业大学出版社,2001
    [10] R. Kubo, J. Phys. Soc. Jpn, 1962, 17:975~979
    [11] 张立德、牟季美,纳米材料和纳米结构,北京:科学出版社,2001
    [12] Iijima, S., Helical microtubules of graphitic carbon, Nature, 1991,354:56~58
    [13] 张立德、牟季美,纳米材料和纳米结构,北京:科学出版社,2000
    [14] R. Kubo, A. Kawabata, S. Kobayashi, Annu Rev. Mater. Sci., 14,14(1984)
    [15] 刘吉平,郝向阳,纳米材料与技术,北京:科学出版社,2002
    [16] 方云,杨澄宇,陈明清et al.纳米技术宇纳米材料(Ⅰ)——纳米技术与纳米材料简介,日用化学工业,2003,33(1):55~59
    [17] Huczko A. Templtate-based synthesis of nanomaterials. Appl. Phys. A, 2000, 70:365~368
    [18] 郜涛,孟国文,张立德,多孔阳极氧化铝在纳米结构合成中的应用,世界科技研究与发展,2000,24(6):50~56
    [19] Martin C, R., Template synthesis of electronically conductive polymer nanostructures, Acc. Chem. Res.,1995, 28:61~68
    [20] F endler J H, Membrane Mimetic Chemistry, John Wiely and sons: New York,1982.
    [21] Qi. L, Ma J, Cheng H, Zhao Z, J. Phys. Chem.B, 1997, 101:3460~3465
    [22] Braun P V, Ostenar Paul, Stupp S I., Nature, 1996, 380:325~327
    [23] Stupp S I, Lebonheur V, Walker K, et al. Science, 1997, 276:384~386
    [24] Korgel B A, Monbouqette H G. J. Phys. Chem.,1987,91:854~857
    [25] Tormoto T, Yamshita M, Kuwabate S, et al. J. Phys. Chem. B,1999,103:8799
    
    
    [26] 潘善林,张浩力,王臻,力虎林.模板法制备高度有序的聚苯胺纳米颗粒,高等化学学报,1999,20:1622~1625
    [27] H. Masuda, Yasui K, Nishio K, Fabrication of ordered arrays of multiple nanodots using anodic porous alumina as an evaportation mask, Adv. Mater.,2000,12(14): 1031~1033
    [28] Zhang Z B, Ying J Y, Dresselhaus M S, J. Mater. Res., 1998, 13:1745~1749
    [29] 王成伟,彭勇,潘善林et al.物理学报,1999,48:2146~2151
    [30] Yang J L, Pan G P, Xue K H, et al. Pure. Appl. Chem., 2000, 72:221~225
    [31] 覃东欢,彭勇,王成伟et al.,物理学报,2001,50:144~149
    [32] Xu Dong Sheng, Chen Da Peng, Xu Ya Jie, et al., Preparation of Ⅱ-Ⅵ group Semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide template[J]. Pure and Appl. Chem. 2000, 72:127~131
    [33] Xu Ya Jie, Xu Dong Sheng, Chen Da Peng, et al., Electrochemistry preparation and characterization of CdS nanowire arrys[J], ACTA PHYSICO-CHIMMICA SINICA, 1999,15(7),577~580
    [34] 李梦轲,陆梅,王成伟,力虎林,取向碳纳米管/硅纳米线复合阵列的制备;中国科学(B)辑,2002,32(3):205~208;
    [35] 王成伟,李梦轲,潘善林,用多孔氧化铝模板制备高度取向炭纳米管阵列的研究,科学通报,2000,45(5):493~497
    [36] Msauda H, Yasuik, Nishio K, Fabrication of ordered arrays of multiple nanodots using anodic porous alumina as an evaportation mask, Adv. Mater.,2000,12(14): 1031~1033
    [37] 王爱华,管荻华,周维亚,et al.多孔氧化铝有序性的制备研究,无机化学学报,2002,18(5):447~449
    [38] 许东升,郭国霖,桂琳琳et al.中国科学B,2000,43,459~462
    [39] Velev O D, Tessier P M, Kaler E M, et al. Nature, 1999, 401:548~551
    [40] F. Keller, M. S. Hunter, D.L. Robinson,Structures of oxide coatings on aluminum, J. Electrochem. Soc. ,1953 100:411~426
    [41] 郭鹤桐,王为,铝阳极氧化的回顾与展望,材料保护,2000,33(1):43~45
    [42] 李淑英,赫荣晖,纳米孔洞阳极氧化铝的制备和应用,全面腐蚀控制,2000,15(2):51~54
    [43] Che G, Lakshmi B. B., Ellen R. F., Martin C. R., Carbon nanotuble membranes for electrochemical energy storage and production, Nature, 1998, 39:3346~349
    [44] Collby A., Foss J., Gabor I., Hornyak J. A. S., Martin C. R., Template-synthesized
    
    nanoscopic gold particales: Optical sepectra and the effect of particle size and shape, J. Phys. Chem.,1994, 98:2963~2971
    [45] Routkevitech D., Moskovits T. B. M. and Xu Jing Ming, Electrochemical fabrication of CdS nanowire arrays in porous aluminum oxide templates, J. Phys. Chem., 1996, 100: 14037~14047
    [46] Shlottig F., Textor M., Georgi U., Template synthesis SiO2 nanostructures, Mater. Sci. Lett., 1999, 18:599~601
    [47] Almawtawi D, Liu C. Z., Moskovits M., Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection, J.Appl.Phys. 1991, 70:4421~4426
    [48] Jung Sang Suh, Jin Seung Lee, Highly ordered two-dimensional carbon nanotube arrays, Applied Physics Letters, 1999,75( 14):2047~2049
    [49] G. Sauer, G. Brehm, S. Schneider, Highly ordered monocrystalline silver nanowire arrays, J. Appl. Phy., 2002, 91(5):354~359
    [50] 苏育志,龚克成.纳米结构材料的模板合成方法,材料科学与工程.1999.17(4):17~21
    [51] 徐金霞,黄新民,钱利华,二次阳极氧化方法制备有序多孔氧化铝膜,化学物理学报,2003,16(3):224~226
    [52] C.A. Foss,Jr.,M. J. Tierney, C.R.Martin, Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory, J. Phys. Chem., 1992, 96:9001~9007
    [53] H. Masuda, M. Satoh, Fabrication of gold nanodot array using anodicporous alumina as an evaporation mask. Jpn J Appl Phys Part 2, 1996,35(1B): 126~128
    [54] 龚树文,陈皓侃,李文,et al.,β-Mo_2No_0.78/γ-Al_2O_3催化剂的制各及其噻吩加氢脱硫活性的研究,燃料化学学报,2004,32(1):7~11
    [55] Masuda H., Yasui K, Nishio K. Fabrication of ordered arrays of multiple nanodots using anodic porous alumina as an evaporation mask. Adv Mater, 2000, 12(14): 1031~1034
    [56] 吴强,胡征,王喜章,et al.孔性氧化铝模板与一维纳米新材料的制备,无机化学学报,2002,18(7):647~653
    [57] G. E. Thompson, R. C. Fumeaux, G. C. Wood, Corros. Sci.,1978,18: 481~485
    [58] H. Masuda, K. Fukuda et al. Thin Solid Films, 1993, 1:223~225
    [59] O. Jessensky, F. Muller, and U. Gsele,Self-organized formation of hexagonal pore arrays in anodic alumina,Appl. Phys. Lett., 1998,72(10):1173~1175
    [60] 张信义,准一维纳米材料有序微阵列体系的模板合成及表征[博士论文],中科院,2001.6
    
    
    [61] 刘建宇,稀土材料及其应用,北京化学工业出版社,2003,9
    [62] 张梅,刘德强,黄瑞甜,et al,高显色性稀土发光材料的研究,中国稀土学报,2002,20(6):608~611
    [63] 任敏,稀土正硼酸盐的结构相变及其荧光性质[北京大学博士论文],1999,12
    [64] 孙彦彬,邱关明,陈永杰et al,稀土发光材料的合成方法,稀土,2003(24)1:43~48
    [65] 杨智,稀土碱土硼酸盐的结构及其荧光性质[北京大学博士论文],1999,12
    [66] 陆建,倪晓武,贺安之,激光与材料相互作用物理学,北京:机械工业出版社,1996,
    [67] Rajiv K.Singh, J.Narayan, Pulsed-laser Evaporation Technique for Deposition of Thin Films: Physicals and Theoretical Model, Phys.Rev.B., 1990, 41:8843~8846
    [68] 王广昌.准分子激光器的新应用,光电子技术与信息,1999,12:38~40
    [69] 赵建新,激光精细加工及其质量检测的最新进展,激光杂志,1993,14:281~285
    [70] 叶玉堂主编,激光微细加工,成都电子科技大学出版社,成都,1995
    [71] X. H. Li, Laser-induced Voltage in HTSC and CMR Thin Films Deposited on Vicinal Cut SrTiO3 Substrates, Doctor Thiese, MPI-FKF, Stugarter, Germen.
    [72] Nielsen P E, High-intensity Laser-matter Coupling in a Vacuum, J.Appl.Phys., 1979,50:3938~3940
    [73] R.K.Singh, J.Narayan, Physics and theoretical model, Phys.Rev.B., 1990, 41:8843~8845
    [74] 朱静,纳米材料于器件,北京:清华大学出版社,2003