新型功能化修饰荧光量子点的合成、性质及潜在应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相比传统的有机荧光染料,胶体半导体纳米晶,通常称为量子点,具有许多独特的性质,如荧光质量高,激发光谱宽,发射光谱尺寸可调,量子产率高,光化学稳定等,这些优越的性质,使其在化学、医学、材料学、细胞生物学、分子生物学等领域展现出巨大的应用前景。近年来,基于量子点的荧光传感器引起了人们广泛的研究兴趣,因为它可以产生出截然不同的靶向信号,用于各种物质的定性和定量分析。本论文瞄准这一前沿研究方向,在对量子点的发展历程进行简要综述的基础上,拟定了一条基本的研究思路,即从量子点的合成出发,研究其特殊的光学行为、设计基于量子点的高质量荧光传感器用于化学分析中,主要从以下几方面展开工作:
     一、“关-开”型量子点荧光传感器的合成及其在Cd2=测定中的应用。以巯基丙酸为包覆剂,在水溶液中合成出近红外荧光发射CdTe/CdS核/壳量子点(QDs),并进行系统表征。采用吡咯烷二硫代甲酸铵盐对QDs进行修饰,引起荧光淬灭现象。Cd2+加入后,荧光又逐渐增强,并且荧光强度与Cd2=浓度呈现出线性关系。因此,可发展为一种基于荧光‘关-开’模型的QDs传感器。实验结果表明,相比于其它金属离子,此类传感器具有较高的灵敏性和选择性,在真实样品探测中表现出优越的分析能力。在0-2pM的浓度内,可替代ICP-AES技术用于Cd2=的高效测定。与传统的荧光淬灭型传感器相比,此类“关-开”型QDs传感器的可信度更高,且具有更低的检测限(6nm)。
     二、量子点-罗丹明(R6G)复合物传感器的合成及其用于谷胱甘肽的探测。水相合成巯基丙酸包覆的CdTe QDs,通过静电吸附形成R6G-QDs复合物,并对其进行系统表征。加入谷胱甘肽(GSH,0~80μM),引起此复合物荧光光谱发生改变,其中的R6G与QDs荧光强度比率(FR6C/FQDs)与GSH浓度几乎呈线性关系,进而获得了一种基于R6G-QDs的比率荧光GSH传感器。其它干扰因素如硫醇、氨基酸的共存及pH的改变,均不会对FR6G/FQDs造成明显干扰,表现出良好的敏感性和选择性。相比单荧光强度传感器和传统仪器分析技术,本方法具有更简易、快捷和廉价的优点,检测限可低至15nM。本方法有望发展成为其它分子或离子的比率荧光传感器,有助于在生物样品和生物医学体系中对GSH水平进行深入研究。
     三、多功能量子点比率传感器的合成及其应用于pH和Cd2=的分析。在水溶液中,通过氢键作用将巯基乙酸包覆的CdTe QDs与有机染料(异硫氰酸荧光素,FITC)结合,形成FITC-QDs复合物。随溶液pH的升高,复合物中F1TC(520nm)和QDs(595nm)的荧光光谱均呈现有规律的增强,荧光强度比率(I520/I595)与pH(5.3-8.7)呈线性关系,进而可发展为一种比率荧光pH传感器。向复合物中加入S2-可引起QDs的荧光淬灭,继续加入Cd2=,使S2-修饰QDs的荧光增强。因此,可建立了一种基于“关-开”模型的比率荧光Cd2=传感器。实验结果证实,I520/I595与Cd2=浓度(0.1-15μM)呈比例关系,且S2-与Cd2=的加入均未明显影响FITC的荧光。此传感器可对复杂和真实样品进行探测,具有较高的灵敏性和选择性,在同等条件下可取代ICP-AES技术的应用。本方法可用于发展其它类型的QDs离子或分子探针,有助于对复杂体系进行分析。
     四、量子点-凝胶复合物的合成、荧光性质及应用。选择巯基丙酸包覆的CdTe QDs为荧光剂,聚(N-异丙基丙烯酰胺-甲基丙烯酸)为凝胶,通过静电吸附将QDs包埋入凝胶中形成了复合凝胶,并对其形貌、荧光性质及应用进行了研究。结果表明,此复合凝胶的荧光在25-45℃之间具有热敏性和可逆性,荧光强度随温度升高而减弱,随温度降低而增强。在共聚焦显微镜下,呈现出明亮的荧光成像。此外,还考察Cu2+(0~2μM)对复合物的荧光淬灭现象,实验数据证实:该荧光反应对Cu2=是高选择性的,荧光强度与Cu2=浓度具有线性关系,可发展成一种基于复合凝胶的荧光传感器,用于Cu2=的定性和定量探测。
Compared to traditional organic fluorescent dyes, colloidal semiconductor nanocrystals (also referred to as quantum dots, QDs) possess many unique properties, such as high-quality luminescence, the broad excitation, size-tunable photoluminescence (PL) spectra, relatively high quantum yield and photochemical stability, which make QDs an attractive alternative to organic dyes in applications. These excellent properties exhibit great foreground in potential fields, including chemistry, medicine, materials, cell biology, molecule biology, and so forth. In the past few years, QDs-based PL sensors have generated an increasing interest because they can give birth to a distinct target signal for qualitative and quantificational analysis of various substances. The dissertation aimed to this advanced research direction, summarized a refined development of QDs and established a basic research method, that is, the following works have mainly been performed by taking QDs synthesis, characterization, particular PL behavior and PL sensors applied in chemical analysis as the line of this dissertation:
     One:A near-infrared-emitting CdTe/CdS core/shell quantum dots-based OFF-ON photo-luminescence sensor for highly selective and sensitive detection of Cd2+. Herein, near-infrared-emitting CdTe/CdS QDs were synthesized and regularly characterized in aqueous media with3-mercaptopropionic acid as a stabilizer. PL of the as-prepared QDs was quenched due to the addition of ammonium pyrrolidine dithiocarbamate, and became enhanced after adding Cd2+Furthermore, the relationship between PL intensity and the concentration of Cd2+was almost linear. Therefore, a novel QDs sensor based on a PL "OFF-ON" mode could be designed. Experimental results confirmed that this sensor of Cd2+was of high selectivity and sensitivity over other metal ions, and exhibited perfect analysis performance in real and complicate samples. This proposed method could even substitute the ICP-AES for the determination of Cd2+in the concentration range from0.1to2μM. Compared to conventional sensors based on a PL quenching mode, the "OFF-ON" PL sensor in our case presented a superior reliability and a lower detection limit, which was only6nm.
     Two:Rhodamine6G (R6G) conjugated-CdTe quantum dots used for a highly sensitive and selective ratiometric fluorescent sensor of glutathione (GSH). By electrostatic interactions in aqueous solution,3-mercaptopropionic acid capped-CdTe QDs and R6G were conjugated to form R6G-QDs conjugates, together with a systemic characterization. The addition of GSH (0~80μM) induced regular PL response of conjugates, and PL intensity of R6G (lR6G) to that of QDs (IQDS) in conjugates was near linear toward the concentration of GSH, which could be developed as a ratiometric PL sensor of GSH. Related experiments testified that the sensor was of high selectivity and sensitivity over other thiols and amino acids. In comparison with other single-intensity-based PL sensors and traditional analytical techniques, this ratiometric PL sensor was more facile, rapid, low-cost, and exhibited a lower limit detection of15nM. The proposed method could be applied to develop other types of QDs-based molecular or ionic probes for ratiometric PL sensing, and was beneficial to the in-depth research of GSH levels in biological samples and biomedical systems.
     Three:Fluorescein isothiocyanate (FITC) conjugated-CdTe quantum dots as novel dual-functionally ratiometric fluorescence sensors of pH and cadmium ions. In aqueous solution, FITC and2-mercaptoacetic acid capped-CdTe QDs were conjugated by hydrogen bonding, and formed FITC-QDs conjugates. With the pH increasing, both PL intensity of FITC (520nm) and QDs (595nm) in these conjugates showed regular enhancement. The ratiometric PL intensity (lFITC/IQDS) was near linear toward the pH from5.3to8.7. In addition, S2-induced PL quenching of QDs and the addition of Cd2+resulted in PL enhancement of S2--modified QDs. Thus, based on this PL "OFF-ON" mode, a ratiometric PL sensor of Cd2+could be achieved. Experimental results suggested that/lFITC/IQDS was almost linear toward the concentration of Cd2+in the range from0.1to15μM. Meanwhile, the addition of S2-and Cd2+hardly affect PL intensities of FITC. This proposed method for detecting pH and Cd2+was highly sensitive and selective in real and complicated samples, and could replace ICP-AES at the same condition. This proposed sensor can help to develop other related QDs-based ratiometric PL sensors of ions or molecules for the in-depth analysis of complex systems.
     Four:Preparation, luminescence properties and applications of quantum dots-micro gels conjugates. In this chapter,3-mcrcaptopropionic acid capped-CdTe QDs and polymers of N-isopropylmethacylamide and2-methylacrylic acid (that is, P(NIPAM-MAA)) were utilized as PL reagent and microgels, respectively. Due to electrostatic interactions, QDs were entrapped into microgels network to form QDs-P(NIPAM-MAA) hybrid microgels, whose configuration, particular PL properties and applications in PL imaging and sensors were seriously studied in following experiments. According to experimental results, hybrid microgels displayed fully reversible PL behavior between25℃and45℃. The PL intensity was reduced with the each increment of temperature, and then PL was recovered because of temperature dropping. In addition, there was bright PL imaging detected by the confbcal fluorescence microscope. The PL response of hybrid microgeis to Cu2+(0~2μM) was highly selective, and the relationship between PL intensity and the concentration of Cu2+was linear proportion, which could be used as a hybrid micro gels-based sensor for qualitative and quantitative detection of Cu2+
引文
[1]Drexler K E. Nanosystems:Molecular Machinery, Manufacturing, and Computation. New York, John Wiley & Sons.1992
    [2]Drexler K E. Engines of Creation:The Coming Era of Nanotechnology. New York, Anchor Press, Doubleday.1986
    [3]Birriger R W, Gleitan H, Klein H P. Nanocrystalline Materials-an Approach to a Novel Solid Structure with Gas-like Disorder. Physics Letters A.1984,102:365-367
    [4]Crandall B, Lewis C. Journal of Nanotechnology:Research and Perspectives. Cambridge, London, MIT Press.1992
    [5]白春礼.纳米科技及发展前景.微纳电子技术.2002,39(1):2-5
    [6]王世敏,许祖勋,傅晶.纳米材料制备技术.化学工业出版社,北京.2001
    [7]Dave S R, Gao X H. Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery:a versatile and evolving technology. New York, John Wiley & Sons.2009
    [8]Michalet X, Pinaud F F, Bentolila L A, et al. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science.2005,307 (5709):538-544
    [9]He X X, Lin X, Wang K M, et al. Biocompatible Core-Shell Nanoparticles for Bio-medicine, Encyclopedia ofNanoscience and Nanotechnology. Edited by Nalwa H S, Los Angeles:American Scientific Publishers.2004:235-253
    [10]Chan W C W, Nie S M. Quantum dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science.1998,281 (5385):2016-2018
    [11]Alivisatos A P. The Use of Nanocrystals in Biological Detection. Nature Biotechnology. 2004,22(1):47-52
    [12]Alivisatos A P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science.1996, 271:933-937
    [13]谭翠燕,梁汝强,袁康成.量子点在生命科学中的应用.生物化学与生物物理学报.2002,34(1):1-5
    [14]张立德,牟季美.纳米材料和纳米结构,第一版.科技出版社.2001
    [15]Klimov V I. Nanocrystal Quantum Dots:From Fundamental Photophysics to Multicolor Lasing. Los Alamos Science.2003,28:214-220
    [16]顾宁,付德刚,张海黔.纳米技术与应用,第一版.人民邮电出版社.2002
    [17]Ball P, Garwin L. Science at the atomic scale. Nature.1992,355:761-766
    [18]Smith A M, Nie S M. Semiconductor Nanocrystals:Structure, Properties, and Band Gap Engineering. Accounts of Chemical Research.2010,43 (2):190-200
    [19]Peng X G, Schlamp M C, Kadavanich A V, Alivisatos A P. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc.1997,119 (30):7019-7029
    [20]LaMer V K, Dinega R H. Theory, Production and Mechanism of Formation of Mono-dispersed Hydrosols. J. Am. Chem. Soc.1950,72:4847-4854
    [21]Wang Y, Herron N. Optical properties of cadmium sulfide and lead (Ⅱ) sulfide clusters encapsulated in zeolites. J. Phys. Chem.1987,91 (2):257-260
    [22]Steigerwald M L, Alivisatos A P, Gibson J M, Harris T D, Kortan R, Muller A J, Thayer A M, Duncan T M, Douglass D C, Brus L E. Surface derivatization and isolation of semiconductor cluster molecules. J. Am Chem. Soc.1988,110 (10):3046-3050
    [23]Colvin V L, Goldstein AN, Alivisatos A P. Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers. J. Am Chem. Soc.1992,114 (13): 5221-5230
    [24]Stuczynski S M, Brennan J G, Steigerwald M L. Formation of Metal-chalcogen Bonds by the Reaction of Metal-alkyls with Silyl Chalcogenides. Inorg. Chem 1989,28 (25): 4431-4432
    [25]Murray C B, Norris D J, Bawendi M G. Synthesis and Characterization of Nearly Mono-disperse CdE (E=sulfur, selenium, tellurium) Semiconductor Nanocrystallites. J. Am. Chem. Soc.1993,115 (19):8706-8715
    [26]Bowen Katari J E, Colvin V L, Alivisatos A P. X-ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface. J. Phys. Chem. 1994,98 (15):4109-4117
    [27]Peng Z A, Peng X G. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc.2001,123 (1):183-184
    [28]Yu W W, Peng X G. Formation of High-quality CdS and other Ⅱ-Ⅵ Semiconductor Nanocrystals in Noncoordinating Solvents:Tunable Reactivity of Monomers. Angew. Chem, Int. Ed.2002,41 (13):2368-2371
    [29]Hines M A, Philippe G S. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J. Phys. Chem.1996,100 (2):468-471
    [30]Talapin D V, Rogach A L, Weller H, et al. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine Trioctylphosphine Oxide Trioctylphospine Mixture. Nano Lett.2001,1 (4):207-211
    [31]Mekis I, Talapin D V, Kornowski A, et al. One-Pot Synthesis of Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via Organometallic and "Greener" Chemical Approaches. J. Phys. Chem. B.2003,107 (30):7454-7462
    [32]Li J J, Andrew W, Guo W Z, et al. Large-Scale Synthesis ofNearly Monodisperse CdSe/ CdS Core/Shell Nanocrystals Using Air-Stable reagents via Successive Ion Layer Adsorption and Reaction. J. Am Chem. Soc.2003,125 (41):12567-12575
    [33]Talapin D V, Mekis T, Gotzinger S, et al. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core/Shell /Shell Nanocrystals. J. Phys. Chem. B.2004,108 (49):18826-18831
    [34]Bailey R E, Nie S M. Alloyed Semiconductor Quantum Dots:Tuning the Optical Properties without Changing the Particle Size. J. Am. Chem. Soc.2003,125:7100-7106
    [35]Zhong X H, Han M Y, Dong Z L, White T J, Knoll W. Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability. J. Am. Chem. Soc.2003,125 (28): 8589-8594
    [36]Jiang W, Singhal A, Zheng J N, Wang C, Chan W C W. Optimizing the Synthesis of Red to Near-IR-Emitting CdS-Capped CdTexSe1-x Alloyed Quantum Dots for Bio medical Imaging. Chem. Mater.2006,18 (20):4845-4854
    [37]Deng Z T, Cao L, Tang F Q, Zou B S. A New Route to Zinc-Blende CdSe Nanocrystals: Mechanism and Synthesis. J. Phys. Chem. B.2005,109 (35):16671-16675
    [38]Deng Z T, Yan H, Liu Y. Band Gap Engineering of Quaternary-Alloyed ZnCdSSe Quantum Dots via a Facile Phosphine-Free Colloidal Method. J. Am. Chem. Soc.2009, 131:17744-17745
    [39]Zuo T S, Sun Z P, Zhao Y L, Jiang X M, Gao X Y. The Big Red Shift of Photo-luminescence of Mn Dopants in Strained CdS:A Case Study of Mn-Doped MnS-CdS Heteronanostructures. J. Am Chem. Soc.2010,132:6618-6619
    [40]Rogach A L, Katsikas L, Kornowski A, et al. Synthesis and Characterization of Thiol-Stabilized CdTe Nanocrystals. Phys. Chem.1996,100 (11):1772-1778
    [41]Gao M, Rogach A L, Kornowski A, et al. Strongly Photo luminescent CdTe Nanocrystals by Proper Surface Modification. J. Phys. Chem. B.1998,102 (43):8360-8363
    [42]Gaponik N L, Talapin D V, Weller H. Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes. J. Phys. Chem. B.2002,106 (29): 7177-7185
    [43]Zhang H, Zhou Z, Yang B, et al. The Influence of Carboxyl Groups on the Photo-luminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles. J. Phys. Chem. B.2003,107(1):8-13
    [44]Shavel A, Gaponik N, Eychmiiller A. Efficient UV-Blue Photoluminescing Thiol-Stabilized Water-Soluble Alloyed ZnSe(S) Nanocrystals. J. Phys. Chem. B.2004,108 (19):5905-9508
    [45]Zhao X, Gorelikov I, Musikhin S, Cauchi S, Sukhovatkin V, Sargent E H, Kumacheva E. Synthesis and Optical Properties of Thiol-Stabilized PbS Nanocrystals. Langmuir.2005, 21 (3):1086-1090
    [46]Zheng Y G, Yang Z C, Ying J Y. Aqueous Synthesis of Glutathione-Capped ZnSe and Zn1-xCdxSe Alloyed Quantum Dots. Adv. Mater.2007,19:1475-1479
    [47]Wang C, Gao X, Ma Qiang, Su X G. Aqueous synthesis of mercaptopropionic acid capped Mn2+-doped ZnSe quantum dots. J. Mater. Chem.2009,19:7016-7022
    [48]Fang Z, Wu P, Zhong X H, Yang Y J. Synthesis of highly luminescent Mn:ZnSe/ZnS nanocrystals in aqueous media. Nanotechnology.2010,21 (30):305604-305610
    [49]Wang S P, Mamedova N L, Chen W, et al. Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates. Nano Lett.2002,2 (8):817-822
    [50]Reiss P, Protiere M, Li L. Core/Shell Semiconductor Nanocrystals. Small.2009,5 (2): 154-168
    [51]Mattoussi H, Mauro J M, Goldman E R, et al. Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein. J. Am. Chem. Soc.2000,122 (49):12142-12150
    [52]Daniele G, Shimon W, Alivisatos A P, et al. Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots. J. Phys. Chem. B. 2001,105 (37):8861-8871
    [53]Parak W J, Gerion D, Alivisatos A P, et al. Conjugation of DNA to Silanized Colloidal Semiconductor Nanocrystalline Quantum Dots. Chem. Mater.2002,14 (5):2113-2119
    [54]Chen Y F, Rosenzweig Z. Luminescent CdSe Quantum Dot Doped Stabilized Micelles. Nano Lett,2002,2 (11):1299-1302
    [55]Dubertret B, Skourides P, Albert L, et al. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science.2002,298 (5599):1759-1762
    [56]Han M Y, Gao X H, Su J Z, et al. Quantum-dot-tagged Microbeads for Multiplexed Optical Coding of Biomolecules. Nature Biotechnology.2001,19 (7):631-635
    [57]Gao X H, Cui Y Y, Nie S M, et al. In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots. Nature biotechnology.2004,22 (8):969-976
    [58]Mattoussi H, Mauro J M, Bawendi M G, et al. Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein. J. Am. Chem. Soc.2000, 122 (49):12142-12150
    [59]Mansur H S. Quantum dots and nanocomposites. New York, John Wiley & Sons.2010
    [60]Wu X, Liu H, Liu J, et al. Immunofluorescent Labeling of Cancer Marker Her2 and other Cellular Targets with Semiconductor Quantum Dots. Nature Biotechnology.2003,21 (1): 41-46
    [61]Chen F Q, Gerion D. Fluorescent ZnS@CdSe nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano. Lett.2004,4 (10): 1827-1832
    [62]Chen Y F, Rosenzweig Z. Luminescent CdS Quantum Dots as Selective Ion Probes. Anal. Chem.2002,74 (19):5132-5138
    [63]Lakowicz J R, Gryczynski I, Gryczynski Z, Murphy C J. Luminescence Spectral Properties of CdS Nanoparticles. J. Phys. Chem B.1999,103 (36):7613-7620
    [64]Mahtab R, Rogers J P, Murphy C J. Protein-Sized Quantum Dot Luminescence Can Distinguish between "Straight", "Bent", and "Kinked" Oligonucleotides. J. Am. Chem. Soc.1995,117 (35):9099-9100
    [65]Ji X, Zheng J, Xu J, Rastogi V K, Cheng T C, DeFrank J J, Leblanc R M. (CdSe)ZnS Quantum Dot and Organophosporus Hydrolase Bioconjugate as Biosensors for Detection of Paraoxon. J. Phys. Chem B.2005,109 (9):3793-3799
    [66]Wang LY, Kan X W, Zhang M C, Zhu C Q. Fluorescence for the determination of protein with functionalized nano-ZnS. Analyst.2002,127:1531-1534
    [67]Grecco H E, Lidke K A, Heintzmann R, et al. Ensemble and Single Particle Photophys-ical Properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of Commercial Quantum Dots in Solution and in Live Cells. Microscopy Research and Technique.2004,65 (4):169-179
    [68]Riegler J, Nann T. Application of luminescent nanocrystals as labels for biological molecules. Anal. Bioanal. Chem 2004,379:913-919
    [69]Zhang C Y, Johnson LW. Quantum Dot-Based Fluorescence Resonance Energy Transfer with Improved FRET Efficiency in Capillary Flows. Anal. Chem 2006,78:5532-5537
    [70]Medintz 1 L, Clapp A R, Mattoussi H, Goldman E R, Fisher B, Mauro J M. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater.2003, 2:630-638
    [71]Dobson S. Cadmium:Environmental Aspects. World Health Organization, Geneva.1992
    [72]McLaughlin M J S, Singh B R. Cadmium in Soils and Plants. Kluwer, Dordrecht.1999
    [73]Nordberg G F, Herber R F M, Alessio L. Cadmium in the Human Environment. Oxford University Press. Oxford, UK.1992
    [74]Cheng T, Xu Y, Zhang S, Zhu W, Qian X, Duan L. A Highly Sensitive and Selective OFF-ON Fluorescent Sensor for Cadmium in Aqueous Solution and Living Cell. J. Am. Chem Soc.2008,130 (48):16160-16161
    [75]Bao Y, Liu B, Wang H, Du F, Bai R. A highly sensitive and selective ratiometric Cd2+ fluorescent sensor for distinguishing Cd2+ from Zn+ based on both fluorescence intensity and emission shift. Anal. Methods.2011,3:1274-1276
    [76]Oztekin Y, Ramanaviciene A, Ryskevic N, Yazicigil Z, Ustundag Z, Solak A O. Ramanavicius A.1,10-Phenanthroline modified glassy carbon electrode for voltamm-etric determination of cadmium(Ⅱ) ions. Sensors and Actuators B.2011,157:146-153
    [77]Clapp A R, Medintz I L, Mauro J M, Fisher B R, Bawendi M G, Mattoussi H. Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors. J. Am. Chem. Soc.2004,126 (1):301-310
    [78]Zhang C Y, Yeh H C, Kuroki M T, Wang T H. Single-quantum-dot-based DNA nano-sensor. Nat. Mater.2005,4 (11):826-831
    [79]Sandros M G, Gao D, Benson D E. A Modular Nanoparticle-Based System for Reagent-less Small Molecule Biosensing. J. Am. Chem. Soc.2005,127 (35) 12198-12199
    [80]Liu J, Bao C, Zhong X, Zhao C, Zhu L. Highly selective detection of glutathione using a quantum-dot-based OFF-ON fluorescent probe. Chem. Commun.2010,46:2971-2973
    [81]Matylitsky V V, Dworak L, Breus V V, Basche T, Wachtveitl J. Ultrafast Charge Separation in Multiexcited CdSe Quantum Dots Mediated by Adosorbed Electron Acceptors. J. Am Chem. Soc.3009,131 (7) 2424-2425
    [82]Xue M, Wang X, Wang H, Chen D, Tang B. Hydrogen bond breakage by fluoride anions in a simple CdTe quantum dot/gold nanoparticle FRET system and its analytical application. Chem. Commun.2011,47:4986-4988
    [83]Huang S, Xiao Q, He Z K, Liu L, Tinnefeld P.Su X R, Peng X N. A high sensitive and specific QDs FRET bioprobe for MNase. Chem. Commun.2008, (45):5990-5992
    [84]Zhao Q, Li F, Huang C. Phosphorescent chemosensors based on heavy-metal complexes. Chem. Soc. Rev.2010,39:3007-3030
    [85]Liang G X, Liu H Y, Zhang J R, Zhu J J. Ultrasenitive Cu2+ sensing by near-infrared-emitting CdSeTe alloyed quantum dots. Talanta.2010,80:2172-2176
    [86]Butwong N, Noipa T, Burakham R, Srijaranai S, Ngeontae W. Determination of arsenic based on quenching of CdS quantum dots fluorescence using the gas-diffusion flow injection method. Talanta.2011,85:1063-1069
    [87]Ali E M, Zheng Y, Yu H H, Ying J Y. Ultrasensitive Pb2+ Detection by Glutathione Capped Quantum Dots. Anal. Chem 2007,79 (24):9452-9458
    [88]Xia Y S, Zhu C Q. Aqueous synthesis of type-Ⅱ core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper(Ⅱ). Analyst.2008,133 (7):928-932
    [89]Li H B, Zhang Y, Wang X Q, Xiong D J, Bai Y Q. Calixarene capped quantum dots as luminescent probes for Hg2+ ions. Mater. Lett.2007,61 (7):1474-1477
    [90]Ge S Q Zhang C C, Zhu Y N, Yu J H, Zhang S S. BSA activated CdTe quantum dot nanosensor for antimony iondetection. Analyst.2010,135 (1):111-115
    [91]Nolan E M, Lippard S J. Tools and Tactics for the Optical Detection of Mercuric Ion. Chem. Rev.2008,108 (9):3443-3480
    [92]Shang L, Zhang L H, Dong S J. Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots. Analyst.2009,134 (1):107-113
    [93]Han B Y, Yuan J P, Wang E K. Sensitive and Selective Sensor for Biothiols in the Cell Based on the Recovered Fluorescence of the CdTe quantum Dots-Hg(Ⅱ) System. Anal. Chem.2009,81 (13):5569-5573
    [94]Chen J L, Gao Y C, Xu Z B, Wu G H, Chen Y C, Zhu C Q. A novel fluorescent array for mercury (Ⅱ) ion in aqueous solution with functionalized cadmium selenide nanoclusters. Anal. Chim. Acta.2006,577:77-84
    [95]Banerjee S, Kar S, Santra S. A simple strategy for quantum dot assisted selective detection of cadmium ions. Chem. Commun. 2008, (26):3037-3039
    [96]Ruedas-Rama M J, Hall E A H. Azamacrocycle Activated Quantum Dot for Zinc Ion Detection. Anal. Chem.2008,80 (21):8260-8268
    [97]Costa-Fernandez J M. Optical sensors based on luminescent quantum dots. Anal. Bioanal. Chem.2006,384:37-40
    [98]Klostranec J M, Chan W C W. In biological and biomedical research:recent progress and present challenges. Adv. Mater.2006,18:1953-1964
    [99]Gu Z, Zou L, Fang Z, Zhu W, Zhong X. One-pot synthesis of highly luminescent CdTe/ CdS core/shell nanocrystal in aqueous phase. Nanotechnology.2008,19:135604-135610
    [100]Zou L, Gu Z, Zhang N, Zhang Y, Fang Z, Zhu W, Zhong X. Ultrafast synthesis of highly luminescent green-to near infrared-emitting CdTe nanocrystals in aqueous phase. J. Mater. Chem,2008,18:2807-2815
    [101]Yu W W, Qu L H, Guo W Z, Peng X G Experimental Determination of the Extinction Coefficient of CdTe, CdSe and CdS Nanocrystals. Chem. Mater.2003,15:2854-2860
    [102]Fang Z, Liu L, Wang J, Zhong X. Depositing a ZnxCd1-xS Shell around CdSe Core Nanocrystals via a Noninjection Approach in Aqueous Media. J. Phys. Chem. C.2009, 113:4301-4306
    [103]Smith AM, Mohs AM, Nie S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol.2009,4:56-63
    [104]Zhang W, Chen G, Wang J, Ye B C, Zhong X. Design and Synthesis of Highly Luminescent Near-Infrared-Emitting Water-Soluble CdTe/CdSe/ZnS Core/Shell/Shell Quantum Dots. Inorg. Chem.2009,48:9723-9731
    [105]Talapin D V, Mekis I, Gotzinger S, Kornowshi A, Benson O, Weller H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell Nanocrystals. J. Phys. Chem B.2004,108 (49): 18826-18831
    [106]Wang C L, Zhang H, Zhang J H, Lv N, Li M J, Sun H Z, Yang B. Ligand Dynamics of Aqueous CdTe Nanocrystals at Room Temperature. J. Phys. Chem. C.2008,112 (16): 6330-6336
    [107]Yan X P, Jiang Y. Flow injection on-line preconcentration and separation. Trends Anal. Chem.2001,20 (10):552-562
    [108]Wu P, Yan X P. A simple chemical etching strategy to generate "ion-imprinted" sites on the surface of quantum dots for selective fluorescence turn-on detecting of metal ions. Chem. Commun.2010,46:7046-7048
    [109]Xu H, Miao R, Fang Z, Zhong X. Quantum dot-based "turn-on" fluorescent probe for detection of zinc and cadmium ions in aqueous media. Anal. Chim. Acta.2011,687: 82-88
    [110]Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G. (CdSe)ZnS Core-Shell Quantum Dots:Synthesis and Characterization of a Size Series of Highly Luminescence Nanocrystallites. J. Phys. Chem. B.1997,101 (46):9463-9475
    [111]Xie R, Kolb U, Li J, Basche T, Mews A. Synthesis and Characterization of Highly Luminescence CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals. J. Am. Chem. Soc.2005,127 (20):7480-7488
    [112]Pan J, Wan D. Gong J. PEGylated liposome coated QDs/mesoporous sillica core-shell nanoparticles for molecular imaging. Chem. Commun.2011,47:3442-3444
    [113]Meister A, Anderson M E. Glutathione. Annu. Rev. Biochem.1983,52:711-760
    [114]Meister A. Selective modification of glutathione metabolish. Science.1983,220:472-477
    [115]Spataru N, Sarada B V, Popa E, Tryk D A, Fujishima A. Voltammetric Determinaation of L-Cysteine at Conductive Diamond Electrodes. Anal. Chem.2001,73:514-519
    [116]SilvaLuz R D C, Damos F S, Gandra P G, Macedo D V D, Tanaka A A, Kubota L T. Electrocatalytic determination of reduced glutathione in human erythrocytes. Anal. Bioanal. Chem. 2007,387:1891-1897
    [117]Mourad T, Min K L, Steghens J P. Measurement of oxidized glutathione by enzymatic recycling coupled to bio luminescent detection. Anal. Biochem. 2000,283 (2):146-152
    [118]Ivanov A R, Baratova L A, Nazimov I V. Qualitative and Quantitative Determination of Biologically Active Low-Molecular-Mass Thiols in Human Blood by Reversed-Phase High-Performance Liquid Chromatography with Photometry and Fluorescence Detection. J. Chromatogr. A.2000,870:433-442
    [119]Pohanka M, Bandouchova H, Sobotka J, Sedlackova J, Soukupova I, Pikula J. Ferric Reducing Antioxidant Power and Square Wave Voltammetry for Assay of Low Molecular Weight Antioxidants in Blood Plasma:Performance and Comparison of Methods. Sensors.2009,9 (11):9094-9103
    [120]Pohanka M, Band'ouchova H, Vlckova K, Karasova J Z, Kuca K, Damkova V, Peckova L, Vitula F, Pikula J. Square wave voltammetry on screen printed electrodes: comparison to ferric reducing antioxidant power in plasma from model laboratory animal (Grey Partridge) and comparison to standard antioxidants. J. Appl. Biomed. 2011,9(2):103-109
    [121]Chen S J, Chang H T. Nile Red-Adsorbed Gold Nanoparticles for Selective Determination of Thiols Based on Energy Transfer and Aggregation. Anal. Chem. 2004,76 (13):3727-3734
    [122]Wong W L, Huang K H, Teng P F, Lee C S, Kwong H L. A novel chiral terpyridine macrocycle as a fluorescent sensor for enantioselective recognition of amino acid derivatives. Chem. Commun.2004, (4):384-385
    [123]Gong K, Zhu X, Zhao R, Xiong S, Mao L, Chen C. Rational Attachment of Synthetic Triptycene Orthoquinone onto Carbon Nanotubes for Electrocatalysis and Sensitive Detection of Thiols. Anal. Chem.2005,77 (24):8158-8165
    [124]Sudeep P K, Joseph S T S, Thomas K G. Selective Detection of Cysteine and Glutathione Using Gold Nanorods. J. Am. Chem. Soc.2005,127 (18):6516-6517
    [125]Tang B, Xing Y, Li P, Zhang N, Yu F., Yang G. A Rhodamine-Based Fluorescent Probe Containing a Se-N Bond for Detecting Thiols and Its Application in Living Cells. J. Am Chem. Soc.2007,129 (38):11666-11667
    [126]Zhang M, Yu M, Li F, Zhu M, Li M, Gao Y, Li L, Liu Z, Zhang J, Zhang D, Yi T, Huang C. A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging. J. Am. Chem. Soc.2007,129 (34):10322-10323
    [127]Bouffard J, Kim Y, Swager T M, Weissleder R, Hilderbrand S A. A Highly Selective Fluorescent Probe for Thiol Bio imaging. Org. Lett.2008,10 (1):37-40
    [128]Lee J S, Ulmann P A, Han M S, Mirkin C A. A DNA-Gold Nanoparticle-Based Colorimetric Competition Assay for the Detection of Cysteine. Nano Lett.2008,8 (2): 529-533
    [129]Lee K S, Kim T K, Lee J H, Kim H J, Hong J I. Fluorescence turn-on probe for homo-cysteine and cysteine in water. Chem. Commun.2008. (46):6173-6175
    [130]Hong V, Kislukhin A A, Finn M G. Thiol-Selective Fluorogenic Probes for Labeling and Release. J. Am. Chem Soc.2009,131 (29):9986-9994
    [131]Banerjee S, Kar S, Perez J M, Santra S. Quantum Dot-Based OFF/ON Probe for Detection of Glutathione. J. Phys. Chem. C.2009,113 (22):9659-9663
    [132]Chen H Q, Fu J, Wang L, Ling B, Qian B B, Chen J G, Zhou C L. Ultrasensitive mercury (Ⅱ) ion detection by europium (Ⅲ)-doped cadmium sulfide composite nano-particles. Talanta.2010,83:139-144
    [133]Ma Q, Ha E, Yang F, Su X. Synchronous determination of mercury (Ⅱ) and copper (Ⅱ) based on quantum dots-multilayer film. Anal. Chim. Acta.2011,701:60-65
    [134]Zhang H X, Jiang B Y, Xiang Y, Zhang Y Y, Chai Y Q, Yuan R. Aptamer/quantum dot- based simultaneous electrochemical detection of multiple small molecules. Anal. Chim. Acta.2011,688:99-103
    [135]Wang Y, Lu L, Tang L H, Chang H X, Li J H. Graphene Oxide Amplified Electro-generated Chemiluminescence of Quantum Dots and Its Selective Sensing for Glutathione from Thiol-Containing Compounds. Anal. Chem.2009,81 (23):9710-9715
    [136]Lei J Y, Wang L Z, Zhang J L. Ratiometric pH sensor based on mesoporous silica nano-particles and Forster resonance energy transfer. Chem. Commun.2010,46:8445-8447
    [137]Jin T, Sasaki A, Kinjo M, Miyazaki J. A quantum dot-based ratiometric pH sensor. Chem Commun.2010,46:2408-2410
    [138]Liu M, Zhao H, Quan X, Chen S, Yu H. Signal amplification via cation exchange reaction:an example in the ratiometric fluorescence probe for ultrasensitive and selective sensing of Cu (Ⅱ). Chem. Commun.2010,46 (7):1144-1146
    [139]Kim G J, Lee K, Kwon H, Kim H.J. Ratiometric Fluorescence Imaging of Cellular Glutathione. Org. Lett.2011,13 (11):2799-2801
    [140]Peng Z A, Peng X G Mechanisms of the Shape Evolution of CdSe Nanocrystals. J. Am Chem. Soc.2001,123:1389-1395
    [141]Ji X, Copenhaver D, Sichmeller C, Peng X G Ligand Bonding and Dynamics on Colloidal Nanocrystals at Room Temperature:The Case of Alkylamines on CdSe Nanocrystals. J. Am. Chem Soc.2008,130:5726-5735
    [142]Chen Y F, Johnson E, Peng X G Formation of Monodisperse and Shape-Controlled MnO Nanocrystals In Non-Injection Synthesis:Self-Focusing via Ripening. J. Am Chem Soc.2007,129:10937-10947
    [143]Gomez D E, Califano M, Mulvaney P. Optical properties of single semiconductor nano-crystals. Phys. Chem Chem. Phys.2006,8:4989-5011
    [144]Singh J. Physics of Semiconductors and Their Heterostructures. McGraw-Hill, New York.1993
    [145]Kalasad M N, Rabinal M K, Mulimani B G Ambient Synthesis and Characterization of High-Quanlity CdSe Quantum Dots by an Aqueous Route. Langmuir.2009,25 (21): 12729-12735
    [146]Jia N Q, Lian Q, Shen H B, Wang C, Li X Y, Yang Z N. Intracellular Delivery of Quantum Dots Tagged "Antisense" Oligodeoxynucleotides by Functionalized Multi-walled Carbon Nanotubes. Nano Lett.2007,7 (10):2976-2980
    [147]Diaz-Cruz M S, Mendieta J, Tauler R, Esteban M. Cadmium-binding properties of glutathione:A chemometrical analysis of voltammetric data. J. Inorg. Biochem.1997, 66(1):29-36
    [148]Zhang Y, Li Y, Yan X P. Photoactivated CdTe/CdSe Quantum Dots as a Near Infrared Fluorescent Probe for Detecting Biothiols in Biological Fluids. Anal. Chem.2009,81 (12):5001-5007
    [149]ButwongN, Noipa T, Burakham R, Srijaranai S, Ngeontae W. Determination of arsenic based on quenching of CdS quantum dots fluorescence using the gas-diffusion flow injection method. Talanta.2011,85:1063-1069
    [150]He Y, Yin P, Gong H, Peng J, Liu S, Fan X, Yan S. Characterization of the interaction between mercaptoethylamine capped CdTe quantum dots with human serum albumin and its analytical application. Sensors and Actuators B.2011,157:8-13
    [151]Ge S, Zhang C, Yu F, Yan M, Yu J. Layer-by-layer self-assembly CdTe quantum dots and molecularly imprinted polymers modified chemiluminescence sensor for deltamethrin detection. Sensors and Actuators B.2011,156:222-227
    [152]Park S A, Jang E J, Koh W G, Kim B S. Fabrication and characterization of optical bio-sensors using polymer hydrogel microparticles and enzyme-quantum dot conjugates. Sensors and Actuators B.2010,150:120-125
    [153]Liu J B, Yang X H, He X X, Wang K M, Wang Q, Guo Q P, Shi H, Huang J, Huo X Q. Fluorescent nanoparticles for chemical and biological sensing. Sci China-Chem.2011, 54:1157-1176
    [154]Ma Q, Su X G. Recent advances and applications in QDs-based sensors. Analyst.2011, 136:4883-4893
    [155]Han C P, Li H B. Host-molecule-coated quantum dots as fluorescent sensors. Anal. and Bioanal. Chem.2010,397:1437-1444
    [156]Liu S Q, Tang Z Y. Nanoparticle assemblies for biological and chemical sensing. J. Mater. Chem.2010,20:24-35
    [157]Frasco M F, Chaniotakis N. Semiconductor Quantum Dots in Chemical Sensors and Biosensors. Sensors.2009,9; 7266-7286
    [158]Wu P, Li Y, Yan X P. CdTe Quantum Dots (QDs) Based Kinetic Discrimination of Fe2+ and Fe3+, and CdTe QDs-Fenton Hybrid System for Sensitive Photoluminescent Detection of Fe2+. Anal. Chem.2009,81 (15):6252-6247
    [159]Tomasulo M, Yildiz I, Kaanumalle S L. Raymo F M. pH-Sensitive Ligand for Luminescent Quantum Dot. Langmuir.2006,22 (24):10284-10290
    [160]Tomasulo M, Yildiz I, Raymo F M. pH-Sensitive Quantum Dots. J. Phys. Chem B. 2006,110 (9):3853-3855
    [161]Deng Z T, Zhang Y, Yue J C, Tang F Q, Wei Q. Green and Orange CdTe Quantum Dots as Effective pH-Sensitive Fluorescent Probes for Dual Simultaneous and Independent Detection of Viruses. J. Phys. Chem. B.2007,111 (41):12024-12031
    [162]Liu Y S, Sun Y, Vernier P T, Liang C H, Chong S Y C, Gunderson M A. pH-Sensitive Photo luminescence of CdSe/ZnSe/ZnS Quantum Dots in Human Ovarian Cancer Cells. J. Phys. Chem. C.2007,111 (7):2872-2878
    [163]Suzuki M, Husimi Y, Komatsu H, Suzuki K, Douglas K T. Quantum Dot FRET Bio-sensors that Respond to pH, to Proteolytic or Nucleolytic Cleavage, to DNA Synthesis, or to a Multiplexing Combination. J. Am. Chem. Soc.2008,130 (17):5720-5725
    [164]Zhang Y, Deng Z T, Yue J C, Tang F Q, Wei Q, Using cadmium telluride quantum dots as a proton flux sensor and applying to detect H9 avian influenza virus. Anal. Biochem. 2007,364 (2):122-127
    [165]Wang Y Q, Ye C, Zhu Z H, Hu Y Z. Cadmium telluride quantum dots as pH-sensitive probes for tiopronin detection. Anal. Chim. Acta.2008,610:50-56
    [166]Snee P T, Somers R C, Nair G, Zimmer J P, Bawendi M G, Nocera D G. A Ratiometric CdSe/ZnS NanocrystalpH Sensor. J. Am. Chem. Soc.2006,128 (41):13320-13321
    [167]Collier B B, Singh S, McShane M. Microparticle ratiometric oxygen sensors utilizing near-infrared emitting quantum dots. Analyst.2011,136:962-967
    [168]Stein E W, Grant P S, Zhu H, McShane M J. Microscale Enzymatic Optical Biosensors Using Mass Transport Limiting Nanofilms.1. Fabrication and Characterization Using Glucose as a Model Analyte. Anal. Chem.2007,79 (4):1339-1348
    [169]Peng X, Wu Y, Fan J, Tian M, Han K. Colorimetric and Ratiometric Fluorescence Sensing of Fluoride:Tuning Selectivity in proton Transfer. J. Org. Chem.2005,70 (25): 10524-10531
    [170]Cywinski P J, Moro A J, Stanca S E, Biskup C, Mohr G J. Ratiometric porphyrin-based layers and nanoparticles for measuring oxygen in biosamples. Sensors and Actuators B. 2009,135:472-477
    [171]Tang J, Birkedal H, McFarland E W, Stucky G D. Self-assembly of CdSe/CdS quantum dots by hydrogen bonding on Au surfaces for photoreception. Chem. Commun. 2003 (18):2278-2279
    [172]Xu C, Bakker E. Multicolor Quantum Dot Encoding for Polymeric Particle-Based Optical Ion Sensors. Anal. Chem.2007,79 (10):3716-3723
    [173]Jin W J, Fernandez-Arguelles M T, Costa-Fernandez J M, Pereiro R, Sanz-Medel A. Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions. Chem. Commun.2005, (7):883-885
    [174]Fernandez-Arguelles M T, Jin W J, Costa-Fernandez J M, Pereiro R, Sanz-Medel A. Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu (Ⅱ) in aqueous solutions by luminescent measurement. Anal. Chim. Acta.2005,549: 20-25
    [175]Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G. (CdSe)ZnS Core-Shell Quantum Dots:Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B.1997,101 (46):9463-9475
    [176]Medintz I L, Clapp A R, Brunei F M, Tiefenbrunn T, Uyeda H T, Chang E L, Deschamps J R, Dawson P E, Mattoussi H. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat. Mater.2006,5:581-589
    [177]Medintz I L, Trammell S A, Mattoussi H. Mauro J M. Reversible Modulation of Quantum Dot Photoluminescence Using a Protein-Bound Photochromic Fluorescence Resonance Energy Transfer Acceptor. J. Am. Chem. Soc.2004,126:30-31
    [178]Chu M Q, Zhou LH, Song X, Pan M, Zhang LH, Sun Y, et al. Incorporating quantum dots into polymer microspheres via a spray-drying and thermal-denaturizing approach. Nanotechnology.2006,17 (6):1791-1796
    [179]Capek R K, Weber M, Eychmuller A. Alternative Incorporation Procedure of Quantum Dots in Polymer Microspheres. Chem. Mater.2010,22 (17):4912-4918
    [180]Sheng W C, Kim S, Lee J, Kim S W, Jensen K, Bawendi M G In-Situ Encapsulation of Quantum Dots into Polymer Microspheres. Langmuir.2006,22 (8):3782-3790
    [181]Wu W T, Aiello M, Zhou T, Berliner A, Banerjee P, Zhou S Q. In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials.2010,31 (11):3023-3031
    [182]Li Y, Liu E C Y, Pickett N, Skabara P J, Cummins S S, Ryley S, et al. Synthesis and characterization of CdS quantum dots in polystyrene microbeads. J. Mater. Chem.2005. 15 (12):1238-1243
    [183]Shen L, Pich A, Fava D, Wang M F, Kumar S, Wu C, et aL Loading quantum dots into thcrmo-responsive microgels by reversible transfer from organic solvents to water. J. Mater. Chem.2008,18 (7):763-770
    [184]Kuang M, Wang D Y, Bao H B, Gao M Y, Mohwakl H, Jiang M. Fabrication of multi-color-encoded microspheres by tagging semiconductor nanocrystals to hydrogel spheres. Adv. Mater.2005,17 (3):267-270
    [185]Salcher A, Nikolic M S, Casado S, Velez M, Weller H, Juarez B H. CdSe/CdS nanoparticles immobilized on pNIPAM-based microspheres. J. Mater. Chem. 2010,20 (7):1367-1374
    [186]Li J, Liu B, Li J H. Controllable Self-Assembly of CdTe/Poly(N-isopropylacrylamide-acrylic acid) Microgels in Response to pH Stimuli. Langmuir.2006,22 (2):528-531
    [187]Wang YQ, Zhang Y Y, Zhang F, Li W Y. One-pot synthesis of thermal responsive QDs- PNIPAM hybrid fluorescent microspheres by controlling the polymerization temperature at two different polymerization stages. J. Mater. Chem.2011,21:6556-6562
    [188]Li J, Hong X, Liu Y, Li D, Wang Y W, Li J H, et al. Highly photo luminescent CdTe/ Poly(N-isopropylacrylamide) temperature-sensitive gels. Adv. Mater.2005,17 (2): 163-166
    [189]Gu F X, Zhang L, Yin X F, Tong L M. Polymer Single-Nanowire Optical Sensors. Nano. Lett.2008,8 (9):2757-2761
    [190]Huck W T S. Responsive polymers for nanoscale actuation. Mater Today.2008,11: 24-32
    [191]曹慧兰.重要的微量元素铜.微量元素与健康研究.2001,18(3):73-74
    [192]邓勃,迟锡增,刘明珍.应用原子吸收与原子荧光光谱分析.化学工业出版社,北京.2003,585-586
    [193]Cao Q E, Wang K, Hu Z D. Syntheses of Three New Derivatives of 8-a minoquinoline and Its Applications for Fluorimetric Determination of Copper. Talanta.1998,47 (4): 921-927
    [194]Kazuharu S, Tanaka S and Taga M. Accumulation O ltammetry of Copper Using a Carbon Paste Electrode Modified with Di-8-quinolyl Disulphide. Analyst.1991,116 (2):131-134
    [195]刘建宁,张兵,午博万等.2,4-二羟基苯乙酮苯腙荧光猝灭法测定铜.分析化学.2004,32(5):919-921
    [196]江崇球,唐波,付红燕等.水杨醛苯腙与铜荧光反应的研究及其应用.高等学校化学学报.1996,17(1):49-51
    [197]Wang D Y, Rogach A L, Caruso F. Semiconductor Quantum Dot-Labeled Microsphere Bioconjugates Prepared by Step wise Self-Assembly. Nano Lett.2002,2 (8):857-861
    [198]Feng J, Shan G, Maquieira A, et al. Functionalized Europium Oxide Nanoparticles Used as a Fluorescent Label in an Immunoassay for Atrazine. Anal. Chem 2003,75 (19):5282-5286
    [199]Patolsky F, Gill R, Weizmann Y. Lighting-up the Dynamics of Telomerization and DNA Replication by CdSe-ZnS Quantum Dots. J. Am. Chem. Soc.2003,125 (46): 13918-13919
    [200]Constantine C A, Gattas-Asfura K M, Mello S V, et al. Layer-by-Layer Films of Chitosan, Organophosphorus Hydrolase and Thioglycolic Acid-Capped CdSe Quantum Dots for the Detection of Paraoxon. J. Phys. Chem. B.2003,107 (50):13762-13764
    [201]Hong R, Fischer N O, Verma A, et al. Control of Protein Structure and Function through Surface Recognition by Tailored Nanoparticle Scaffolds. J. Am. Chem. Soc. 2004,126 (3):739-743
    [202]Wang D S, He J B, Rosenzweig N, et al. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett.2004,4 (3):409-413
    [203]Pinaud F, King D, Moore H P, et al. Bioactivation and Cell Targeting of Semiconductor CdSe/ZnS Nanocrystals with Phytochelatin-Related Peptides. J. Am. Chem. Soc.2004, 126 (19):6115-6123
    [204]Bachand G D, Rivera S B, Boal A K, et al. Assembly and Transport of Nanocrystal CdSe Quantum Dot Nanocomposites Using Microtubules and Kinesin Motor Proteins. Nano Lett.2004,4 (5):817-821
    [205]Retama J R, Zafeiropoulos N E, Serafinelli C, Reyna R R, Voit B, Cabarcos E L, Stamm M. Synthesis and Characterization of Thermosensitive PNIPAM Microgels Covered with Superparamagnetic γ-Fe2O3 Nanoparticles. Langmuir.2007,23 (20):10280-10285
    [206]Liu W J, Huang Y M, Liu H L, Hu Y. Composite structure of temperature sensitive chitosan microgel and anomalous behavior in alcohol solutions. J. Colloid Interface Sci. 2007,313:117-121
    [207]Dou H J, Yang W H, Tao K, Li W W, Sun K. Thermal Sensitive Microgels with Stable and Reversible Photo luminescence Based on Covalently Bonded Quantum Dots. Langmuir.2010,26 (7):5022-5027
    [208]Wu W T, Zhou T, Berliner A, Banerjee P, Zhou S Q. Smart Core-Shell Hybrid Nanogels with Ag Nanoparticle Core for Cancer Cell Imaging and Gel Shell for pH-Regulated Drug Delivery. Chem. Mater.2010,22 (6):1966-1976
    [209]张宇,付德刚,蔡建东.CdS纳米粒子的表面修饰及其对光学性质的影响.物理化学学报.2000,16(5):431-436
    [210]Alex V I, John C. Optical and Photochemical Properties of Nonstoichiomctric Cadmium Sulfide Nanoparticles:Surface Modification with Copper Ions. Langmuir. 1997,13 (12):3142-3149