基于多金属氧酸盐的微米管的制备和功能性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选择具有工业催化应用背景的经典Keggin型多金属氧酸盐(POM)为基质,利用一种简便的无模板水溶液合成法,制备出四种Keggin型POM微米管:金属阳离子Zn~(2+)和Cd~(2+)调变的Keggin型POM微米管;生物活性分子掺杂的Keggin型POM微米管;Mo/V取代的Keggin型POM微米管;Keggin型杂多蓝微米管。探讨了Keggin型POM微米管的合成条件,生长机理,化学性质和物理性质。
     1、过渡金属阳离子具有丰富多彩的物理化学性质,将其引入POM微米管中,替换部分K+和Na+离子,从而可以将过渡金属的性质引入到POM微米管中。基于这一反应原理,我们制备了Zn~(2+)和Cd~(2+)离子调变的Zn-SiW_(12)和Cd-SiW_(12)微米管。将得到的Zn-SiW_(12)和Cd-SiW_(12)微米管用8-羟基喹啉(Q)乙醇溶液处理后,测定了其荧光发射光谱,显示出ZnQ_2和CdQ_2的荧光特性。
     2、在对POM微米管生长机理的研究中我们发现,在适当的条件下可以将有机组分掺杂于Keggin型多酸微米管,从而将掺杂剂的性质引入到POM微米管中。我们在微米管生长过程中掺杂了抗坏血酸(AA)和L-半胱氨酸(Lcys),AA和Lcys的含量在一定范围内可以进行调控。得到的AA-SiW_(12)和Lcys-SiW_(12)微米管对氨气具有敏感变色性质。
     3、Keggin型杂多钨硅酸盐中的W原子可以被Mo和V原子等过渡金属原子所取代,取代后的POM的电化学性质和电催化性质将会明显不同于全钨系列的POM。我们利用单缺位杂多钨硅酸盐在酸性介质中不稳定并且在有Mo和V存在时容易生成Mo和V取代的POM的化学性质,以单缺位杂多钨硅酸盐为原料制备出Mo和V取代的Keggin型SiW_(11)Mo和SiW_(11)V微米管,研究了所制备的微米管的氧化还原性。
     4、氧化态的多金属氧酸盐具有接受电子的能力而生成还原态的杂多蓝(HPB)。我们利用这一性质制备了SiW_(12)-HPB和SiMoVW_(11)微米管。所制备的微米管作为电子给体,可以将氧化还原电势匹配的金属阳离子(如贵金属阳离子)原位还原成金属纳米粒子而负载于管体上。应用此方法合成的金属纳米粒子尺寸分布较为一致且分散均匀。固载金属纳米粒子的微米管可以作为催化剂,对于一些有机反应,如烯烃环氧化和氢化、醇的氧化等有着很好的选择性和转化率。
     本论文中所制备的微米管材料不仅结合了POM的优良物理化学性能而且还发挥了中空结构的特点,在光电信息材料、催化剂、分子吸收剂、微反应器、生物传感器和气体传感器等方面显示出潜在的应用前景。
In this thesis, the classical Keggin-type polyoxometalate (POM) with potentialapplications in industrial catalysis is selected as a substrate, four kinds of POMmicrotubes have been synthesized through a simple free-template aqueous synthesismethod, i.e., Zn~(2+)and Cd~(2+)cation-tuned Keggin-type POM microtubes, bioactivemolecule-doped Keggin-type POM microtubes, Mo/V-substituted Keggin-type POMmicrotubes, and Keggin-type heteropoly blue microtubes. Synthesis conditions,growth mechanism, chemical and physical properties of the POM microtubes arediscussed.
     1. Transition metal cations with abundant physical and chemical properties canbe introduced into the POM microtubes through replacing part of K+or Na+ions inthe microtubes, so that the POM microtubes are endowed with the properties oftransition metals. Based on this principle, Zn~(2+)and Cd~(2+)cation-tuned POM (Zn-SiW_(12)and Cd-SiW_(12)) microtubes are prepared. Fluorescence emission spectra of theobtained microtubes dealt with an ethanol solution of8-hydroxyquinoline (Q) aremeasured, which display fluorescence of ZnO2and CdQ_2.
     2. During the study on mechanism for the formation of the POM microtubes, wefound that some organic components can be doped into the POM microtubes undersuitable conditions. Thus, the POM microtubes may possess the properties of thedopant. We have doped ascorbic acid (AA) and L-cysteine (Lcys) into POMmicrotubes during the growth process of the microtubes. The content of the dopantscan be controlled to some extent. The obtained AA-SiW_(12)and Lcys-SiW_(12)microtubesshow sensitivity to ammonia gas.
     3. The W atom in the Keggin-type tungstosilicate can be substituted by Mo, Vand the other transition metals, and the substituted POM will have differentelectrochemical and electrocatalytic properties from the full-W series. Themono-vacant Keggin-type tungstosilicate is unstable in an acidic medium, and readilyforms Mo and V-substituted POMs in the presence of Mo and V. According to thisreactivity, we have prepared the Mo and V-substituted POM (SiW_(11)Mo and SiW_(11)V)microtubes and investigated their redox properties.
     4. The POM in oxidation state can accept electrons and form heteropoly blue(HPB). Accordingly, the SiW_(12)-HPB and SiMoVW_(11)microtubes are prepared. The obtained microtubes can be used as electron donor to in situ reduce the noble metalcations with matchable redox potential to metal nanoparticles (NPs), thus NPs aredeposited on the microtubes. The size of the obtained NPs is consistent, and the NPsare evenly spreaded. The NP-immobilized microtubes can be used as excellentcatalysts for some organic reactions, such as the epoxidation of alkene and theoxidation of alcohol.
     The as-prepared POM tubular materials display potential applicationsin photoelectrical materials, catalysts, molecular absorbers, microreactors, biologicaland chemical sensors, due to combination of the perfect physicochemical properties ofPOMs and the mesoscopic hollow structure of microtubes.
引文
[1] Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58.
    [2] Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes[J]. Nature,1992,358:220-222.
    [3] Tenne R, Margulis L, Genut M, et al. Polyhedral and cylindrical structures oftungsten disulphide[J]. Nature,1992,360:444-446.
    [4] Feldman Y, Wasserman E, Srolovitz D J, et al. High-rate, Gas-phase growth ofMoS2nested inorganic fullerenes and nanotubes[J]. Science,1995,267(5195):222-225.
    [5] Hoyer P. Formation of a Titanium Dioxide Nanotube Array[J]. Langmuir,1996,12(6):1411-1413.
    [6] Kong X H, Li Y D. Ultraviolet-emitting ZnO Microtube Array Synthesized by aCatalyst-assisted Flux Method[J]. Chem Lett,2003,32(11):1062-1063.
    [7] Hacohen Y R, Grunbaum E, Tenne R, et al. Cage structures and nanotubes ofNiCl2[J]. Nature,1998,395:336-337.
    [8] Chopra N G, Luyken R J, Cherrey K, et al. Boron nitride nanotubes[J]. Science,1995,269(5226):966-967.
    [9] Akiyama M, Shobu K, Xu C N, et al. Ceramic microtubes self-formed at roomtemperature that exhibit a large bending stress[J]. J Appl Phy,2000,88:4434-4436.
    [10] Tourillon G, Pontonnier L, Levy J P, et al. Electrochemically synthesized Co andFe nanowires and nanotubes[J]. Electrochem Solid-State Lett,2000,3:20-23.
    [11] Han C C, Bai M Y, Lee J T. A new and easy method for making Ni and Cumicrotubules and their regularly assembled structures[J]. Chem Mater,2001,13:4260-4268.
    [12] Rem kar M. Inorganic nanotubes[J]. Adv Mater,2004,16(17):1497-1504.
    [13] Galvan D H, Kim J H, Maple M B, et al. Formation of NbSe2Nanotubes byElectron Irradiation[J]. Fullerene Sci Techn,2000,8(3):143-151.
    [14] Rao C N R, Govindaraj A, Deepak F L, et al. Surfactant-assisted synthesis ofsemiconductor nanotubes and nanowires[J]. Appl Phys Lett,2001,78(13):1853-1855.
    [15] Feldman Y, Wasserman E, Srolovitz D J, et al. High-rate, gas-phase growth ofMoS2nested inorganic fullerenes and nanotubes[J]. Science,1995,267:222-225.
    [16] Dloczik L, Engelhardt R, Ernst K, et al. Hexagonal nanotubes of ZnS bychemical conversion of monocrystalline ZnO columns[J]. Appl Phys Lett,2001,78(23):3687-3689.
    [17] Jiang X C, Xie Y, Lu J, et al. Synthesis of novel nickel sulfide layer-rolledstructures[J]. Adv Mater,2001,13(16):1278-1281.
    [18] Brorson M, Hansen T W, Jacobsen C J H. Rhenium(IV) sulfide nanotubes[J]. JAm Chem Soc,2002,124:11582-11583.
    [19] Wu J J, Liu S C, Wu C T, et al. Heterostructures of ZnO-Zn coaxial nanocablesand ZnO nanotubes[J]. Appl Phys Lett,2002,81(7):1312-1314.
    [20] Spahr M E, Bitterli P, Nesper R, et al. Redox-Active nanotubes of vanadiumoxide[J]. Angew Chem Int Ed,1998,37(9):1263-1265.
    [21] Pu L, Bao X M, Zou J P, et al. Individual alumina nanotubes[J]. Angew Chem IntEd,2001,40(8):1490-1493.
    [22] Hernandez B A, Chang K S, Fisher E R, et al. Sol-Gel template synthesis andcharacterization of BaTiO3and PbTiO3nanotubes[J]. Chem Mater,2002,14:480-482.
    [23] Nakamura H, Matsui Y. Silica gel nanotubes obtained by the sol-gel method[J]. JAm Chem Soc,1995,117:2651-2652.
    [24] Yada M, Mihara M, Mouri S, et al. Rare earth (Er, Tm, Yb, Lu) oxide nanotubestemplated by dodecylsulfate assemblies[J]. Adv Mater,2002,14(4):309-313.
    [25] Hsu W K, Zhu Y Q, Boothroyd C B, et al. Mixed-Phase WxMoyCzS2Nanotubes[J]. Chem Mater,2000,12:3541-3546.
    [26] Nath M, Mukhopadhyay K, Rao C N R. Mo1-xWxS2nanotubes and relatedstructures[J]. Chem Phys Lett,2002,352:163-168.
    [27] Zhu Y Q, Hsu W K, Firth S, et al. Nb-doped WS2nanotubes[J]. Chem Phys Lett,2001,342:15-21.
    [28] Peng Y Y, Meng Z Y, Zhong C, et al. Cu5.5FeS6.5nanotubes-a new kind of ternarysulfide nanotube[J]. New J Chem,2001,25:1359-1361.
    [29] Li J Y, Chen X L, Qiao Z Y, et al. Synthesis of GaN nanotubes[J]. J Mater SciLett,2001,20:1987-1988.
    [30] Hulteen J C, Jirage K B, Martin C R. Introducing chemical transport selectivityinto gold nanotubule membranes[J]. J Am Chem Soc,1998,120:6603-6604.
    [31] Mayers B, Xia Y N. Formation of Tellurium nanotubes through concentrationdepletion at the surfaces of seeds[J]. Adv Mater,2002,14(4):279-282.
    [32] Zhou C F, Kumar S. Functionalized single wall carbon nanotubes treated withpyrrole for electrochemical supercapacitor membranes[J]. Chem Mater,2005,17:1997-2002.
    [33] Wu W, Li J X, Liu L Q, et al. The photoconductivity of PVK-carbon nanotubeblends[J]. Chem Phys Lett,2002,364:196-199.
    [34] Planeix J M, Coustel N, Coq B, et al. Application of carbon nanotubes assupports in heterogeneous catalysis[J]. J Am Chem Soc,1994,116:7935-7936.
    [35] Li W Z, Liang C H, Zhou W J, et al. Preparation and characterization ofmultiwalled carbon nanotube-supported platinum for cathode catalysts of directmethanol fuel cells[J]. J Phys Chem B,2003,107:6292-6299.
    [36] Nakayama-Ratchford N, Bangsaruntip S, Sun X M, et al. Noncovalentfunctionalization of carbon nanotubes by fluorescein-polyethylene glycol:supramolecular conjugates with pH-dependent absorbance and fluorescence[J]. J AmChem Soc,2007,129:2448-2449.
    [37] Hutleen J C, Jirage K B, Martin C R. Introducing chemical transport selectivityinto gold nanotubule membranes[J]. J Am Chem Soc,1998,120:6603-6604.
    [38] Barcza L, Pope M T. Heteroconjugation of inorganic anions in nonaqueoussolvents. III. complexes of polymolybdates and-tungstates with chloral hydrate[J]. JPhys Chem,1975,79(1):92-93.
    [39] Sadakane M, Steckhan E. Electrochemical properties of polyoxometalates aselectrocatalysts[J]. Chem Rev,1998,98:219-237.
    [40] Rhule J T, Hill C L, Judd D A, et al. Polyoxometalates in medicine[J]. Chem Rev,1998,98:327-357.
    [41] Judd D A, Nettles J H, Nevins N, et al. Polyoxometalate HIV-1proteaseinhibitors. A new mode of protease inhibition[J]. J Am Chem Soc,2001,123:886-897.
    [42]王恩波,李娟,安海燕,等。稀土杂多酸盐(蓝)类抗SARS病毒药物及其合成方法。中国专利,2004,ZL03146197.2。
    [43]王恩波,李泽琳,韩正波,等。稀土杂多酸盐(蓝)类抗艾滋病药物及其制备方法。中国专利,2004,ZL02128445.8。
    [44] Maayan G, Popovitz-Biro R, Neumann R. Micelle directed synthesis ofpolyoxometalate nanoparticles and their improved catalytic activity for the aerobicoxidation of sulfides[J]. J Am Chem Soc,2006,128:4968-4969.
    [45] Zhang X H, Xie S Y, Jiang Z Y et al. Starlike nanostructures of polyoxometalatesK3[PMo12O40]·nH2O synthesized and assembled by an inverse microemulsionmethod[J]. Chem Commun,2002,2032-2033.
    [46] Liu S Q, Kurth D G, M hwald H, et al. A thin-film electrochromic device basedon a polyoxometalate cluster[J]. Adv Mater,2002,14(3):225-228.
    [47] Clemente-León M, Coronado E, Gómez-García C J, et al. Polyoxometalatemonolayers in Langmuir-Blodgett films[J]. Chem Eur J,2005,11:3979-3987.
    [48] Liu S P, Xu L, Li F Y, et al. Enhanced electrochromic performance of compositefilms by combination of polyoxometalate with poly(3,4-ethylenedioxythiophene)[J]. JMater Chem,2011,21:1946-1952.
    [49] Jin L H, Fang Y X, Hu P, et al. Polyoxometalate-based inorganic-organic hybridfilm structure with reversible electroswitchable fluorescence property[J]. ChemCommun,2012,48:2101-2103.
    [50] Ito T, Yashiro H, Yamase T. Regular two-dimensional molecular array ofphotoluminescent Anderson-type polyoxometalate constructed by Langmuir-Blodgetttechnique[J]. Langmuir,2006,22:2806-2810.
    [51] Liu S Q, M hwald H, Volkmer D, et al. Polyoxometalate-based electro-andphotochromic dual-mode devices[J]. Langmuir,2006,22:1949-1951.
    [52] Qi W, Wu L X. Polyoxometalate/polymer hybridmaterials: fabrication andproperties[J]. Polym Int,2009,58:1217-1225.
    [53] Wang Z L, Ma Y, Zhang R L, et al. Reversible luminescent switching in a
    [Eu(SiW10MoO39)2]13--agarose composite film by photosensitive intramolecularenergy transfer[J]. Adv Mater,2009,21:1737-1741.
    [54] Lin X K, Wang Y L, Wu L X. Hexagonal mesostructure and its disassembly intonanofibers of a diblock molecule/polyoxometalate hybrid[J]. Langmuir,2009,25(11):6081-6087.
    [55] Cannizzo C, Mayer C R, Sécheresse F, et al. Covalent hybrid materials based onnanolatex particles and Dawson polyoxometalates[J]. Adv Mater,2005,17:2888-2892.
    [56] Li H L, Qi W, Sun H, et al. A novel polymerizable pigment based onsurfactant-encapsulated polyoxometalates and their application in polymercoloration[J]. Dyes and Pigments,2008,79:105-110.
    [57] Troupis A, Hiskia A, Papaconstantinou E. Selective photocatalyticreduction-recovery of palladium using polyoxometallates[J]. Applied Catalysis B:Environmental,2004,52:41-48.
    [58] Jing J, Burton-Pye B P, Francesconi L C, et al. Europium(III) reduction andspeciation within a Wells-Dawson heteropolytungstate[J]. Inorg Chem,2008,47:6889-6899.
    [59] Troupis A, Hiskia A, Papaconstantinou E. Photocatalytic reduction and recoveryof copper by polyoxometalates[J]. Environ Sci Technol,2002,36:5355-5362.
    [60]周端文,王恩波。以杂多蓝为催化剂合成邻苯二甲酸二辛酯的研究[J]。吉林化工学院学报,1994,11(3):32-35。
    [61] Yoon M, Chang J A, Kim Y, et al. Heteropoly acid-incorporated TiO2colloids asnovel photocatalytic systems resembling the photosynthetic reaction center[J]. J PhysChem B,2001,105:2539-2545.
    [62] Anandan S, Yoon M. Heteropolyacid-encapsulated TiHY zeolite as an inorganicphotosynthetic reaction center mimicking the plant systems[J]. J Photochem PhotobioA,2003,160:181-184.
    [63]李山,刘丹。磷钼蓝分光光度法测定环境水样中无机磷[J]。冶金分析,2006,26(3):82-83。
    [64]李西忠,张丽英,李斌。磷钼蓝光度法测定钢铁中磷的改进[J]。冶金分析,2000,20(5):61-62。
    [65]熊宇迪,刘霞,冯长根。杂多酸(蓝)分光光度法在测定痕量元素中的研究进展[J]。光谱学与光谱分析,2008,28(11):231-234。
    [66]邓元,鲁晓明,庞小丽。含钼化合物及其配合物的抗癌抗肿瘤活性[J]。化学通报,2005,7:522-527。
    [67]刘杰,梅文杰,李安兴,等。混合价态钨硼稀土杂多蓝在MDCK细胞内抑制流感病毒的活性[J]。高等学校化学学报,2004,25(1):1-6。
    [68]刘术侠,刘彦勇,刘杰,等。钼系杂多、同多配合物抗肿瘤活性(II)[J]。应用化学,1996,13(2):104-106。
    [69] Fu N, Lu G X. Photo-catalytic H2evolution over a series of Keggin-structureheteropoly blue sensitized Pt/TiO2under visible light irradiation[J]. Appl Surf Sci,2009,255:4378-4383.
    [70] Zhang G J, Keita B, Dolbecq A, et al. Green chemistry-type one-step synthesis ofsilver nanostructures based on MoV-MoVImixed-valence polyoxometalates[J]. ChemMater,2007,19:5821-5823.
    [71] Mandal S, Selvakannan PR, Pasricha R, et al. Keggin ions as UV-switchablereducing agents in the synthesis of Au core-Ag shell nanoparticles[J]. J Am Chem Soc,2003,125:8440-8441.
    [72] Fu N, Lu G X. Graft of lacunary Wells–Dawson heteropoly blue on the surface ofTiO2and its photocatalytic activity under visible light[J]. Chem Commun,2009,3591-3593.
    [73] Curry R P, Mellon M G. Colorimetric determination of fluoride in water byheteropoly blue system[J]. Anal Chem,1956,28(10):1567-1570.
    [74] Shaw E R, Corwin J F. Determination of Germanium by the heteropoly bluemethod[J]. Anal Chem,1958,30(8):1314-1316.
    [75]刘术侠,李阳光,韩正波,等。新型稀土杂多蓝的合成及其抗艾滋病病毒(HIV-1)活性和毒性研究[J]。高等学校化学学报,2002,23(5):777-782。
    [76]刘术侠,王恩波,翟宏菊,等。含有甘氨酸的Keggin型杂多蓝的合成和抗艾滋病毒(HIV-1)活性研究[J]。化学学报,2004,6(2):170-175。
    [77] Bae E, Lee J W, Hwang B H, et al. Photocatalytic bacterial inactivation bypolyoxometalates[J]. Chemosphere,2008,72:174-181.
    [78] Li H P, Martin R B, Harruff B A, et al. Single-walled carbon nanotubes tetheredwith porphyrins: synthesis and photophysical properties[J]. Adv Mater,2004,16(11):896-900.
    [79] Nakayama-Ratchford N, Bangsaruntip S, Sun X M, et al. Noncovalentfunctionalization of carbon nanotubes by fluorescein-polyethylene glycol:supramolecular conjugates with pH-dependent absorbance and fluorescence[J]. J AmChem Soc,2007,129:2448-2449.
    [80] Fu C L, Meng L J, Lu Q H, et al. A facile strategy for preparation of fluorescentSWNT complexes with high quantum yields based on ion exchange[J]. Adv FunctMater,2008,18:857-864.
    [81] Salavati H, Tangestaninejad S, Moghadam M, et al. Sonocatalytic epoxidation ofalkenes by vanadium-containing polyphosphomolybdate immobilized on multi-wallcarbon nanotubes[J]. Ultrason Sonochem,2010,17:453-459.
    [82] Cuentas-Gallegos A K, Miranda-Hernández M, Vargas-Ocampo A. Dispersioneffect of Cs-PW particles on multiwalled carbon nanotubes and their electrocatalyticactivity on the reduction of bromate[J]. Electrochim Acta,2009,54:4378-4383.
    [83] Pan D W, Chen J H, Tao W Y, et al. Polyoxometalate-modified carbon nanotubes:new catalyst support for methanol electro-oxidation[J]. Langmuir,2006,22:5872-5876.
    [84] Kawasaki N, Wang H, Nakanishi R, et al. Nanohybridization of polyoxometalateclusters and single-wall carbon nanotubes: applications in molecular clusterbatteries[J]. Angew Chem Int Ed,2011,50:3471-3474.
    [85] Salimi A, Korani A, Hallaj R, et al. Modification of glassy carbon electrode withsingle-walled carbon nanotubes and a-silicomolybdate: application to Sb(III)setection[J]. Electroanal,2008,20(23):2509-2517.
    [86] Pan D W, Chen J H, Tao W Y, et al. Polyoxometalate-modified carbon nanotubes:new catalyst support for methanol electro-oxidation[J]. Langmuir,2006,22:5872-5876.
    [87] Seo M H, Choi S M, Kim H J, et al. A polyoxometalate-deposited Pt/CNTelectrocatalyst via chemical synthesis for methanol electrooxidation[J]. J Power Sourc,2008,179:81-86.
    [88]罗宿星,伍远辉,勾华,等。杂多酸修饰碳纳米管载铂催化剂对甲醇的电催化[J]。电源技术,2011,35(8):964-973。
    [89] Liu R J, Li S W, Yu X L, et al. Facile synthesis of a Agnanoparticle/polyoxometalate/carbon nanotube tri-component hybrid and its activityin the electrocatalysis of oxygen reduction[J]. J Mater Chem,2011,21:14917-14924.
    [90] Li S W, Yu X L, Zhang G J, et al. Green chemical decoration of multiwalledcarbon nanotubes with polyoxometalate-encapsulated gold nanoparticles: visible lightphotocatalytic activities[J]. J Mater Chem,2011,21:2282-2287.
    [91] Li S W, Yu X L, Zhang G J, et al. Green synthesis of a Ptnanoparticle/polyoxometalate/carbon nanotube tri-component hybrid and its activityin the electrocatalysis of methanol oxidation[J]. Carbon,2011,49:1906-1911.
    [92] Xie Y B. Photoelectrochemical reactivity of a hybrid electrode composed ofpolyoxophosphotungstate encapsulated in titania nanotubes[J]. Adv Funct Mater,2006,16:1823-1831.
    [93] Xie Y B, Zhou L M, Huang H T. Enhanced photoelectrocatalytic performance ofpolyoxometalate-titania nanocomposite photoanode[J]. Applied Catalysis B:Environmental,2007,76:15-23.
    [94] Kang Z H, Wang E B, Jiang M, et al. Convenient controllable synthesis ofinorganic1D nanocrystals and3D high-ordered microtubes[J]. Eur J Inorg Chem,2003,370-376.
    [95] Ding B, Gong J, Kim J, et al. Polyoxometalate nanotubes from layer-by-layercoating and thermal removal of electrospun nanofibres[J]. Nanotechnology,2005,16:785-790.
    [96] Ma Z, Liu Q, Cui Z M, et al. Parallel array of Pt/polyoxometalates compositenanotubes with stepwise inside diameter control and its application in catalysis[J]. JPhys Chem C,2008,112:8875-8880.
    [97] Chai F, Wang L J, Xu L L, et al. Degradation of dye on polyoxotungstatenanotube under molecular oxygen[J]. Dyes and Pigments,2008,76:113-117.
    [98] Li J, Wang X H, Zhu W M, et al. Zn1.2H0.6PW12O40nanotubes with double acidsites as heterogeneous catalysts for the production of biodiesel from waste cookingoil[J]. ChemSusChem,2009,2:177-183.
    [99] Zhang X, Li J, Chen Y, et al. Heteropolyacid nanoreactor with double acid sitesas a highly efficient and reusable catalyst for the transesterification of waste cookingoil[J]. Energy Fuels,2009,23:4640-4646.
    [100] Zhang Y, Li D L, Chen Y, et al. Catalytic wet air oxidation of dye pollutants bypolyoxomolybdate nanotubes under room condition[J]. Applied Catalysis B:Environmental,2009,86:182-189.
    [101] Wang R Y, Jia D Z, Zhang L, et al. Rapid synthesis of amino acidpolyoxometalate nanotubes by one-step solid-state chemical reaction at roomtemperature[J]. Adv Funct Mater,2006,16:687-692.
    [102] Ritchie C, Cooper G J T, Song Y F, et al. Spontaneous assembly and real-timegrowth of micrometre-scale tubular structures from polyoxometalate-based inorganicsolids[J]. Nature Chemistry,2009,1:47-52.
    [103] Cooper G J T, Cronin L. Real-time direction control of self fabricatingpolyoxometalate-based microtubes[J]. J Am Chem Soc,2009,131:8368-8369.
    [104] Cooper G J T, Boulay A G, Kitson P J, et al. Osmotically driven crystalmorphogenesis: a general approach to the fabrication of micrometer-scale tubulararchitectures based on polyoxometalates[J]. J Am Chem Soc,2011,133:5947-5954.
    [105] Gao J, Yan J, Mitchell S G, et al. Self-assembly of a family of macrocyclicpolyoxotungstates with emergent material properties[J]. Chem Sci,2011,2:1502-1508.
    [106] Xin Z F, Peng J, Wang T, et al. Keggin POM microtubes: a coincident productof crystal growth and species transformation[J]. Inorg Chem,2006,45(22):8856-8858.
    [107] Nisar A, Zhuang J, Wang X. Cluster-based self-assembly: reversible formationof polyoxometalate nanocones and nanotubes[J]. J Am Chem Soc,2009,131:8368-8369.
    [108] Han Y K, Zhang Z J, Wang Y L, et al. An intriguing morphology evolution ofpolyoxometalate-polystyrene hybrid amphiphiles from vesicles to tubularaggregates[J]. Macromol Chem Phys,2011,212:81-87.
    [109] Du D Y, Qin J S, Wang T T, et al. Polyoxometalate-based crystalline tubularmicroreactor: redox-active inorganic-organic hybrid materials producing goldnanoparticles and catalytic properties[J]. Chem Sci,2012,3:705-710.
    [1] Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58.
    [2] Tenne R, Margulis L, Genut M, et al. Polyhedral and cylindrical structures oftungsten disulphide[J]. Nature,1992,360:444-446.
    [3] Haimov A, Cohen H, Neumann R. Alkylated polyethyleneimine/polyoxometalatesynzymes as catalysts for the oxidation of hydrophobic substrates in water withhydrogen peroxide[J]. J Am Chem Soc,2004,126:11762-11763.
    [4] Judd D A, Nettles J H, Nevins N, et al. Polyoxometalate HIV-1protease inhibitors.A new mode of protease inhibition[J]. J Am Chem Soc,2001,123:886-897.
    [5] Müller A, Beugholt C, K gerler P, et al.[MoV12O30(μ2-OH)10H2{NiII(H2O)3}4], ahighly symmetrical ε-Keggin unit capped with four NiIIcenters: synthesis andmagnetism[J]. Inorg Chem,2000,39:5176-5177.
    [6] Kang Z H, Wang E B, Jiang M, et al. Convenient controllable synthesis ofinorganic1D nanocrystals and3D high-ordered microtubes[J]. Eur J Inorg Chem,2003,370-376.
    [7] Ding B, Gong J, Kim J, et al. Polyoxometalate nanotubes from layer-by-layercoating and thermal removal of electrospun nanofibres[J]. Nanotechnology,2005,16:785-790.
    [8] Wang R Y, Jia D Z, Zhang L, et al. Rapid synthesis of amino acid polyoxometalatenanotubes by one-Step solid-state chemical reaction at room temperature[J]. AdvFunct Mater,2006,16:687-692.
    [9] Ritchie C, Cooper G J T, Song Y F, et al. Spontaneous assembly and real-timegrowth of micrometre-scale tubular structures from polyoxometalate-based inorganicsolids[J]. Nat Chem,2009,1:47-52.
    [10] Chiu J J, Kei C C, Perng T P, et al. Organic semiconductor nanowires for fieldemission[J]. Adv Mater,2003,15:1361-1364.
    [11] Cho C P, Wu C A, Perng T P. Crystallization of amorphoustris(8-hydroxyquinoline)aluminum nanoparticles and transformation to nanowires[J].Adv Funct Mater,2006,16:819-823.
    [12] Xin Z F, Peng J, Wang T, et al. Keggin POM microtubes: a coincident product ofcrystal growth and species transformation[J]. Inorg Chem,2006,45:8856-8858.
    [13] Tézé A, Hervé G. Formation et isomerisation des undeca et dodecatungstosilicates et germanates isomeres[J]. J Inorg Nucl Chem,1977,39:999-1002.
    [14] Lis S. Applications of spectroscopic methods in studies of polyoxometalates andtheir complexes with lanthanide(III) ions[J]. J Alloys Compd,2000,300:88-94.
    [15] Li H R, Zhang F J, Wang Y Y, et al. Synthesis and characterization oftris-(8-hydroxyquinoline)aluminum[J]. Mater Sci Eng B,2003,100:40-46.
    [16] Liu S H, Wang D H, Pan C H. Analysis of X-ray Photoelectron Spectroscopy,1988.
    [17] Jin H W, Jin C Q. Fractal surfaces of8-(hydroxyquinoline)zinc and their relationto electroluminescence behaviour[J]. Polym Polym Compos,2000,8:263-266.
    [18] Chen W, Peng Q, Li Y D. Luminescent bis-(8-hydroxyquinoline) cadmiumcomplex nanorods[J]. Cryst Growth Des,2008,8:564-567.
    [19] Song K C, Kim J S, Park S M, et al. Fluorogenic Hg2+-selective chemodosimeterderived from8-Hydroxyquinoline[J]. Org Lett,2006,8:3413-3416.
    [20] Bardez E, Devol I, Larrey B, et al. Excited-state processes in8-Hydroxyquinoline: photoinduced tautomerization and solvation effects[J]. J PhysChem B,1997,101:7786-7793.
    [1] Tenne R, Margulis L, Genut M, et al. Polyhedral and cylindrical structures oftungsten disulphide[J]. Nature,1992,360:444-446.
    [2] Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58.
    [3] Rem kar M. Inorganic nanotubes[J]. Adv Mater,2004,16:1497-1504.
    [4] Rao C N R, Nath M. Inorganic nanotubes[J]. Dalton Trans,2003,1-24.
    [5] Ivanovskii A L. Non-carbon nanotubes: synthesis and simulation[J]. Russ ChemRev,2002,71:175-194.
    [6] Haimov A, Cohen H, Neumann R. Alkylated polyethyleneimine/polyoxometalatesynzymes as catalysts for the oxidation of hydrophobic substrates in water withhydrogen peroxide[J]. J Am Chem Soc,2004,126:11762-11763.
    [7] Rüther T, Hultgren V M, Timko B P, et al. Electrochemical investigation ofphotooxidation processes promoted by sulfo-polyoxometalates: coupling ofphotochemical and electrochemical processes into an rffective catalytic cycle[J]. J AmChem Soc,2003,125:10133-10143.
    [8] Judd D A, Nettles J H, Nevins N, et al. Polyoxometalate HIV-1protease inhibitors.A new mode of protease inhibition[J]. J Am Chem Soc,2001,123:886-897.
    [9] Lehmann J, Gaita-Ari o A, Coronado E, et al. Quantum computing with molecularspin systems[J]. J Mater Chem,2009,19:1672-1677.
    [10] Xu B B, Xu L, Gao G G, et al. Polyoxometalate-based gasochromic silica[J].New J Chem,2008,32:1008-1013.
    [11] Liu S Q, Kurth D G, M hwald H, et al. A thin-film electrochromic device basedon a polyoxometalate cluster[J]. Adv Mater,2002,14:225-228.
    [12] Qi W, Li H L, Wu L X. Stable photochromism and controllable reductionproperties of surfactant-encapsulated polyoxometalate/silica hybrid films[J]. J PhysChem B,2008,112:8257-8263.
    [13]王恩波,李娟,安海燕,等。稀土杂多酸盐(蓝)类抗SARS病毒药物及其合成方法。中国专利,2004,ZL03146197.2。
    [14]王恩波,李泽琳,韩正波,等。稀土杂多酸盐(蓝)类抗艾滋病药物及其制备方法。中国专利,2004,ZL02128445.8。
    [15] Kang Z H, Wang E B, Jiang M, et al. Convenient controllable synthesis ofinorganic1D nanocrystals and3D high-ordered microtubes[J]. Eur J Inorg Chem,2003,370-376.
    [16] Ding B, Gong J, Kim J, et al. Polyoxometalate nanotubes from layer-by-layercoating and thermal removal of electrospun nanofibres[J]. Nanotechnology,2005,16:785-790.
    [17] Ritchie C, Cooper G J T, Song Y F, et al. Spontaneous assembly and real-timegrowth of micrometre-scale tubular structures from polyoxometalate-based inorganicsolids[J]. Nat Chem,2009,1:47-52.
    [18] Wang R Y, Jia D Z, Zhang L, et al. Rapid synthesis of amino acidpolyoxometalate nanotubes by one-step solid-state chemical reaction at roomtemperature[J]. Adv Funct Mater,2006,16:687-692.
    [19] Li J, Wang X H, Zhu W M,et al. Zn1.2H0.6PW12O40nanotubes with double acidsites as heterogeneous catalysts for the production of biodiesel from waste cookingoil[J]. ChemSusChem,2009,2:177-183.
    [20] Xin Z F, Peng J, Wang T, et al. Keggin POM microtubes: a coincident product ofcrystal growth and species transformation[J]. Inorg Chem,2006,45:8856-8858.
    [21] Shukla R S, Pant R P. Kinetic, mechanistic, and thermodynamic investigations onferrofluid-catalyzed oxidation of L-ascorbic acid by hydrogen peroxide in acidicaqueous solution[J]. J Colloid Interface Sci,2003,268:168-172.
    [22] Lu X Q, Hu L N, Wang X Q. Thin-layer cyclic voltammetric and scanningelectrochemical microscopic study of antioxidant activity of ascorbic acid atliquid/liquid interface[J]. Electroanalysis,2005,17:953-958.
    [23] Berger A, Noguchi J, Katchalski E. Poly-L-cysteine[J]. J Am Chem Soc,1956,78:4483-4488.
    [24] Bae D R, Lee S J, Han S W, et al. Au-doped magnetic silica nanotube for bindingof cysteine-containing proteins[J]. Chem Mater,2008,20:3809-3813.
    [25] L. J. Bellamy, The infrared spectra of complex molecules, London and New York,Chapman and Hall,1980, pp.171-173,240-274.
    [26] D. K. An, Drug analysis, Beijing, People's Health Press,1986, pp.175-182.
    [27] Varga Jr. G M, Papaconstantinou E, Pope M T. Heteropoly blues. IV.spectroscopic and magnetic properties of some reduced polytungstatesl[J]. InorgChem,1970,9:662-667.
    [28] Deltcheff C R, Fournier M, Franck R, et al. Vibrational investigations ofpolyoxometalates.2. evidence for anion-anion interactions in molybdenum(VI) andtungsten(VI) compounds related to the Keggin structure[J]. Inorg Chem,1983,22,207-216.
    [29] Mizuno N, Katamura K, Yoneda Y, et al. Catalysis by heteropoly compounds[J].J Catal,1983,83:384-392.
    [30] Polak M., Gruebele M., Dekock B. W.,et al. Velocity modulation infrared laserspectroscopy of molecular ions[J]. Mol Phys,1989,66:1193-1202.
    [31] Peterson R W, Walton J H. The autoxidation of ascorbic acid[J]. J Am Chem Soc,1943,65:1212-1217.
    [32] Cho K H, Park J E, Osaka T, et al. The study of antimicrobial activity andpreservative effects of nanosilver ingredient[J]. Electrochimi Acta,2005,51:956-960.
    [33] Compagnini G, Pignataro B, Pelligra B. Nanomorphology and SERS activity inplasma prepared silver surfaces[J]. Chem Phys Lett,1997,272:453-458.
    [34] Wu W T, Zhou T, Berliner A, et al. Smart core-shell hybrid nanogels with Agnanoparticle core for cancer cell imaging and gel shell for pH-regulated drugdelivery[J]. Chem Mater,2010,22:1966-1976.
    [35] Kim B M, Qian S Z, Bau H H. Filling carbon nanotubes with particles[J]. Nanoletters,2005,5:873-878.
    [36] Keita B, Liu T B, Nadjo L. Synthesis of remarkably stabilized metalnanostructures using polyoxometalates[J]. J Mater Chem,2009,19:19-33.
    [37] Read J.F., Bewick S.A., Graves C.R., et al. The kinetics and mechanism of the
    oxidation of S-methyl-L-cysteine, L-cystine and L-cysteine by potassium ferrate[J].
    Inorg Chim Acta,2000,303:244-255.
    [1] Haimov A, Cohen H, Neumann R. Alkylated polyethyleneimine/polyoxometalatesynzymes as catalysts for the oxidation of hydrophobic substrates in water withhydrogen peroxide[J]. J Am Chem Soc,2004,126(38):11762-11763.
    [2] Huey F, Hargis L G. Spectrophotometric determination of cesium using12-Molybdophosphoric acid[J]. Anal Chem,1967,39:125-127.
    [3] Rhule J T, Hill C L, Judd D A. Polyoxometalates in medicine[J]. Chem Rev,1998,98:327-357.
    [4] Yamase T. Photo-and electrochromism of polyoxometalates and relatedmaterials[J]. Chem Rev,1998,98:307-325.
    [5] Gao G G, Li F Y, Xu L, et al. CO2coordination by inorganic polyoxoanion inwater[J]. J Am Chem Soc,2008,130(33):10838-10839.
    [6] Han Z G, Zhao Y L, Peng J, et al. Directed synthesis of a1D double-chainpolyoxometalate assembly:{[Ag2(bppy)3][Ag(bppy)2][Ag(bppy)]2PW11Co(bppy)O39}·2H2O[J]. Eur J Inorg Chem,2005,264-271.
    [7] Hill C L. Transition metal-substituted polyoxometalates as catalysts forhomogenous liquid-phase organic oxidation processe. US Patent4864041,1989.
    [8] Hill C L, Brown R B Jr. Sustained epoxidation of olefins by oxygen donorscatalyzed by transition metal-substituted polyoxometalates, oxidatively resistantinorganic analogs of metalloporphyrins[J]. J Am Chem Soc,1986,108(3):536-538.
    [9] Weinstock I A, Madison W, Hill C L. Delignification of wood pulp byvanadium-substituted polyoxometalates US Patent5302248,1994.
    [10] Sun W L, Zhang S, Liu H Z, et al. Electrocatalytic reduction of nitrite at a glassycarbon electrode surface modified with palladium(II)-substituted Keggin typeheteropolytungstate[J]. Anal Chim Acta,1999,388(1-2):103-110.
    [11] Wang X H, Li J X, Yang Y, et al. Synthesis and antitumor activity ofcyclopentadienyltitanium substituted polyoxotungstate [CoW11O39(CpTi)]7-(Cp=η5-C5H5)[J]. J Inorg Biochem,2003,94(3):279-284.
    [12] Li D, Zhang J, Landskron K, et al. Spontaneous self-assembly of metal-organiccationic nanocages to form monodisperse hollow vesicles in dilute solutions[J]. J AmChem Soc,2008,130(13):4226-4227.
    [13] Bu W F, Li H L, Sun H, et al. Polyoxometalate-based vesicle and its honeycombarchitectures on solid surfaces[J]. J Am Chem Soc,2005,127(22):8016-8017.
    [14] Ritchie C, Cooper G J T, Song Y F, et al. Spontaneous assembly and real-timegrowth of micrometre-scale tubular structures from polyoxometalate-based inorganicsolids[J]. Nat Chem,2009,1:47-52.
    [15] Campbell J K, Sun L, Crooks R M. Electrochemistry using single carbonnanotubes[J]. J Am Chem Soc,1999,121(15):3779-3780.
    [16] Guo Y D, Huang L Y, Baeyens W R G, et al. Novel application of carbonnanotubes for improving resolution in detecting human serum proteins with nativepolyacrylamide gel electrophoresis[J]. Nano Lett,2009,9(4):1320-1324.
    [17] Lee Y H, Jang Y T, Kim D H, et al. Realization of gated field emitters forelectrophotonic applications using carbon nanotube line emitters directly grown intosubmicrometer holes[J]. Adv Mater,2001,13(7):479-482.
    [18] Kang Z H, Wang E B, Jiang M, et al. Convenient controllable synthesis ofinorganic1D nanocrystals and3D high-ordered microtubes[J]. Eur J Inorg Chem,2003,370-376.
    [19] Ding B, Gong J, Kim J, et al. Polyoxometalate nanotubes from layer-by-layercoating and thermal removal of electrospun nanofibres[J]. Nanotechnology,2005,16:785-790.
    [20] Li J, Wang X H, Zhu W M, et al. Zn1.2H0.6PW12O40nanotubes with double acidsites as heterogeneous catalysts for the production of biodiesel from waste cookingoil[J]. ChemSusChem,2009,2:177-183.
    [21] Cooper G J T, Boulay A G, Kitson P J, et al. Osmotically driven crystalmorphogenesis: a general approach to the fabrication of micrometer-scale tubulararchitectures based on polyoxometalates[J]. J Am Chem Soc,2011,133(15):5947-5954.
    [22] Cooper G J T, Cronin L. Real-time direction control of self fabricatingpolyoxometalate-based microtubes[J]. J Am Chem Soc,2009,131(24):8368-8369.
    [23] Gao J, Yan J, Mitchell S G, et al. Self-assembly of a family of macrocyclicpolyoxotungstates with emergent material properties[J]. Chem Sci,2011,2:1502-1508.
    [24] Cu Y, Xu L, Wang W J, et al. Electrochemical behavior of polyoxometalates
    [XW11MoO40]n-(X=P, Si, Ge with n=3,4) in aqueous and DMF solution[J]. Chin JChem,2006,24:316-320.
    [25] Kozik M, Hammer C F, Baker L C W. Direct determination by tungsten-183NMRof the locations of added electrons in ESR-silent heteropoly blues. Chemical shiftsand relaxation times in polysite mixed-valence transition metal species[J]. J Am ChemSoc,1986,108(10):2748-2749.
    [26] Xin Z F, Peng J, Wang T, et al. Keggin POM microtubes: a coincident product ofcrystal growth and species transformation[J]. Inorg Chem,2006,45(42):8856-8858.
    [27] Deltcheff C R, Fournier M, Franck R, et al. Vibrational investigations ofpolyoxometalates.2. Evidence for anion-anion interactions in molybdenum(VI) andtungsten(VI) compounds related to the Keggin structure[J]. Inorg Chem,1983,22(2):207-216.
    [28] Polak M, Gruebele M, Dekock B W, et al. Velocity modulation infrared laserspectroscopy of molecular ions[J]. Mol Phys,1989,66(6):1193-1202.
    [29] Liu S H, Wang D H, Pan C H. Analysis of X-ray Photoelectron Spectroscopy,Science Press: Beijing,1988.
    [30] Pope M T. Heteropoly and Isopoly Oxometalates, Springer-Verlag: Berlin,1983.
    [1] Haimov A, Cohen H, Neumann R. Alkylated polyethyleneimine/polyoxometalatesynzymes as catalysts for the oxidation of hydrophobic substrates in water withhydrogen peroxide[J]. J Am Chem Soc,2004,126(38):11762-11763.
    [2] Judd D A, Nettles J H, Nevins N, et al. Polyoxometalate HIV-1protease inhibitors.A new mode of protease inhibition[J]. J Am Chem Soc,2001,123(5):886-897.
    [3] Yin Q S, Tan J M, Besson C, et al. A fast soluble carbon-free molecular wateroxidation catalyst based on abundant metals[J]. Science,2010,328(5976):342-345.
    [4] Kang Z H, Tsang C H A, Zhang Z D, et al. A polyoxometalate-assistedelectrochemical method for silicon nanostructures preparation: from quantum dots tonanowires[J]. J Am Chem Soc,2007,129:5326-5327.
    [5] Kang Z H, Tsang C H A, Wong N B, et al. Silicon quantum dots: A generalphotocatalyst for reduction, decomposition, and selective oxidation reactions[J]. J AmChem Soc,2007,129:12090-12091.
    [6] Kang Z H, Wang E B, Mao B D, et al. Controllable fabrication of carbon nanotubeand nanobelt with a polyoxometalate-assisted mild hydrothermal process[J]. J AmChem Soc,2005,127:6534-6435.
    [7] Khan M I, Chen Q, Zubieta J. Hydrothermal synthesis and structure ofmolybdoarsenate [H4AsIII2AsVMoV8MoVI4O40]-, a bicapped, reduced Keggin species[J].Inorg Chem,1993,32(13):2924-2928.
    [8] Casa-Pastor N, Gomez-Romero P, Jameson G B, et al. Crystal structures ofα-[CoIIW12O40]6-and its heteropoly blue2e reduction product, α-[CoIIW12O40]8-.Structural, electronic, and chemical consequences of electron delocalization in amultiatom mixed-valence system[J]. J Am Chem Soc,1991,113:5658-5663.
    [9] Fu N, Lu G. X. Graft of lacunary Wells–Dawson heteropoly blue on the surface ofTiO2and its photocatalytic activity under visible light[J]. Chem Commun,2009,3591-3593.
    [10] Chaube M A, Gupta V K. Spectrophotometric determination of phosphate inpolluted waters by solvent extraction of molybdenum blue[J]. Analyst,1983,108:1141-1144.
    [11]王恩波,李娟,安海燕,等。稀土杂多酸盐(蓝)类抗SARS病毒药物及其合成方法。中国专利,2004,ZL03146197.2。
    [12]王恩波,李泽琳,韩正波,等。稀土杂多酸盐(蓝)类抗艾滋病药物及其制备方法。中国专利,2004,ZL02128445.8。
    [13] Zhang G J, Keita B, Dolbecq A, et al. Green chemistry-type one-step synthesis ofsilver nanostructures based on MoV-MoVImixed-valence polyoxometalates[J]. ChemMater,2007,19:5821-5823.
    [14] Keita B, Liu T B, Nadjo L. Synthesis of remarkably stabilized metalnanostructures using polyoxometalates[J]. J Mater Chem,2009,19:19-33.
    [15] Li H L, Pang S P, Wu S, et al. Layer-by-Layer assembly and UV photoreductionof graphene-polyoxometalate composite films for electronics[J]. J Am Chem Soc,2011,133:9423-9429.
    [16] Pearson A, Jani H, Kalantar-zadeh K, et al. Gold nanoparticle-decorated Kegginions/TiO2photococatalyst for improved solar light photocatalysis[J]. Langmuir,2011,27:6661-6667.
    [17] Mandal S, Selvakannan PR, Pasricha R, et al. Keggin ions as UV-switchablereducing agents in the synthesis of Au core Ag shell nanoparticles[J]. J Am ChemSoc,2003,125:8440-8441.
    [18] Troupis A, Hiskia A, Papaconstantinou E. Synthesis of metal nanoparticles byusing polyoxometalates as photocatalysts and stabilizers[J]. Angew Chem Int Ed,2002,41(11):1911-1914.
    [19] Troupis A, Hiskia A, Papaconstantinou E. Photocatalytic reduction-recovery ofsilver using polyoxometalates[J]. Appl Catal B,2003,42:305-315.
    [20] Hiskia A, Papaconstantinou E, Troupis-Koukoutsis A. PCT Int. Appl.,2006, WO2006038045A120060413.
    [21] Qi W, Li H L, Wu L X. Stable photochromism and controllable reductionproperties of surfactant-encapsulated polyoxometalate/silica hybrid films[J]. J PhysChem B,2008,112:8257-8263.
    [22] Zhao Y Y, Qi W, Li W, et al. Covalent dispersion of surfactant-encapsulatedpolyoxometalates and in situ incorporation of metal nanoparticles in silica spheres[J].Langmuir,2010,26:4437-4442.
    [23] Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58.
    [24] Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes[J]. Nature,1992,358,220-222;
    [25] Goldberger J, He R R, Zhang Y F, et al. Single-crystal gallium nitridenanotubes[J]. Nature,2003,422:599-602.
    [26] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials,2007,6:183-191.
    [27] Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, et al.2D materials: tographene and beyond[J]. Nanoscale,2011,3:20-30.
    [28] Li Q W, Zhang W Y, Miljani O, et al. Docking in Metal-OrganicFrameworks[J]. Science,2009,325(5942):855-859.
    [29] Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organicframeworks[J]. Science,2010,329:424-428.
    [30] Li D, Zhang J, Landskron K, et al. Ultrahigh porosity in metal-organicframeworks[J]. J Am Chem Soc,2008,130(5990):4226-4227.
    [31] Bu W F, Li H L, Sun H, et al. Polyoxometalate-based vesicle and its honeycombarchitectures on solid surfaces[J]. J Am Chem Soc,2005,127:8016-8017.
    [32] Ritchie C, Cooper G J T, Song Y F, et al. Spontaneous assembly and real-timegrowth of micrometre-scale tubular structures from polyoxometalate-based inorganicsolids[J]. Nature,2009,1:47-52.
    [33] Xin Z F, Peng J, Wang T, et al. Keggin POM microtubes: a coincident product ofcrystal growth and species transformation[J]. Inorg Chem,2006,45(22):8856-8858.
    [34] Sanchez C, Livage J, Launay J P, et al. Electron delocalization in mixed-valencemolybdenum polyanions[J]. J Am Chem Soc,1982,104(11):3194-3202.
    [35] Cui Y, Xu L, Wang W J, et al. Electrochemical behavior of polyoxometalates
    [XW11MoO40]n-(X=P, Si, Ge with n=3,4) in aqueous and DMF solution[J]. ChineseJournal of Chemistry,2006,24:316-320.
    [36] Kim B M, Qian S Z, Bau H H. Filling carbon nanotubes with particles[J]. NanoLett,2005,5(5):873-878.
    [37] Sudeep P K, Kamat P V. Photosensitized growth of silver nanoparticles undervisible light irradiation: A mechanistic investigation[J]. Chem Mater,2005,17:5404-5410.
    [38] Polak M, Gruebele M, Dekock B W, et al. Velocity modulation infrared laserspectroscopy of molecular ions[J]. Mol Phys,1989,66:1193-1202.
    [39] Liu S H, Wang D H, Pan C H. Analysis of X-ray Photoelectron Spectroscopy,Science Press: Beijing,1988.
    [40] Kavitha M, Parida M R, Prasad E, et al. Generation of Ag nanoparticles byPAMAM dendrimers and their size dependence on the aggregation behavior ofdendrimers[J]. Macromol Chem Phys,2009,210:1310-1318.
    [41] Liu L, Li H X, Tu D Y, et al. Controlling the growth of single crystallinenanoribbons of copper tetracyanoquinodimethane for the fabrication of devices anddevice arrays[J]. J Am Chem Soc,2006,128:12917-12922.
    [42] Guo Q X, Tang H B, Liu Y J, et al. Light-controlled organic/inorganic P-Njunction nanowires[J]. J Am Chem Soc,2008,130:9198-9199.
    [43] Varga G M Jr, Papaconstantinou E, Pope M T. Heteropoly blues. IV.Spectroscopic and magnetic properties of some reduced polytungstates[J]. InorgChem,1970,9:662-667.