几类欠驱动机器人系统的滑模控制与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
欠驱动系统是指系统控制量维数小于自由度维数的系统,是控制研究领域中非常常见的一类系统。由于其欠驱动特性,控制过程既要实现系统欠驱动部分的自稳定,又要实现驱动部分的稳定控制。这给控制理论带来了新的挑战,是控制理论的重要研究方向。由于欠驱动系统的多样性,除了部分反馈线性化方法外,很难找到对所有欠驱动系统均有效的控制方法。因此,对欠驱动系统的研究主要是针对某一种或者某一类系统。本文研究三类欠驱动系统:可变形线性物体的机器人操作系统、两轮自平衡小车UW-Car和欠驱动手臂acrobot。
     本文研究滑模控制方法对欠驱动系统的稳定控制。基于欠驱动系统的动力学模型,研究一般欠驱动系统的控制方法。为了增强滑模控制器的鲁棒性,本文提出一种带有干扰观测器的滑模控制方法。通过干扰观测器估计外界扰动,并进行补偿,使得被控对象近似为无摄动无干扰的标准模型,再通过设计滑模控制器实现系统的稳定控制。该方法尤其适用于外界扰动较大或者扰动上界难以估计的环境。
     本文采用基于滑模控制的可变形线性物体机器人操作过程中的末端抖振方法。采用有限元方法建立可变形线性物体的动力学模型。基于该动力学模型,提出基于滑模控制的可变形线性物体末端抑振控制方法。通过局部线性化、线性变换、Schur分解等一系列数学运算,解耦系统欠驱动部分和驱动部分。设计合适的滑模控制器满足系统的欠驱动部分能够自稳定在滑模面上,驱动部分能够满足滑模条件,从而实现可变形线性物体末端抑振控制。为了解决实际应用中存在输入饱和的问题,本文提出自适应滑模控制方法。通过设计合适的自适应规律,使得滑模控制器既能消除系统输入饱和特性对系统性能的影响,又能完成可变形线性物体末端快速抑振。我们采用MATLAB仿真验证上述理论分析,仿真结果表明,滑模控制方法能实现可变形线性物体末端快速抑振;自适应滑模控制方法在系统存在输入饱和特性的情况下也能够实现可变形线性物体末端的快速抑振。
     两轮自平衡小车是一类重要的欠驱动系统,本文研究两轮自平衡小车UW-Car速度控制和最优刹车控制。通过对UW-Car系统机械结构分析,采用拉格朗日动力学方法建立UW-Car的动力学模型。基于该模型,计算得到UW-Car运动过程中的平衡点,通过设计终端滑模控制器,实现UW-Car的速度跟踪控制。刹车控制作为两轮自平衡小车重要的研究方向,本文提出一种基于最短刹车距离的最优刹车控制方法。通过设计切换滑模控制器,采用遗传算法求取最优参数,实现UW-Car的最优刹车控制。通过实验结果和MATLAB仿真比较,验证了UW-Car动力学模型的正确性,以及滑模控制器对UW-Car速度跟踪控制和最优刹车控制的有效性。
     本文将带有干扰观测器的滑模控制方法应用在acrobot上。建立带有扰动的acrobot的动力学模型,采用干扰观测器估计系统扰动值并补偿,再采用滑模控制器实现acrobot的稳定控制。仿真结果表明,在外界扰动较大的环境下,通过与传统的滑模控制器控制效果比较,证明了带有干扰观测器的滑模控制器的控制效果更有效。欠驱动手臂acrobot是最简单的欠驱动系统,通过在acrobot应用,该方法可以逐步推广到更复杂的欠驱动系统
Underactuated systems are a class of control systems characterized by the presence of more degrees of freedom than control inputs, and are very common in the field of control research. Due to the particular characteristics of underactuated systems, in control processes, underactuated areas are self-stabilized while actuated systems are controller-stabilized. Ongoing development of such systems has brought about new challenges to control theory, and comprise an important research direction in the field of control theory. Given the diversity of underactuated systems, and aside from the partial feedback linearization method, there is a lack of a uniform solution to the control issue present in underactuated systems. Here we investigate three types of underactuated systems utilizing controllers designed for position and velocity tracking control:a deformable linear object robot operating system, a two-wheeled self-balance vehicle (UW-Car), and an underactuated acrobot arm system.
     We adopt sliding mode control for stable control of underactuated systems. A sliding mode controller is designed for dynamic model of underactuated system in general form. In order to enhance the robustness of the sliding mode controller, this thesis proposes a type of disturbance observer incorporating a sliding mode control for a class of underactuated systems. By estimating and compensating for the disturbance by using a disturbance observer, the system is approximated as a standard model without perturbation and inference, and a sliding mode controller is thereby designed. This method is particularly suitable for large external disturbance environments or environments whose upper bounds are difficult to estimate.
     We propose a sliding mode controller to dampen the vibration in the end of deformable linera object in this thesis. We obtain the dynamic model of a deformable linera object formulated by using finite element method. Based on this model, by using local linearization, linear transformation of variables and Schur decomposition of matrices, actuated and underactuated parts of the deformable linera object dynamic model are separated. Based on the decoupled dynamic model, a sliding mode controller is designed to force the underactuated state variables to converge to sliding mode hypersurface and actuated state variables satisfy the siding mode condition, and cause vibration at the end of the deformable linera object to dampen quickly. To solve the input saturation problem, an adaptive sliding mode control law is designed to suppress the damping at the end of deformable linera object. By designing a proper adaptive law, the adaptive sliding mode controller can both eliminate the effect of input saturation no the performance of the system and dampen the vibration at the end of a deformable linera object quickly. MATLAB simulations used to verify the theory analysis. The results show that the sliding mode controller can manage the vibration suppression at the end of a deformable linera object, and the adaptive sliding mode controller can suppress the vibration at the end of deformable linera object with input saturation.
     The two-wheeled self-balance vehicle (UW-Car) is a characteristic example of underactuated system. Sliding mode controllers are designed for velocity control and optimal braking control of two wheeled vehicle UW-Car. Through mechanical structure analysis, the Lagrangian dynamics method is used to obtain the dynamic model of the UW-Car. Based on this model, the equilibrium point of the UW-Car while undergoing motion is calculated and the UW-Car's velocity tracking control is realized through terminal sliding mode controller. Taking speed reduction and braking as the UW-Car's primary research direction, we propose an optimal braking control method to achieve the shortest braking distance. A switching controller with optimal parameters calculated by genetic algorithm is designed. From comparisons between MATLAB simulation results and experiments, we arrive at the conclusion that the dynamic model of UW-Car is accurate and that the sliding mode controller for velocity tracking control and optimal braking control is effective.
     The thesis presents a type of disturbance observer incorporating a sliding mode control applying to underactuated arm acrobot. Based on the dynamic mode of acrobot with disturbance, the disturbance observer is designed to estimate and compensate for the disturbance, and sliding mode controller is designed for the stable control of acrobot system. In large external disturbance environments, compare to simulation results of traditional sliding mode controller, the sliding mode controller with disturbance observer achieves greater effectiveness. Acrobot is the simplest underactuated system. By applying the controller to acrobot, the method can be gradually extended to more complex underactuated systems.
引文
[1]Spong M.. The swing up control problem for the acrobot. IEEE Control Systems Magazine,1995,15(1):49-55
    [2]Spong M.W.. Partial Feedback Linearization of Underactuated Mechanical System. In Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems, Munich, Germany,1994:314-321
    [3]Fung Y. C. Foundations of Solid Mechanics. Prentice-Hall,1965
    [4]Fukuda T.. Flexibility control of elastic robot arms. Journal of Robotic Systems,1985, 2(1):73-88
    [5]王洪福,曲东升,孙立宁.柔性臂动力学模型中单杆的质量—弹性杆简化模型的讨论.机器人,2001,23(7):691-694
    [6]Yoshikawa T., Hosoda K., Modeling of Flexible Manipulators using Virtual Rigid Links and Passive Joints. The International Journal of Robotics Research,1996,15(3): 290-299
    [7]邱志成,王斌,韩建达等.无杆气缸驱动的柔性机械臂振动控制.机器人,2012,34(1):9-16
    [8]Hopcroft J. E., Kearney J. K., Krafft D. B.. A Case Study of Flexible Object Manipulation. International Journal of Robotics Research,1991,10(1):41-50
    [9]Wakamatsu H., Tsumaya, A. Planning of One-Handed Knotting/Raveling Manipulation of Linear Objects, in Proceeding of IEEE International Conference of. Robotics and Automation (ICRA), New Orleans, LA, USA,2004.1719-1725
    [10]Wakamatsu H., Tsumaya A., Arai E., et al. Manipulation Planning for Unraveling Linear Objects, in Proceeding of IEEE International. Conference of Robotics and Automation (ICRA), Orlando, Florida,2006.2485-2490
    [11]Wakamatsu H., Tsumaya A., Arai E. et al. Manipulation Planning for Knotting/Unknotting and Tightly Tying of Deformable Linear Objects, in Proceeding. of IEEE International. Conference of Robotics and Automation (ICRA), Barcelona, Spain,2005.2516-2521
    [12]Matsuno T., Fukuda T., and Arai F.. Manipulation of Deformable Linear Objects Using Knot Invariants to Classify the Object Condition Based on Image Sensor Information. IEEE Transaction on Mechatronics,2006,11(4):401-408
    [13]Takamatsu J., Morita T., Ogawara K. et al. Representation for knot-tying tasks. IEEE Transaction on Robotics,2006,22(1):65-78
    [14]Saha M., Isto P., Motion planning for robotic manipulation of deformable linear objects, in Proceeding of IEEE International of Conference of Robotics and Automation (ICRA), Orlando, Florida,2006.2478-2484
    [15]Saha M., Isto P.. Manipulation Planning for Deformable Linear Objects. IEEE Transaction on Robotics,2007,23(6):1141-1150
    [16]Kabul I., Gayle R., Lin M. C. Cable Route Planning in Complex Environments Using Constrained Sampling, ymposium on Solid and Physical Modeling, New York, USA 2007.395-402
    [17]Wang S., Wang H., Yue L.. A novel knot-tying approach for minimally invasive surgical robot systems. International Journal of Medical Robotics and Computer Assisted Surgery,2008 4,:268-276
    [18]Weil J.. The Synthesis of Cloth Objects. Computer Graphics,1986,20(4):49-54
    [19]Terzopoulos D., Barr A., Fleischer K.. Elastically Deformable Models. Computer Graphics,1987,21(4):205-214
    [20]Rosenblum R. E., Carlson W. E., Tripp E.. Simulating the Structure and Dynamics of Human Hair:Modelling, Rendering and Animation. Journal of Visualization and Computer Animation,1991,2 (4):141-148
    [21]Daldegan A., Thalmann N. M., Kurihara T. et al. An Integrated System for Modeling, Animating and Rendering Hair. Computer Graphics Forum (Eurographics'93), 1993,12(3):211-221
    [22]Shi H. F., Payandeh S.. GPU in Haptic Rendering of Deformable Objects. Lecture Notes in Computer Science,2008,50(24):163-168
    [23]Wakamatsu H., Arai E.. Static Modeling of Linear Object Deformation Based on Differential Geometry. International Journal of Robotics Research,2004,23(3): 293-311
    [24]Yue S., Henrich D.. Manipulating Deformable Linear Objects:Model-based Adjustment-Motion for Vibration Reduction, in Proceeding of. International conference on Advanced Robotics, Budapest, Hungary,2001.22-25
    [25]Wakamatsu H., Takahashi K., Hirai S.. Dynamic Modeling of Linear Objects Deformation Based on Differential Geometry Coordinates, in Proceeding of IEEE International Conference of Robotics and Automation (ICRA), Barcelona, Spain,2005. 1040-1045
    [26]H. Wakamatsu, K. Takahashi, S. Hirai, et. al. Dynamic Modeling of Linear Object Deformation Considering Contact with Obstacles, in Proceeding of. IEEE International of Conference of Control, Automation, Robotics and Vision, Singapore,2006. 1085-1090
    [27]Huang J., Di P., Fukuda T. et al. Dynamic Modeling and Simulation of Manipulating Deformable Linear Objects, in Proceeding of IEEE International of Conference of Mecthatronics and Automation (ICMA), Takamatsu, Japan,2008.858-863
    [28]柳有权,王文成,吴恩华.树在风中摇曳的快速生成系统.系统仿真学报,9月增刊,2003,15:39-41
    [29]Feng Ding, Jian Huang, Yongji Wang et al. Vibration Damping in Manipulation of Deformable Linear Objects Using Sliding Mode Control, the 31th Chinese Control Conference, Hefei, China,2012.4924-4929
    [30]Feng Ding, Jian Huang, Yongji Wang et al. Adaptive sliding mode control for manipulating deformable linear object with input saturation. International Conference of Mechatronics and Automation, Chengdu, China,2012.1862-1867
    [31]Yue S.G., Henrich D.. Manipulating Defroamble Linear Objects:Fuzzy-Based Active Vibration Damping Skill. Journalof Intelligent Robot Systems.2006,46(3):201-219.
    [32]Yue S.G., Henrich D.. Manipulating Deformable Linear Objects:Sensor-Based Skills of Adjustment Motion for Vibration Reduction. Journal of Robotic System.2005, 22(2):67-85
    [33]Feng Ding, Jian Huang, Takayuki Matsuno, et al. Skill-Based Vibration Suppression in Manipulation of Deformable Linear Objects. International Symposium on Micro-NanoMechatronics and Human Science. Nagoya,Japan,2011.421-426
    [34]Grasser F., Arrigo A.D,Colombi S. et al. JOE:a Mobile Inverted Pendulum. IEEE Transactions on Industrial Electronics.2002,49(1):107-114
    [35]Anderson D.P..nBot. http://www.geology.smu.edu/-dpa-www/robo/nbot/
    [36]Kamen D.. Segway Company, http://www.segway.com/
    [37]段旭东,魏衡华,陈星.基于DSP的二轮小车-倒立摆系统.控制工程.2004,11(6):521-524
    [38]陈星,魏衡华,张玉斌.二轮行走倒立摆系统建模与鲁棒方差控制.计算机仿真,2006,23(3):263-266
    [39]李京涛,高学山,黄强等.双模式非稳定结构移动机器人.机械工程学报,2009,45(5):147-152
    [40]Chaoquan Li, Xueshan Gao,Qiang Huang et al. A Coaxial Couple Wheeled Robot With T-S Fuzzy Equilibrium Control. Industrial Robot,2011,38(3):292-300
    [41]Feng Ding, Jian Huang, Yongji Wang et al. Optimal Braking Control for UW-Car using Sliding Mode, in proceeding of the 2009 IEEE international conference on robotics and biomimetics, Guilin, China,2009.117-122
    [42]Feng Ding, Jian Huang, Yongji Wang et al. Modeling and Control of a Novel Narrow Vehicle, proceeding of the 2010 IEEE international conference on robotics and biomimetics, Tian Jin, China,2010.30-1135
    [43]Huang J., Ding, F., Fukuda, T. et al. Modeling and Velocity Control for a Novel Narrow Vehicle Based on Mobile Wheeled Inverted Pendulum. IEEE Transactions on Control Systems Technology (in press)
    [44]Fukuda T. and Hasegawa Y. Mechanism and Control of Mechatronic System with Higher Degrees of Freedom. Annual Reviews in Control.2004,28:137-155
    [45]Spong M, Praly L.. Control of underactuated mechanical systems using switching and saturation. Proceedings of Block Island Workshop Control Using Login Based Switching. Block Island, USA,1995.162-172
    [46]Zheng Yan, Jing Yuan Wei. Fuzzy variable structure control for acrobot based on T-S model. IEEE International Conference on Mechatronics and Automation, Ontario, Canda,2005.842-846
    [47]Liu Bo, Zheng Yan. Research on fuzzy neural network-based sliding mode balance control of Acrobot.201123rd Chinese Control and Decision Conference (CCDC 2011), Mianyang, China,2011:3416-3421
    [48]郑艳,井元伟.Acrobot系统基于滑模的离散时间变结构控制.东北大学学报,2006,27(6):591-594
    [49]Lai X. Z.,She J. H., Yang, S.X. et al.. Control of acrobot based on non-smooth Lyapunov function and comprehensive stability analysis. LET Control Theory & Applications,2008,2(3):181-191
    [50]曹胜强,赖旭芝,吴敏.基于平面Acrobot轨迹特性的运动控制方法.中国控制会议,合肥,中国,2012.4910-4915
    [51]Burg T., Dawson D., Rahn C.. Nonlinear control of an overhead crane via the saturating control approach of Teel. in Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, USA,1996:3155-3160.
    [52]张晓华,郭源博.基于嵌套饱和方法的吊车系统非线性控制.控制工程,2008,15(2):113-115,212.
    [53]Kaustubh Pathak, JaumeFranch, and Sunil K. Agrawal. Velocity and Position Control of a Wheeled Inverted Pendulum by Partial Feedback Linearization. IEEE Transactons on Robotics,2005,21(3):505-513
    [54]Wang W., Yi J., Zha D. et al. Design of a stable sliding-mode controller for a class of second-order underactuated systems. IET Control Theory and Application,2004, 151(6):683-690
    [55]Huang J., Wang H., Matsuno T.et al. Robust Velocity Sliding Mode Control of Mobile Wheeled Inverted Pendulum Systems. In Proceeding of IEEE International Conference on Robotics and Automation (ICRA2009), Kobe, Japan,2009.2983-2988
    [56]林壮,朱齐丹,原新.欠驱动水平机械臂的遗传优化分层滑模控制.哈尔滨工程大学学报,2007,28(12):1337-1342
    [57]王伟,易建强,赵冬斌等.一类非确定欠驱动系统的串级模糊滑模控制.控制理论与应用,2006,23(1):53-59
    [58]Vander Linden W., Lambrcchts P F.. H-oocontrol of an experimental inverted pendulum with dry friction. IEEE control system magazine,1993,13(4):44-45
    [59]Sun Ning, Fang Yongchun, ZHANG Yudong, et al. A novel kinematic coupling-based trajectory planning method for overhead cranes. IEEE/ASME Transactions on Mechatronics,2012,23(1),166-173
    [60]Westerberg, Simon, Mettin, Uwe, Shiriaev. Anton, Motion planning and control of an underactuated 3DOF helicopter.2010 IEEE/RSJ International Conference on Intelligent Robots and System, Taibei, China,2010.3759-3764
    [61]Khalid A., Huey J., Singhose W. et al.. Human operator performance testing using an input-shaped bridge crane. Journal of Dynamic Systems. Measurement, and Control, 2006,28(4):835-841
    [62]Sorensen K., Singhose W., Dickerson S.. A controller enabling precise positioning and sway reduction in bridge and gantry cranes. Control Engineering Practice,2007,15(7): 825-837
    [63]Garrido S., Abderrahim M., Gimenez A. et al. Anti-swinging input shaping control of an automatic construction crane. IEEE Transactions on Automation Science and Engineering,2008,5(3):549-557
    [64]Maleki E, Singhose W.. Dynamics and zero vibration input shaping control of a small-scale boom crane, in Proceedings of the American Control Conference, Baltimore,USA,2010.2296-2301
    [65]Marton L., Lantos B.. Stable adaptive ball and beam system. in Proceedings of the IEEE International Conference on Mechatronics, Piscataway, NJ, USA,2006.507-512
    [66]Lee H, Liang Y, Segura D.. A sliding-mode antiswing trajectory control for overhead cranes with high-speed load hoisting. Journal of Dynamic Systems, Measurement, and Control,2006,128(4):842-845
    [67]林壮,段广仁,宋申民.水平欠驱动机械臂的反步自适应滑模控制.机器人,2009,31(2):131-145.
    [68]Qian Dianwei, Yi Jianqiang, Zhao Dongbin. Robust control using sliding mode for a class of under-actuated systems with mismatched uncertainties. in Proceedings of the IEEE International Conference on Robotics and Automation,2007.1449-1454.
    [69]Gwo-Ruey Yu, Heng-Ta Hsieh. Robust control of an underactuated robot via T-S fuzzy region model. in Proceedings of the 2011 9th World Congress on Intelligent Control and Automation, Taipei, Taiwan,2011.495-500
    [70]Qingbo Liu, Yueqing Yu, Liying Su, A new hierarchical fuzzy control method for 2-DOF underactuated robots,2007 International Conference on Fuzzy Systems and Knowledge Discovery,2007.533-538,
    [71]Begovich O., Sanchez E.N., Maldonado M.. Takagi-Sugeno fuzzy scheme for real-time trajectory tracking of an underactuated robot. IEEE Transactions on Control Systems Technology,2002,10(1):14-20,
    [72]Ichida, K., Watanabe, K., Izumi, K., et al. Fuzzy switching control of underactuated manipulators with approximated switching regions, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China,2006. 586-591,
    [73]Hu, Yunyan, Zhang Guocheng, Wan, Lei. Tracking control of underactuated unmanned surface vessels based on the dynamic fuzzy neural network. Advanced Materials Research, Jinan, China,2012,562-564:2188-2196,
    [74]Liu Yang, Guo Chen, Shen Zhi-peng et al. Guo Di Stable adaptive neural network control of path following for underactuated ships.IET Control Theory and Applications, 2010,27(2):169-174
    [75]Siqueira A. G., Terra M.H.. Neural network-based H∞ control for fully actuated and underactuated cooperative manipulators.2007 American Control Conference, New York, NY America,2007:3259-3264,
    [76]王清,马广富,弥曼.一种基于遗传算法的神经网络控制方法研究.系统仿真学报,2006,18(4):1070-1077
    [77]Nakazonno K, Ohnishi K, Kinjo H, et al. Vibration control of load for rotary crane system using neural network with GA-based training, Artificial Life and Robotics, 2008,13(1):98-101
    [78]Emelyanov S.V.. Variable Structure Control Systems. Moscow:Nauka,1967.
    [79]Utkin V.I.. Sliding Modes and Their Application in Variable Structure System. Moscow:Nauka,1978
    [80]Wang C.H., Zhang K., Yang C.D.. Terminal sliding mode control for singular systems with unmatched uncertainties. IEEE International conference on control and Automation, Jinan, Shangdong,2007:2929-2933
    [81]Tao C. W., Taur J. S., Chan M. L.. Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2003,34(1):1-8
    [82]Parruquetti W., Barbot J.P.. Sliding Mode Control in Engineering. New York:Marcel Dekker Inc.,2002
    [83]Slotine J-J E, Li W.. Applied nonlinear control. Englewood Cliffs:prentice Hall,1991.
    [84]高为炳.变结构控制的理论及设计方法.版本(第一版).北京:科学出版社,1996
    [85]Levant A.. Principles of 2-sliding mode design. Automatica,2007,43(4):576-586.
    [86]Shtessel Y. B., Shkolnikov. I. A., Brown, M. D. J.. An asymptotic second-order smooth sliding mode control. Asian Journal of Control,2004,5(4):498-504
    [87]Kachroop P., Tomizukam M.. Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems. IEEE Trans on Automatic Control, 1996,41(7):1063-1068.
    [88]陈玉宏.滑模控制抖振抑振新方法.电子科技大学学报,1997,26(5):520-524.
    [89]罗小元,朱志浩,关新平.非线性时滞系统的抖振削弱自适应滑模控制.控制与决策,2009,24(9):1429-1432.
    [90]Chern T. L., Wu Y. C.. Design of integral variable structure controller and application to electro hydraulic velocity servo systems. IET Control Theory and Application,1991, 138(5):439-444.
    [91]Seshagiri S., Khalil H. K.. On introducing integral action in sliding mode control, in: Proceedings of the 41st IEEE conference on decision and control (CDC 2002). Las Vegas, NV, USA,2002.1473-1478.
    [92]Seshagiri S, Khalil H K.. Robust output feedback regulation of mini-mum phase nonlinear systems using conditional integrators. Automatica,2005,41(1):43-54.
    [93]李鹏,孙卫蒙,李文强等.一种不确定非线性系统的改进积分型滑模控制.控制与决策,2009,24(10):1463-1472.
    [94]Park K.-B., Tsuji T. Terminal sliding mode control of second-order nonlinear uncertain systems. International Journal of Robust Nonlinear Control,1999,9:769-780
    [95]靳永强,刘向东,侯朝桢.航天器大角度姿态机动的自适应滑模控制.北京工业大学学报,2007,27(5):422-426
    [96]黄国勇,姜长生,王玉惠.基于快速模糊干扰观测器的UASV再入Terminal滑模控制.宇航学报,2007,28(2):292-297
    [97]李前国,姜长生,黄国勇.基于自适应模糊快速终端滑模控制的导弹自动驾驶仪设计.系统工程与电子技术,2007,29(10):1690-1694
    [98]蒲明,吴庆宪,姜长生等.基于二阶动态Terminal滑模的近空间飞行器控制.宇航学报,2010,31(4):1056-1062
    [99]Liu H., Li J. F.. Terminal sliding mode control for spacecraft formation flying. IEEE Transaction on Aerospace and Electronic Systems,2009,45(3):835-846
    [100]时红军,郑艳.倒立摆系统的分层滑模控制.中国控制与决策会议,桂林,中国,2009.2796-2800
    [101]Sankaranaryanan V., Mahindrakar A. D. Control of a class of underactuated mechanical systems using sliding modes. IEEE Transaction on Robotics,2009,25(2):459-467.
    [102]Wang hongbin, Jiao Shou-jiang, She Jun. Adaptive Fuzzy Sliding Mode Control for Underactuated Planar Manipulator. Journal of System and Simulation 2006,18(7) 1891-1896,1901
    [103]王伟,易建强,赵冬斌等.Pendubot的一种分层滑模控制方法.控制理论与应用,2005,22(3):417-422,
    [104]Hirai S.. Energy-based modeling of deformable linear objects, In Robot Manipulation of Deformable Objects. Dominik Henrich and Heinz Worn, editors, Advanced Manufacturing Series, London:Springer-Verlag,2000.11-28
    [105]Wakamatsu H.s Hirai S., Iwata K.. Modeling of Linear Objects Considering Bend, Twist, and Extensional Deformations, in Proceedings of IEEE International Conference of Control and Automation. Nagoya,Japan,1995.1:433-438
    [106]Chen Y.P.. Regulation and Vibration Control of an FEM-Based Single-Link Flexible Arm Using Sliding-Mode Theory. Joural of Vibration and Control,2001,7(5),: 741-752
    [107]Yeung K.S. and Chen Y.P.. Regulation of a One-link Flexible Robot Arm Using Sliding-ModeTechnique. International Journal of Control,1989,49(6):1965-1978
    [108]Zhu Z., Xia Y.Q., and Fu M.Y.. Adaptive Sliding Mode Control for Attitude Stabilization WithActuator Saturation. IEEE Transactions On Industrial Electronics, 2011,58(10):4898-4907
    [109]Man Z. H., Paplinski A., P. and Wu H. R.. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans, on Automatic Control,1994, 39(12):2464-2470