近空间飞行器非线性飞控系统鲁棒自适应控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近空间飞行器(Near Space Vehicle,NSV)集传统航空器与航天器的优点于一身,在军事和民用方面具备重大的战略价值,已成为各军事强国关注和研究的焦点。NSV飞行环境的特殊性使其具有复杂非线性、快时变、强耦合的对象特征,并且在飞行过程中呈现多飞行状态、多任务模式的特点,这使得NSV飞行控制系统的设计更加复杂。围绕这一基础科学问题,本文基于6自由度十二状态近空间飞行器数学模型,在不确定环境下飞行姿态、协调转弯和纵向飞行等方面开展了深入的研究,主要研究成果有:
     首先,根据国外公开发表的文献资料、相关研究报告与实验室前期研究成果,建立6DOF十二状态NSV运动方程。为解决多变量、强耦合和复杂非线性的NSV姿态控制,研究了基于backstepping方法的一类多输入多输出非线性系统控制器设计方法,并以此设计了NSV姿态角控制器和角速度控制器,仿真结果说明所提方法有效性。
     其次,围绕具有不确定和外部干扰的NSV姿态运动方程,提出了基于干扰估计的backstepping的控制方法。为补偿系统中的未知干扰,给出两种在线估计算法—自适应干扰估计算法和二阶滑模干扰观测器,并通过理论推导和仿真分析验证了所提出的控制策略能够有效地提高受扰NSV姿态控制系统的抗干扰能力。
     随后,围绕具有全包线飞行特点的变后掠翼NSV,采用切换仿射非线性系统来描述其不同阶段姿态模型。当切换系统精确已知时,依据backstepping方法,研究一类切换非线性系统光滑控制器设计新方法,以保证模型切换瞬间控制量的光滑性。当切换系统存在未知干扰时,为准确地估计各模态的未知干扰,设计一组径向基神经网络干扰观测器,并采用鲁棒项使得干扰估计值以任意小的误差逼近干扰真值。在此基础上,给出不确定切换非线性系统的控制器结构,并采用多Lyapunov函数推导闭环切换非线性系统稳定条件。以此设计后掠翼不确定时NSV的姿态角控制器和角速度控制器,仿真结果说明所提方法对不确定和外部干扰表现出良好的鲁棒性。
     然后,围绕NSV纵向姿态/轨迹飞行协调控制问题,提出基于快速收敛非线性微分器干扰补偿的纵向姿态/轨迹飞行协调控制方案。根据NSV纵向飞行特点,给出了NSV纵向姿态/轨迹协调控制模型。针对其中的非仿射非线性航迹模型,提出一种在线的非仿射非线性系统近似方法。为估计NSV纵向运动中的未知复合干扰,给出一种快速收敛的非线性微分器设计方法,并通过理论推导证明其微分估计误差可以收敛于任意小的有界集内。在此基础上,依据受限指令滤波backstepping方法和动态逆方法,设计受扰NSV姿态/轨迹鲁棒协调控制器,并通过理论推导和仿真分析说明所提出的控制策略能够实现姿态与轨迹之间的协调运动。
     最后,围绕NSV协调转弯控制问题,提出基于二阶滑模干扰观测器干扰补偿的NSV协调转弯鲁棒控制策略。根据NSV转弯飞行特点,建立航迹与姿态角和角速度之间相互影响的NSV协调转弯控制模型。将动态逆方法、带有调节因子的滑模控制方法和二阶滑模干扰观测器相结合,给出重心轨迹协调转弯鲁棒控制器设计过程,其中利用带有调节因子的滑模控制方法以改善航迹倾斜角和航迹方位角的动态性能,进而协调纵向与横侧向运动。仿真结果表明该方法能够有效地完成受扰NSV协调转弯控制任务。
Near space vehicle (NSV) has great strategic value both in military and civilian area, which hasboth advantages of traditional aircrafts and spacecrafts. Due to the characteristics of multi-task modesin different phases of flight, NSV possesses some distinct characters, such as serious nonlinearity, fasttime variation, and intense coupling. Therefore, it is a great challenge to design flight control systemsfor NSV. For these problems, some works are studied in this dissertation by using NSV mathematicalmodel of six degrees of freedom and twelve states, such as the flight attitude control, longitudinalflight control and coordinated turn in uncertain environment. The main results of the subject areexhibited as follows:
     First of all, the6DOF(six degrees of freedom) twelve states equations of NSV are established fordescribing NSV dynamic system, based on the research contributions of the abroad institution and ourlaboratory. In order to solve the problem of NSV attitude control with the multi-variables, strongcoupling and complex nonlinearity, we propose a backstepping scheme for a class of multi-inputmulti-output nonlinear systems. Thus, NSV attitude angle controller and angular velocity controllerare presented by using the proposed method. Simulation results show the desired tracking controlperformance is achieved by the proposed method.
     Secondly, a backstepping control method based on the disturbance estimation is proposed for theNSV attitude system with uncertainty and external disturbances. Two types of online estimationalgorithms including an adaptive interference estimation algorithm and a second order sliding modedisturbance observer, are given to compensate the unknown disturbances. The good performance ofthis method is demonstrated by both of the theoretical analysis and simulation results.
     Next, the switched nonlinear systems are used to describe the NSV attitude model of differentstages, when the NSV’s wing sweep angle is variable in large envelop. A smooth backstepping controlmethod is presented for a class of the precisely known switched nonlinear systems, to solve theproblem of controlled variables jumping caused by mode switching. To accurately estimate unknowndisturbances, we design a set of radial basis function neural network disturbance observers, and usesome robust terms to offset the impact on system performance caused by the approximation errors.Then, we derive the structure of uncertain switched nonlinear controller, and analyze the closed-loopstability condition by using the multiple Lyapunov functional method. Based on the above works, anattitude angle controller and an angular velocity controller are designed for the uncertain NSV model. Simulation results show the desired robustness of the proposed method for uncertainty and externaldisturbances.
     Subsequently, a longitudinal attitude-trajectory coordinate control scheme based on fastconvergence of nonlinear differential disturbance compensator is proposed, aiming at the issue of thelongitudinal coordinate control. According to the characteristics of NSV longitudinal flight, weintroduce NSV longitudinal attitude-trajectory coordinate control equations. A novel non-affinenonlinear approximation method is proposed for non-affine nonlinear flight path dynamic model. Inorder to estimate compound disturbances during the flight phase of longitudinal NSV, we present arapidly convergent nonlinear differentiator and prove that differential estimation residuals converge toan arbitrarily small neighborhood. Based on the above works, a NSV attitude-trajectory coordinatecontroller is designed by using the constrained command filter backstepping method and the dynamicinversion method. Simulation results show that the proposed control strategy can achieveattitude-trajectory coordinate movements.
     Finally, a robust coordinated-turn control strategy based on second order sliding modedisturbance observer is presented, aiming at the issue of realizing NSV coordinated-turn. According tothe characteristics of NSV turning flight, we establish NSV coordinated-turn control model, in whichthe control of flight path, attitude angle and angular velocity can be considered at the same time.Combining the dynamic inversion method, sliding mode control with regulatory factors and slidingmode disturbance observer, we design a robust controller for the gravity center trajectorycoordinated-turn. Sliding mode control with regulatory factors is used to improve dynamicperformance of flight-path angle and heading angle, and to coordinate the longitudinal and lateralmovement. Simulation results show that this method can effectively implement the uncertain NSVcoordinated-turn control task.
引文
[1]周光召.2020年中国科学和技术发展研究-2020年中国空间科学和技术发展研究[M].北京:中国科学技术出版社,2004.
    [2]吴宏鑫,孟斌.高超声飞行器控制研究综述[J].力学进展,2009,39(6):756-765.
    [3]崔尔杰.近空间飞行器研究发展现状及关键技术问题[J].力学进展,2009,36(6):658-673.
    [4]黄琳,段志生,杨剑影.近空间高超声速飞行器对控制科学的挑战[J].控制理论与应用,2011,28(10):1496-1505.
    [5]段锋.临近空间飞行器现状与发展[J].航空科学技术,2007,(6):22-25.
    [6]尹志忠,李强.近空间飞行器及其军事应用分析[J].装备指挥技术学院学报,2006,17(5):64-68.
    [7] YOUNG M, KEITH S. An overview of advanced concepts for near-space systems [C].45thAIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, Denver, CO, USA:AIAA2009-4805.
    [8] Johnson D L. Terrestrial environment criteria guidelines for use in aerospace vehicledevelopment [R]. NASA TM-2008-215633.
    [9]肖存英.临近空间大气动力学特性研究[D].北京:中国科学院研究生院,2009.
    [10] Kurt D H, Lieutentan C. Near space: should air force space command take control of itsshore [M]. Alabama: Air Force Press,2006.
    [11]王彦广,李健全,李勇,等.近空间飞行器的特点及其应用前景[J].航天器工程,2007,16(1):50-57.
    [12] Orton G F, Scuderi L F. A hypersonic cruiser concept for the21st century [C]. AIAA andSAE,1998World Aviation Conference, Anaheim, CA, USA: AIAA1998-5525.
    [13] Bertin J J, Cummings R M. Fifty years of hypersonics: where we’re been, where we’regoing [J]. Progress in Aerospace Sciences,2003,39(6,7):511-536.
    [14] Hanson J M. Adavanced guidance and control project for reusable launch vehicles [C].AIAA Guidance, Navigation and Control Conference and Exhibit, Denver, CO, USA:AIAA,2000-2932.
    [15] Robert C, Ryder J. Effect of Freestream Noise on Roughness-Induced Transition for theX-51A Forebody [R]. NASA TM-X-5167N31968.
    [16] Borg M P, Schneider S P. Dynamic inversion-based adaptive/reconfigurable control of theX-33on ascent [J]. Journal of Spacecraft and Rockets,2008,45(6):1106-1116.
    [17] Parker J T. Control-oriented modeling of an air-breathing hypersonic vehicle [J]. Journal ofGuidance, Control and Dynamics,2007,30(3):856-869.
    [18] David K S. Dynamic modeling, control, and station-keeping guidance of a largehigh-altitude “near-space” airship [C]. AIAA Guidance, Navigation and Control Conferenceand Exhibit, Keystone, CO, USA: AIAA2006-6781.
    [19] Marcel M J, Baker J. Integration of ultra-capacitors into the energy management system ofa near space vehicle [C].5th International Energy Conversion Engineering Conference andExhibit, St. Louis, MO, USA: AIAA2007-4707.
    [20]包为民.航天飞行器控制技术研究现状与发展趋势[J].自动化学报,2013,39(6):697-702.
    [21] Levine S R, Opila E J, Halbig M C, et al. Evaluation of ultra-high temperature ceramics foraeropropulsion use [J]. Journal of the European Ceramic Society,2002,22(14):2757-2767.
    [22] Brandeis J, Gill J, Brandeis J, et al. Experimental investigation of super and hypersonic jetinteraction on configurations with lifting surface [C]. AIAA Atmospheric Flight MechanicsConference, New Orleans, LA, USA: AIAA1997-3723.
    [23] Catherine B, Ethan B, John M, et al. The X-43A Hyper-X Mach7Flight2Guidance,Navigation, and Control Overview and Flight Test Results [C]. AIAA/CIRA13thInternational Spcae and Hypersonics Systems and Technologies, Capua, Italy: AIAA2005-3275.
    [24] Tartabini P V, Bose D M. Mach10Stage Separation Analysis for the X43-A [C].44thAIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA: AIAA2006-1038.
    [25] John D S, Pinckney S Z, John D M. Hypersonic vehicle simulation model: winged-coneconfiguration [A]. Langley Research Center, Hampton, Virginia,1990.
    [26] Mathew D J, Anthony J C, Eric N J. Evaluation of an adaptive method for launch vehicleflight control [C].2003AIAA Guidance, Navigation, and Control Conference and Exhibit,Austin, TX, USA: AIAA2003-5789.
    [27] Walton J, Cleveland O H. Performance sensitivity of hypersonic vehicles to changes ofangle of attack and dynamic pressure [R]. AIAA89-2463,1989.
    [28]常军涛,于达仁,鲍文.攻角引起的高超声速进气道不起动/再起动特性分析[J].航空动力学报,2008,23(5):816-821.
    [29] Raney D L. Control integration concept for hypersonic cruise-turn maneuvers [R]. NASATP-3136,1992.
    [30] Raney D L, Lallman F. Control concept for maneuvering in hypersonic flight [R].AIAA-91-5055,1991.
    [31] Raney D L. Investigation of piloting aids for manual control of hypersonic maneuvers [R].NASA-TP-3525,1996.
    [32] Chalk C R. Flying qualities criteria review [R]. NASP-CR-1063,1989.
    [33]冯纯伯,费树岷.非线性控制系统分析与设计[M].北京:电子工业出版社,1997.
    [34] Isidori A. Nonlinear control systems [M]. London: Springer-Verlag,1995.
    [35] Sastry S, Nonlinear systems: analysis, stability and control [M]. New York:Springer-Verlag,1999.
    [36] Leitner J, Calise A J, Prasad J V R. Analysis of adaptive neural networks for helicopterflight controls [J]. AIAA Journal of Guidance, Control, and Dynamics,1997,20(5):972-979.
    [37] Johnson E N, Calise A J. Limited authority adaptive flight control for reusable launchvehicles [J]. AIAA Journal of Guidance, Control, and Dynamics,2003,26(6):906-913.
    [38] Soest W R, Chu Q P, Mulder J A. Combined feedback linearization and constrained modelpredictive control for entry flight [J]. Journal of Guidance Control and Dynamics,2006,29(2):427-435.
    [39] Lane S H, Stengel RF, Flight control design using nonlinear inverse dynamics, automaticflight control [J]. Automatica,1988,24(4):471-483.
    [40] Meyer G, Su R, Hunt L R. Application of nonlinear transformations to automatic flightcontrol [J]. Automatica,1984,20(1):103-107.
    [41]武国庆,姜长生,张锐,等.基于径向基神经网络的不确定非线性系统的鲁棒自适应控制[J].航空学报,2002,23(6):530-533.
    [42]吴天宝,黄显林,卢鸿谦,等.基于非线性动态逆方法的TF/TA控制器设计[J].宇航学报,2004,25(3):289-294.
    [43]朱亮,姜长生,陈海通,等.基于单隐层神经网络的空天飞行器直接自适应轨迹线性化控制[J].宇航学报,2006,27(3):338-344.
    [44] Brinker J S, Wise K A. Stability and flying qualities robustness of a dynamic inversionaircraft control law [J]. AIAA Journal of Guidance, Control, and Dynamics,1996,19(6):1270-1277.
    [45] Mukherjee P, Waslander S. Direct adaptive feedback linearization for quadrotor control [C].AIAA Guidance, Navigation, and Control Conference, Minneapolis, MN, USA: AIAA-2012-4917.
    [46] Namba T, Uchiyama K. Fault-tolerant adaptive flight control system using feedbacklinearization [C]. AIAA Guidance, Navigation and Control Conference, Oregon, Portland:AIAA-2011-6717
    [47] Mirafzal B, Demerdash N. A nonlinear controller for current source inverter inductionmotor drive systems [J]. IEEE Journal of Electric Machines and Drives,2003,3:1491-1497.
    [48] Ge B M, Wang X H, Su P S, et al. Nonlinear internal-model control for switched reluctancedrives [J]. IEEE Transactions on Power Electronics,2002,17(3):379-388.
    [49] Chang W P. LMI based robust stability analysis for fuzzy feedback linearization regulatorswith its application [J]. Information Sciences,2003,152:287-301.
    [50] McFarland M B, Calise A J. Multilayer neural networks and adaptive nonlinear control ofagile anti-air missiles [C]. AIAA Guidance, Navigation and Control Conference, Reston,VA, USA: AIAA-1997-3540
    [51] McFarland M B, Calise A J. Neural-Adaptive Nonlinear Autopilot Design for an AgileAnti-Air Missile [C]. AIAA Guidance, Navigation and Control Conference, San Diego, CA,USA: AIAA-1996-3914.
    [52]朱荣刚,姜长生,邹庆元,等.新一代歼击机超机动飞行的动态逆控制[J].航空学报,2003,24(3):534-539.
    [53] Huang J L, Cloutier C F, Evers J R, et al. Robust feedback linearization approach toautopilot design [C].1st IEEE Conference on Control Applications, Dayton, USA: IEEE,1992:220-225.
    [54] Tafur S J C, Velez-Reyes M. An adaptive feedback linearizing controller for a shunt DCMotor [C]. Proceedings of the8th IEEE Workshop on Computers in Power Electronics,Mayaguez, Pucrto Rico: IEEE,2002:144-151.
    [55] Fregene K, Kennedy D. Stabilizing control of a high-order generator model by adaptivefeedback linearization [J]. IEEE Transactions on Energy Conversion,2003,18(1):149-156.
    [56] Singh S N, Yim W. Feedback linearization and solor pressure satellite attitude control [J].IEEE Transactions on Aerospace and Electronics Systems,1996,32(2):732-741.
    [57] Sun F C, Sun Z Q. Neural-fuzzy adaptive control based on dynamic inversion for roboticmanipulatiors [J]. Fuzzy Sets and Systems,2003,134(1):117-133.
    [58] Johnson E N. Limited authority adaptive flight control [D]. Atlanta: Georgia Institute ofTechnology,2000.
    [59] Wunch W S. Reproduction of an arbitrary function of time by discontinous control [D].Stanford: Stanford University,1953.
    [60]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996.
    [61] Wang T, Xie W F, Zhang Y M. Adaptive sliding mode fault tolerant control of civil aircraftwith separated uncertainties [C].48th AIAA Aerospace Sciences Meeting Including theNew Horizons Forum and Aerospace Exposition, Orlando, Florida, USA: AIAA2010-1945.
    [62] Jafarov E M, Tasaltin R. Robust sliding mode control for the uncertain MIMO aircraftmodel F-18[J]. IEEE Transactions on Aerospace and Electronics System,2000,36(4):1127-1140.
    [63] Sira R H, Zribi M, Ahmad S. Dynamical sliding mode control approach for vertical flightregulation in helicopters [J]. IEE Proceedings, Control Theory and Applications,1994,141(1):19-24.
    [64] Galzi D, Shtessel Y. Formation flight strategy and control using higher-order sliding mode[C]. AIAA Guidance, Navigation, and Control Conference Proceedings, Hilton Head, SC,USA: AIAA2007-6768.
    [65] Bae J, Kim Y, Park C. Spacecraft formation flying control using sliding mode and neuralnetworks controller [C]. AIAA Modeling and Simulation Technologies Conference,Chicago, IL, USA: AIAA2009-5671.
    [66] Ignaciuk P, Bartoszewicz A. Linear quadratic optimal discrete-time sliding-mode controllerfor connection-oriented communication networks [J]. IEEE transactions on IndustrialElectronics,2008,55(11):4013-4021.
    [67] Levant A. High-order sliding modes, differentiation and output-feedback control [J]. International Journal of Control,2003,76(9,10):924-941.
    [68]李静,左斌,段洣毅,等.输入受限的吸气式高超声速飞行器自适应Terminal滑模控制[J].航空学报,2012,33(2):220-233.
    [69] Levant A. Homogeneity approach to high-order sliding mode design [J]. Automatica,2005,41:823-830.
    [70] Levant A. Universal single-input-single-output sliding mode controller with finite-timeconvergence [J]. IEEE Transactions on Automatic control,2011,46(9):1447-1450.
    [71] Tao C W, Taur J S. Adaptive fuzzy terminal sliding mode controller for linear systems withmismatched time-varying uncertainties [J]. IEEE Transactions Systems, Man, and Cybernetics,2004,34(1):255-262.
    [72]孙宜标,魏秋瑾,王成元.永磁直线同步电机二阶滑模控制仿真研究[J].系统仿真学报,2009,21(7):2037-2040.
    [73] Hwang C L. A novel takagi-sugeno-based robust adaptive fuzzy sliding-mode controller [J].IEEE Transactions on fuzzy systems,2004,12(5):676-687.
    [74]蒲明,吴庆宪,姜长生,等.基于二阶动态Terminal滑模的近空间飞行器控制[J].宇航学报,2010,31(4):1056-1062.
    [75]蒲明,吴庆宪,姜长生,等.基于模糊干扰观测器的自适应二阶动态Terminal滑模控制[J].控制理论与应用,2011,28(6):805-812.
    [76]蒲明,吴庆宪,姜长生,等.自适应二阶动态Terminal滑模在近空间飞行器控制中的应用[J].航空动力学报,2010,25(5):1169-1176.
    [77] Komurcugil H. Non-singular terminal sliding-mode control of DC–DC buck converters [J].Control Engineering Practice,2013,21(3):321–332.
    [78] Pastor A. C, Salamero L M. Synthesis of loss-free resistors based on sliding-mode controland its applications in power processing [J]. Control Engineering Practice,2013,21(3):689–699.
    [79] Meradi S, Benmansour K, Herizi K. Sliding mode and fault tolerant control for multicellconverter four quadrants [J]. Electric Power Systems Research,2013,95(2):128–139.
    [80] Zhang B T, Pi Y G. Fractional order sliding-mode control based on parameters auto-tuningfor velocity control of permanent magnet synchronous motor [J]. ISA Transactions,2012,51(5):649–656.
    [81] Nekoukar V, Erfanian A. Adaptive fuzzy terminal sliding mode control for a class of MIMOuncertain nonlinear systems [J]. Fuzzy Sets and Systems,2011,179(1):34-49.
    [82] Chiu C S. Derivative and integral terminal sliding mode control for a class of MIMOnonlinear systems [J]. Automatica,2012,48(2):316-326.
    [83] Krüger T, Schnetter P. Fault-tolerant nonlinear adaptive flight control using sliding modeonline learning [J]. Neural Networks,2012,32(8):267-274
    [84] Amer A F, Sallam E A, Elawady W M. Adaptive fuzzy sliding mode control usingsupervisory fuzzy control for3DOF planar robot manipulators [J]. Applied SoftComputing,2011,11(8):4943-4953.
    [85] Moreau R, Pham M T, Tavakoli M, et al. Redarce sliding-mode bilateral teleoperationcontrol design for master–slave pneumatic servo systems [J]. Control Engineering Practice,2012,20(6):584-597.
    [86] Crassidis J L, Markley F L, Authony T C, et al. Nonlinear predictive control of spacecraft[J]. Journal of Guidance, Control and Dynamic,1997,20(6):1096-1103.
    [87]席裕庚,李德伟,林姝.模型预测控制—现状与挑战[J].自动化学报,201339(3):222-236.
    [88] Garcia G A, Keshmiri S. Nonlinear model predictive controller for navigation, guidanceand control of a fixed-wing UAV [C]. AIAA Guidance, Navigation, and Control Conference,Portland, OR, USA: AIAA2011-6310.
    [89] Hyochoong B. Predictive control for the attitude maneuver of a flexible spacecraft[J].Aerospace Science and Technology,2004,8(1):443–452.
    [90] Kang Y, Hedrick J K. Design of nonlinear model predictive controller for a smallfixed-wing unmanned aerial vehicle [C]. AIAA Guidance, Navigation, and ControlConference and Exhibit, Keystone, CO, USA: AIAA2006-6685.
    [91] Benito J, Mease K D. Nonlinear predictive controller for drag tracking in entry guidance[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, HI, USA:AIAA2008-7350.
    [92] Bhattacharya R, Balas G J, Kaya M A, et al. Nonlinear receding horizon control of an F-16aircraft [J]. Journal of Guidance, Control, and Dynamics,2002,25(5):924-931.
    [93]谢亚荣.空投任务下翼伞建模与飞行控制研究[D].南京:南京航空航天大学,2011.
    [94]都延丽.近空间飞行器姿态与轨迹的非线性自适应控制研究[D].南京:南京航空航天大学,2010.
    [95]方炜.空天飞行器再入飞行的模糊自适应预测控制[D].南京:南京航空航天大学,2008.
    [96] Chen W H, Balance D J, Gawthrop P J. Optinal control of nonlinear systems: a predictivecontrol approach [J]. Automatica,2003,39(1):633-641.
    [97] Genceli H, Nikolaou M. Design of robust constrained model predictive controllers withvolterra series [J]. American Institute of Chemical Engineers,1995,41(9):2098-2107.
    [98] Roubos J A F, Mollov S, Babuska B, et al. Fuzzy model based predictive control usingTakagi Sugeno models [J]. International Journal of Approximate Reasoning,1999,22:3-30.
    [99] Cheng L, Jiang C S, Pu M. Online-SVR-compensated nonlinear generalized predictivecontrol for hypersonic vehicles [J]. Science in China (Series F),2011,54(3):551-562.
    [100] Shin J H, Kim H J. Nonlinear model predictive formation flight [J]. IEEE Transactions onSystems and Man,2009,39(5):1116-1125.
    [101] Cheng L, Jiang C S, Chen M, et al. Online-SVR-based GPC control for airframe/engineintegrated near-space hypersonic vehicle[C]. The8th Asian Control Conference, Kaohsiung,Taiwan,2011:682-687.
    [102] Du Y L, Wu Q X, Jiang C S. Adaptive functional link network control of near-spacevehicles with dynamical uncertainties [J]. Journal of System Engineering and Electronics,2010,21(5):868-876.
    [103] Du Y L, Wu Q X, Jiang C S. Robust predictive control for hypersonic Vehicles usingrecurrent functional link artificial neural networks[J]. International Journal of InnovativeComputing, Information and Control,2010,6(12):5351-5365.
    [104] Demircioglu H, Gawthrop, P J. Multivariable continuous-time generalized predictivecontrol. Automatica,1992,28(4),697–713.
    [105] Demircioglu H, Gawthrop P J. Continuous-time generalized predictive control [J].Automatica,1991,27(1):55-74.
    [106] Abou-Jeyab R A, GuptaY P. Constrained multivariable control of a distillation columnusing a simplified model predictive control algorithm [J]. Journal of Process Control,2001,11(5):509-517.
    [107] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling andcontrol [J]. IEEE Transaction on Systems, Man and Cybernetics,1985,15(1):116-132.
    [108] Ying H, General Takagi-Sugeno fuzzy systems with simplified linear rule consequent areuniversal controllers, models and filters [J]. Journal of Information Sciences,1998,108(1):91-107.
    [109] Ying H. General SISO Takagi-Sugeno fuzzy systems with linear rule consequent areuniversal approximators [J]. IEEE Transaction on Fuzzy Systems,1998,6(4):582-587.
    [110] Tseng C S. Model reference output feedback fuzzy tracking control design for nonlineardiscrete-time systems with time-delay [J]. IEEE Transactions on Fuzzy Systems,2006,14(1):58-70.
    [111] Tanaka K, Hori T, Wang H O. A multiple lyapunov function approach to stabilization offuzzy control systems [J]. IEEE Transactions on Fuzzy Systems,2003,11(4):582-589.
    [112] Chou C H, Lu H C. A heuristic self-tuning fuzzy controller [J]. Fuzzy Sets and Systems,1994,61(3):249–264.
    [113] Asemani M H, Majd V J. A robust observer-based controller design for uncertain T–S fuzzysystems with unknown premise variables via LMI [J]. Fuzzy Sets and Systems,2013,212(1):21-40.
    [114] Senthilkumar T, Balasubramaniam P. Robust H¥control for nonlinear uncertain stochasticT–S fuzzy systems with time delays [J]. Applied Mathematics Letters,2011,24(12):1986-1994.
    [115] Qi R Y, Tao G, Tan C, et al. Adaptive control of discrete-time state space T–S fuzzy systemswith general relative degree[J]. Fuzzy Sets and Systems,2013,217(16):22-40.
    [116] Wen J, Jiang C S. Adaptive fuzzy control for a class of chaotic systems with nonaffineinputs [J]. Communication in Nonlinear Science and Numerical Simulation,2011,16(1):475–492.
    [117] Tseng C S, Chen B S, Li Y F. Robust fuzzy observer-based fuzzy control design fornonlinear systems with persistent bounded disturbances: a novel decoupled approach [J].Fuzzy Sets and Systems,2009,160(19):2824-2843.
    [118]文杰,姜长生,薛雅丽.严格反馈型非仿射非线性系统的自适应模糊控制[J].控制与决策,2010,25(8):1327-1340.
    [119] Wang Y H, Wu Q X, Jiang C S, et al. Guaranteed Cost Fuzzy Output Feedback Control viaLMI Method for Re-entry Attitude Dynamics [J]. Journal of Uncertain systems,2007,1(4):291-302
    [120]王玉惠,吴庆宪,姜长生,等.具有闭环极点约束的空天飞行器再入姿态的模糊保性能控制[J].航空学报,2007,28(3):654-660.
    [121]王宇飞,姜长生,吴庆宪.近空间飞行器多模型软切换保性能非脆弱控制[J].控制理论与应用,2012,29(4):440-446.
    [122] Wang Y F, Jiang C S, Wang Y H, et al. Acceleration of levenberg-marquardt methodtraining of NSV attitude system fuzzy modeling[C]. Earth&Space2010Conference,Honolulu, USA:122-134,2010.
    [123] Jiang B, Gao Z F, Shi P, et al. Adaptive fault-tolerant tracking control of near space vehicleusing Takagi-Sugeno fuzzy models [J]. IEEE Transactions on Fuzzy Systems,2010,18(5):1000-1007.
    [124] Gao Z F, Jiang B, Shi P, et al.Fault-tolerant tracking control for near space vehicle withsuck actuator fault based on a Takagi-Sugeno fuzzy models [J]. Proceedings of theinstituation of mechanical engineers, part I: journal of systems and control engineering,2010,24(5):587-598.
    [125] Gao Z F, Jiang B, Shi P, et al. Fault accommodation for near space vehicle attitude dynamics via T-S fuzzy model [J]. International journal of innovative computing, informationand control,2010,6(11):4843-4856.
    [126] Kokotovic P V, Morse A S. Systematic design of adaptive controllers for feedbacklinearizable systems [J]. IEEE Transactions on Automatic Control,1991,36(11):1241-1253.
    [127] Jiang Z P, Hill D J. A robust adaptive Backstepping scheme for nonlinear systems withunmodeled dynamics [J]. IEEE Transactions on Automatic Control,1999,44(9):1705-1711.
    [128]吴忻生,胡跃明,孙剑.非匹配不确定系统的显式反步变结构控制[J].控制与决策,2002,17(s):648-653.
    [129]李俊.机床磁悬浮主轴的非线性反演自适应控制[J].机床与液压,2000,163(1):28-29.
    [130] Zhou H L, Liu Z Y. Vehicle yaw stability-control system design based on sliding mode andBackstepping control approach [J]. IEEE Transactions on Vehicular Technology,2010,59(7):3674-3678.
    [131] Li J H, Lee P M. A neural network adaptive controller design for free-pitch-angle divingbehavior of an autonomous underwater vehicle [J]. Robotics and Autonomous Systems,2005,52(2,3):132-144.
    [132] Wu J L. Stabilizing controllers design for switched nonlinear systems in strict feedbackform [J]. Automatica,2009,45(4):1092-1096.
    [133] Ma R C, Zhao J. Backstepping design for global stabilization of switched nonlinear systemsin lower triangular form under arbitrary switchings [J]. Automatica,2010,46(11):1819-1823.
    [134] Han T T, Ge S S, Lee T H. Adaptive neural control for a class of swithced nonlinearsystems[J]. System Control Letter,2009,58(2):109-118.
    [135] Chiu C H, Peng Y F, Lin Y W. Intelligent backstepping control for wheeled invertedpendulum [J]. Expert Systems with Applications,2011,38(4):3364–3371.
    [136] Traoré D, Leon J D, Glumineau A. Adaptive interconnected observer-based backsteppingcontrol design for sensorless induction motor [J]. Automatica,2012,48(4):682–687.
    [137] Yip P P, Hedrick J K. Adaptive dynamic surface control: a simplified algorithm for adaptivebackstepping control of nonlinear systems [J]. International Journal of Control,1998,71(5):959–979.
    [138] Farrell J A, Polycarpou M, Sharma M, et al. Command filtered backstepping [J]. IEEETransactions on Automatic Control,2009,54(6):1391–1395.
    [139] Mei R, Wu Q X, Jiang C S. Robust adaptive backstepping control for a class of uncertainnonlinear systems based on disturbance observers [J]. Science China: Information Sciences,2010,53(6):1201-1215.
    [140] Chen M, Ge S S, Ren B B. Adaptive tracking control of uncertain MIMO nonlinear systemswith input constraints [J]. Automatica,2011,47(3):452–465.
    [141]周丽,姜长生.改进的非线性鲁棒自适应动态面控制[J].控制与决策,2008,23(8):938-943.
    [142] Peng C C,·Hsue A W, Chen C L. Variable structure based robust backstepping controllerdesign for nonlinear systems [J]. Nonlinear Dynamics,201163(1-2):253-262.
    [143]高道祥,孙增圻,杜天容.高超声速飞行器基于Backstepping的离散控制器设计[J].控制与决策,2009,24(3):459-467.
    [144] Fiorentini L, Serrani A, Bolender M A, et al. Nonlinear robust adaptive control of flexibleair-breathing hypersonic vehicles [J]. Journal of Guidance, Control and Dynamics,2009,32(2):401-416.
    [145]高道祥,孙增圻,罗熊,等.基于backstepping的高超声速飞行器模糊自适应控制[J].控制理论与应用,2008,25(5):805-810.
    [146] Luo Y, Yeh Y H, Ishihara A K. Adaptive backstepping design for a longitudinal UAV modelutilizing a fully tuned frowing radial basis function network [C]. AIAA Infotech@Aero-space, St. Louis, MO, USA: AIAA2011-1451.
    [147] Xu Y F, Jiang B, Tao G, et al. Fault tolerant control for a class of nonlinear systems withapplication to near space vehicle [J]. Circuits System and Signal Process,2011,30(3):655-672.
    [148] Farrell J A, Sharma M, Polycarpou M. Backstepping-based flight control with adaptivefunction approximation [J]. Journal of Guidance, Control and Dynamics,2005,28(6):1089-1102.
    [149] Li X D, XiAN B, Diao C, et al. Output feedback control of hypersonic vehicles based onneural network and high gain observer [J]. Science China Information Sciences,2011,54(3):429-447.
    [150] Fiorentini L, Serrani A, Bolender M A, et al. Nonlinear robust adaptive control of flexibleair-breathing hypersonic vehicles [J]. Journal of Guidance, Control and Dynamics,2009,32(2):401-416.
    [151]刘燕斌,陆宇平.基于反步法的高超音速飞机纵向逆飞行控制[J].控制与决策,2007,22(3):313-317.
    [152] Van O E, Sonnevldt L, Chu Q P, et al. Modular adaptive input-to-state stable backsteppingof a nonlinear missile model[C]. AIAA Guidance, Navigation, and Control Conference andExhibit, Hilton Hcad, SC, USA: AIAA2007-6676.
    [153] Li C Y, Jing W X, Gao C S. Adaptive backstepping-based flight control system usingintegral filters [J]. Aerospace Science and Technology,2009,13(3):105–113.
    [154] Sonneveledt L, Chu Q P, Mulder J A. Nonlinear flight control design using constrainedadaptive backstepping [J]. Journal of Guidance, Control and Dynamics,2007,30(2):322–336.
    [155]周洪波,裴海龙,贺跃帮,等.状受限的小型无人直升机轨迹跟踪控制[J].控制理论与应用,2012,29(6):778-784.
    [156]黄喜元,王青,董朝阳.基于Backstepping的高超声速飞行器鲁棒自适应控制[J].系统工程与电子技术,2011,33(6):1321-1326.
    [157] Lian B H, Bang H C. Adaptive backstepping control based auto pilot design for reentryvehicle[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Providecne,RI, USA: AIAA2004-5328.
    [158] H rkeg rd O. Backstepping and control allocation with applications to flight control [D].Link ping: Link ping University,2003.
    [159] Farrell J A, Polycarpou M, Sharma M, Adaptive backstepping with magnitude, rate, andbandwidth constraints: Aircraft longitude control[C]. American Control Conference, Denver,CO, USA:3898-3903,2003.
    [160] Djapic V, Farrell J, Dong W. Land Vehicle Control Using Command Filtered BacksteppingApproach[C]. American Control Conference, Seattle, WA, USA:2461-2466,2008.
    [161] Sonnevldt L, Chu Q P, Mulder J A.Constrained adaptive backstepping flight control:applocaition to a nonlinear F16/MATV model [C]. AIAA Guidance, Navigation, andControl Conference and Exhibit, Keystone, CO, USA: AIAA2006-6413.
    [162] Tao Gang. Adaptive Control Design and Analysis [M]. NJ:John Wiley&Son,2003.
    [163] Peterson B B, Narendra K S. Bounded error adaptive control [J]. IEEE Transactions onAutomatic Control,1982,27:1161-1168.
    [164] Ioannou P A, Sun J. Theory and design of robust direct and indirect adaptive controlschmes [J]. International Journal of Control,1988,47:775-813.
    [165] Feng G. Robust approach to adaptive control algorithms [J]. IEEE Transactions onAutomatic Control,1994,39(8):1738-1742.
    [166] Radenkovic M, Michel A N. Verification of the self stabilization mechanism in robuststochastic adaptive control using lyapunov function arguments [J]. SIAM Journal ofControl and Optimization,1992,30(6):1270-1294.
    [167] Suarez D A, Lozano R. Adaptive control of nonminimum phase systems subject tounknown bounded disturbances [J]. IEEE Transactions on Automatic Control,1996,41(12):1830-1832.
    [168] Ydstie B E. Transient performance and robustness of direct adaptive control [J]. IEEETransactions on Automatic Control,1992,37(8):1091-1105.
    [169] Bakker R, Annaswamy A M. Stability and robustness properties of a adaptive controller [J].IEEE Transactions on Automatic Control,1996,41(9):1352-1358.
    [170] Sokolov V F. Closed identificaition for the best asymptotic performance of adaptive robustcontrol [J]. Automatica,1996,32(8):1163-1176.
    [171] Li Y, Chen H F. Robust adaptive pole placement for linear time-varying systems [J]. IEEETransactions on Automatic Control,1996,41(5):714-719.
    [172] Ioannou P A, Kokotovic P V. Instability analysis and improvement of adaptive control [J].Automatica,1984,20(5):583-594.
    [173] Hsu L, Costa R R. Brusting phenomenon in continuous-time adaptive systems with amodification [J]. IEEE Transactions on Automatic Control,1987,32(1):84-86.
    [174] Radenkovic M, Bialasiewicz J T. Robustness of unmodified stochastic adaptive controlalgorithms [J]. IEEE Transactions on Automatic Control,1994,39(2):396-400.
    [175] Grimble M J. Extensions to H¥multivariable robust controller and the relationship toLQG design problems [J]. International Journal of Control,1988,48(1):33-58.
    [176] Yoon T, Clarke D W. Reformulation of receding-horizon predictive control [J]. InternationalJournal of Systems Science,1995,26(7):1383-1400.
    [177] Fu L C, Chang W D, Yang J H, et al. Adaptive robust bank-to-turn missile autopilot designusing neural networks [J]. Journal of Guidance, Control and Dynamic,1997,20(2):346-354.
    [178] Kim B S, Calise A J. Nonlinear flight control using neural networks [J]. Journal ofGuidance, Control and Dynamic,1997,20(1):26-33.
    [179] Mcdowell D M, Irwin M G, Mcconnell G. Hybrid neural adaptive control for bank-to-turnmissiles [J]. IEEE Transactions on Control and Systems Technology,1997,5(3):297-308.
    [180] Tan C, Yao X L, Tao G, et al. A multiple-model based adaptive actuator failurecompensation scheme for control of near-space vehicles[C].8thIFAC Symposium on FaultDetection, Supervision and Safety of Technical Processes, Mexico City, Mexico:594-599,2012.
    [181] Davison E J. The robust control of a servomechanism problem for linear time-invariantmultivariable systems [J]. IEEE Transactions on Automatic Control,1976,12(1):25-34.
    [182]冯纯伯,田玉平,忻欣.鲁棒控制系统设计[M].南京:东南大学出版社,1995.
    [183] Zames G. Feedback and optimal sensitivity: model refercence transformations,multiplicative seminars, and approximate inverses [J]. IEEE Transactions on Automatic andControl,1981,26(1),4-16.
    [184] Vander A J. On a state space approach to nonlinear H¥control [J]. System and ControlLetters,1991,16(1):1-8.
    [185] Doyle J C, Glover K, Khargonekar P P, et al. Francis state-space solution to standardH2and H¥control problem [J]. IEEE Transactions on Automatic and Control,1989,34(8):831-847.
    [186] Dym H, Gohberg I. A maximum entropy principle for contractive interpolants [J]. Journalof Functional Analysis,1986,65:83-125.
    [187] Singh V P, Mohanty S R, Kishor N, et al. Robust H-infinity load frequency control inhybrid distributed generation system [J]. International Journal of Electrical Power&Energy Systems,2013,46(3):294–305.
    [188] Chilali M, Gahiet P. H∞design with pole placement constraints: an LMI approach [J]. IEEETransactions on Automatic Control,1996,41(3):358-367.
    [189] Ohnishi K. A new servo method in mechatronics [J]. Transactions of Japanese Society ofElectrical Engineers,1987,107(D):83-86.
    [190]张军.近空间飞行器非线性不确定飞行运动的鲁棒自适应控制[D].南京:南京航空航天大学,2009.
    [191] Kim E. A fuzzy disturbance observer and its application to control [J]. IEEE Transactionson Fuzzy Systems,2002,10(1):77-84.
    [192]陈谋,姜长生,吴庆宪.基于干扰观测器的一类不确定非线性系统鲁棒H¥控制[J].控制理论与应用,2006,23(4):611-614.
    [193] Lu Y S. Sliding-mode disturbance observer with switching-gain adaptation and itsapplication to optical disk drives [J]. IEEE Trans-actions on Industrial Electronics,2009,56(9):3743-1328.
    [194] Besnard L, Shtessel Y B, Landrum B. Quadrotor vehicle control via sliding mode controllerdriven by sliding mode disturbance observer [J]. Journal of the Franklin Institute,2012,349(2):658-349.
    [195]曾宪法,王洁瑶,王小虎,等.基于SMDO的滑模控制器设计及其在导弹上的应用[J].航空学报,2011,35(5):873-880.
    [196] Hall C E, Shtessel Y B. Sliding mode disturbance observer-based control for a reusablelaunch vehicle [J]. Journal of Guidance, Control and Dynamics,2006,29(6):1315-1328.
    [197] Walcott B, Zak S H. State observation of nonlinear uncertain dynamical systems [J]. IEEETransactions on Automatic Control,1987,32(2):166-170.
    [198] Efimov D, Fridman L.Global sliding-mode observer with adjusted gains for locallyLipschitz systems [J]. Automatica,2011,47(3):565-570.
    [199] Bejarano F J, Poznyak A, Fridman L. Hierarchical second-order sliding-mode observer forlinear time invariant systems with un-known inputs [J]. International Journal of SystemsScience,2007,38(10):793-802.
    [200] Chen W T, Saif M. Actuator fault diagnosis for uncertain linear systems using a high-ordersliding-mode robust differentiator [J]. Inter-national Journal of Robust and NonlinearControl,2008,18(4):413-426.
    [201]申忠宇,赵瑾,顾幸生,等.基于T-S模型的鲁棒模糊滑模观测器LMI设计方法[J].中南大学学报(自然科学版),2009,40(9):42-47.
    [202]樊雯,程月华,姜斌.基于模糊滑模的卫星姿态控制系统故障诊断[J].东南大学学报(自然科学版),2010,40(9):238-243.
    [203]于金泳,刘志远,陈虹.基于滑模观测器的车辆电子稳定性控制系统故障重构[J].控制理论与应用,2009,26(10):1057-1063.
    [204] Fridman L, Shtessel Y,Edwards C,Yan X G. Higher-order sliding-mode observer for stateestimation and input reconstruction in nonlinear systems [J].International Journal of Robustand Nonlinear Control,2008,18(4):399-413.
    [205] Floquet T, Barbot J P. Super twisting algorithm-based step-by-step sliding mode observersfor nonlinear systems with unknown inputs [J]. International Journal of Systems Science,2007,38(10):803-815.
    [206]黄志澄.高超声速飞行器空气动力学[M].北京:国防工业出版社,1995.
    [207] Yao Z H, Bao W, Chang J T, et al. Modeling for couplings of an airframe-propulsionintrgrated hypersonic vehicle with engine safety boundaries [J]. Proceeding of the Institionof Mechanical Engineer, Part G: Journal of Aerospace Engineering,2010,224(1):43-55.
    [208] Nonweiler T R F. Aerodynamic problems of manned space vehicles [J]. Journal of theRoyal Aeronautical Society,1959,63(9):521-528.
    [209] Rasmussen M L. Waverider configurations derived from inclined circular and elliptic cones[J]. Journal of Spacecraft and Rockets,1980,17(6):537-545.
    [210] Shaughnessy J D, Pinckney S Z, McMinn J D, et al. Hypersonic Vehicle Simulation Model:Winged-cone Configuration [R]. NASA TM-102610,1990.
    [211]韩京清,王伟.非线性跟踪-微分器[J].系统科学与数学,1994,14(2):177-183.
    [212]张强,吴庆宪,姜长生,等.考虑执行器动态和输入受限的近空间飞行器鲁棒可重构跟踪控制[J].控制理论与应用,2012,29(10):1263-1271.
    [213] Khalil H K. Nonlinear systems [M]. Third edition. NJ: Prentice Hall,2002.
    [214] Vu L, Chatterjee D, Liberzon D. Input-to-state stability of switched systems and switchingadaptive control [J]. Autmatica,2007,43(4):770–784.
    [215] Teo J, How J P. Proportional-integral controllers for minimum-phase nonaffine-in-controlsystems [J]. IEEE Transactions on Automatic Control,2010,55(6):1477–1483.
    [216] Deng H, Li H. A novel neural approximate inverse control for unknown nonlinear discretedynamical systems [J]. IEEE Transactions on Systems, Man and Cybernetics, Part B:Cybernetics,2005,35(1):115–123.
    [217] Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems [J]. SIAMJournal of Control and Optimization,2000,38(3):751-766.
    [218] Wang X, Chen Z, Yang G. Finite-time-convergent differentiator based on singularperturbation technique [J]. IEEE Transactions on Automatic Control,2007,52(8):1731-1737.
    [219] Ibrir S, Xie W F, Su C Y. Adaptive tracking of nonlinear systems with non-symmetricdead-zone input [J]. Automatica,2007,43(3):522–530.
    [220] Orlov, Y. Finite time stability and robust control synthesis of uncertain switched systems [J].Siam Journal on Control Optimization,2005,43(4):1253–1271.