基于回馈递推方法的近空间飞行器鲁棒自适应控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近空间飞行器(Nearspace Vehicles NSVs)是各国正在大力发展的新型航空航天飞行器,具有极其重要的军事价值。它们在运行中表现出的多任务、多工作模式、大范围高速机动等特点使得控制系统设计成为一项极具挑战的研究课题。围绕这一基础科学问题,本文在近空间飞行器建模与分析、受扰动非线性系统控制两个方面开展了较为深入的研究,主要研究成果如下: 1、根据我们实验室已有的研究成果及国内外公开发表的文献资料建立起NSV高超声速飞行条件下6自由度数学模型。该模型包含完整的动力学方程和运动学方程,其中气动力系数和力矩系数是迎角、马赫数及气动舵面偏角的函数,发动机模型为吸气式超声速燃烧冲压发动机。然后对其开环性能进行分析,结果表明整个模型能够体现出NSV复杂的非线性以及快速时变性等特点,具有一定的代表性,可以满足未来NSV先进制导和控制等问题的理论研究和仿真验证需要。
     2、研究了NSV纵向控制,首先利用输入-输出反馈线性化方法将NSV纵向运动模型转化为仿射非线性模型,并根据飞行器的状态变量特性,进一步将其转化为严格反馈多输入多输出(Multi-Input/Multi-Output MIMO)非线性模型,并基于回馈递推方法设计了高超声速飞行的纵向控制系统,对其进行的纵向运动仿真结果表明了方法的有效性。
     针对NSV高超声速飞行时,气动参数变化剧烈且容易受到外界干扰的特点,提出了基于全调节径向基神经网络(Fully Tuned Radial Basis Function Neural Network FTRBFNN)的积分回馈递推方法,并基于Lyapunov定理给出稳定性的严格证明。FTRBFNN抗干扰能力强,而且控制律中增加的误差积分项可以有效消除系统的跟踪静差,因而控制精度高。最后对NSV进行的纵向运动仿真结果表明,在干扰变化较大的情况下,控制系统仍具有较好的鲁棒性。
     3、提出了基于动态面控制的变增益自适应回馈递推控制方法。首先利用动态面控制简化回馈递推控制器设计,然后在参数自适应律中引入S函数对径向基神经网络(Radial Basis Function Neural Network RBFNN)的学习率进行动态调节,消除系统在自适应初始阶段的抖振现象。基于Lyapunov定理证明了闭环系统稳定,跟踪误差指数收敛到任意小的有界紧集内。对NSV的纵向运动仿真结果表明,该方法在降低控制律复杂性的同时,仍具有良好的过渡过程动态特性。
     4、提出了基于模糊系统的快速自适应回馈递推方法。利用模糊系统对系统的复合干扰进行在线辨识,利用回馈递推方法进行了控制系统设计,该方法在线调整自适应参数仅为子系统的个数,减轻了系统的在线计算负担。基于Lyapunov定理和小增益定理证明了闭环系统稳定,系统的跟踪误差指数收敛到任意小的有界紧集内。对NSV进行的高超声速条件下6自由度协调转弯仿真结果表明该方法在简化的自适应律和控制律下仍具有良好的跟踪性能。
     5、结合干扰观测器技术,提出了基于模糊干扰观测器的自适应回馈递推方法。该方法充分利用被控系统的有用信息,参数自适应律根据系统的跟踪误差和观测器误差进行在线调整,从而实现了对NSV不确定更为有效的逼近,获得了更好的鲁棒性。
     设计了一种模糊神经干扰观测器(Fuzzy Neural Network Disturbance Observer FNNDO),提出了基于FNNDO的自适应回馈递推方法。由于FNNDO可以在线调整模糊规则,因而对未知非线性不确定的辨识精度更高,从而可以达到更高的跟踪精度。最后用该方法设计了NSV姿态控制系统,并在高超声速的条件下进行了6自由度姿态控制仿真,结果表明了方法的有效性。
The current research in developing next generation flying vehicles is focused on nearspace vehicles (NSVs) which have very important martial values. The control systems of the ASVs pose several challenges due to their multi-mission profiles, large attitude maneuvers and complicated flight conditions. In this dissertation, two relative problems, i.e. modeling and perturbed uncertain nonlinear control system design, are studied. The main results in this paper are as follows:
     1. Based on the research contributions of our lab and available material, the simulation model of a NSV is presented, which includes the kinetic equations and motion equations. Aerodynamic force and moment coefficients are given as functions of angle of attack, Mach number and control surface deflections. The propulsion system is a hypersonic air-breathing engine. Open-loop dynamics and stability characteristics demonstrate that the proposed model can be used to allow research, refinement and evaluation of advanced guidance and control methods.
     2. Longitudinal control for NSV is researched. Firstly, the nonaffine nonlinear NSV model of longitudinal motion is transformed into the affine nonlinear system by using the input-output feedback linearization approach. Then the transformed model is further transformed into strict feedback multi-input/multi-output (MIMO) nonlinear system. Control system of longitudinal motion is designed by backstepping approach, and the simulation results of longitudinal motion demonstrate the effect of control approach.
     With the assumption that NSV suffers the violent changes of aerodynamic paameters and the outside disturbance in hypersonic condition, we present the integrator backstepping approach based on fully tuned radial basis function neural network (FTRBFNN). The strict proof of the approach’s stability is provided simutanously. FTRBFNN has excellent ability of restaining disturbance, and the integrator term in backstepping approach eliminate the static traking error efficiently. As a result, the controller has high control precision. Finally, the simulation results of longitudinal motion show that the control system has good robustness with greatly disturbance.
     3. We present an approach of adaptive dynamic surface control with variable gain. Firstly, the dynamic surface control is introduced in the backstepping approach to simplify the controller design. Due to the chattering problem appears in the initial stage of the adaptive dynamic surface approach, the learing rate of radial basis function neural networks are regulated dynamically on line, which eliminates the chatting problem in the initial stage of the adaptive process. It has been proved that the tracking error converge to an arbitrary small compact set in finite time by Lyapunov stability theorem. Finally, the simulatin results of longitudinal motion show that the presented approach can reduce the complexcity of control law while still retain good performance of transient process.
     4. We present a fast adaptive backstepping approach based on fuzzy systems. The total disturbance is identified on line by fuzzy systems, and the control law is deduced by backstepping approach. The adaptive parameters on line can be reduced to the number of subsystems. As a result, the burden computation is alleviated greatly. The stability of the closed loop system is proved by Lyapunov stabiliy theorem and small gain approach, and the tracking error converges to an arbitrary small compact set exponentially. Finally, in hypersonic condition, the coordinated-turned maneuver with 6 degree of freedom of NSV is used in experiment. The simulation results show tht the approach still has good tracking performance with simplified control law and adaptive law.
     5. Combining with the technology of disturbance observer, this paper presents an adaptive backstepping approach based on fuzzy disturbance observer. The apprach utilize the useful information of the controlled plant and the adaptive law of parameters can be regulated according to the integrated error composed of the tracking error and the error of disturbance observer. As a result, the method realized the accurate approximation and control, so the control performance is improved.
     A new fuzzy neural network disturbance observer (FNNDO) is presented in this paper, which can further improve the ability of retaining disturbance, and a control algorithem of bakcsteppping approach based on FNNDO is presented. The simulation results show that the FNNDO can regulate the fuzzy rules on line, so it can achieve a higher tracking precision. Finally, the attitude control system of NSV is designed by this control algorithem. The simulation results show that the the control algorithem has higher convergence speed and higher tracking precision than the backstepping approach based on FDO.
引文
[1]王彦广,李健全,李勇,姚伟.近空间飞行器的特点及其应用前景[J].航天器工程, 2007, 16(1): 50-57.
    [2] Marrison C, Stengel R F. Design of Robust Control Systems for a Hypersonic Aircraft [J]. Journal of Guidance, Control and Dynamics, 1998, 21(1):58-63.
    [3] Wang Q, Stengel R F. Robust nonlinear control of a Hypersonic Aircraft [J], Journal of Guidance, Control and Dynamics, 2000, 23(4): 577-585.
    [4] Hanson J M. Advanced Guidance and Control Project for Reusable Launch Vehicles [A]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Denver: AIAA, 2000: 1-10.
    [5] Hanson J M. A Plan for Advanced Guidance and Control Technology for 2nd Generation Reusable Launch Vehicles [A]. In: AIAA Guidance, Navigation and Control Conference and Exhibit[C]. Reston: AIAA, 2002: 460-468.
    [6] Hanson J M and Jones R E. Advanced Guidance and Control Project for Reusable Launch Vehicles: Test Results [A]. In: AIAA Guidance, Navigation and Control Conference and Exhibit[C]. Reston: AIAA, 2002: 508-518.
    [7] Schmidt D K. Dynamic Modeling, Control, and Station-Keeping Guidance of A Large High-Altitude“Near-Space”Airship [A]. In: AIAA Guidance, Navigation and Control Conference and Exhibit [C]. AIAA, 2006: 1-14.
    [8] Buschek H, Calise A J. Robust Control of Hypersonic Vehicles Considering Propulsive and Aeroelastic Effects [A]. In: AIAA Guidance, Navigation and Control Conference and Exhibit [C]. Monterey: AIAA, 93: 550-556.
    [9] Shamma J S, Athans M. Analysis of Gain Scheduled Control for Nonlinear Plants [J]. IEEE Transactions on Automatic Control, 1990, 35(8): 898-907.
    [10] Rugh W J. Analytical Framework for Gain Scheduling [J]. IEEE Control System Magazine, 1991, 11(1):79-84.
    [11] Rugh W J, Shamma J S. Research on Gain Scheduling [J]. Automatica, 2000, 36(10): 1401-1425.
    [12] Tan S H, Hang C C, Chai J S. Gain Scheduling: from Conventional to Neural-Fuzzy [J].Automatica, 1997, 33(3):411-419.
    [13] Palm R, Rehfuess U. Fuzzy Controllers as Gain Scheduling Approximators [J]. Fuzzy Sets and Systems, 1997, 85(2): 233-246.
    [14] Apkarian P, Gahinet P. A Convex Characterization of Gain-Scheduled H∞Controllers [J]. IEEE Transaction on Automatic Control, 1995, 40(5): 853-864.
    [15] Clement B, Duc G, Mauffrey S. Aerospace Launch Vehicle Control: a Gain Scheduling Approach [J]. Control Engineering Practice, 2005, 13(3): 333-347.
    [16] Palm R, Stutz C. Open Loop Dynamic Trajectory Generator for a Fuzzy Gain Scheduler [J]. Engineering Appl. of Artificial Intelligence, 2003, 16(3): 213-225.
    [17] Lee C H, Shin M H, Chung M J. A Design of Gain-Scheduled Control for a Linear Parameter Varying System: an Application to Flight Control [J]. Control Engineering Practice, 2001, 9(1): 11-21.
    [18] Wang J L, Sundararajan N. A Nonlinear Flight Controller Design for Aircraft [J]. Control Engineeing Practice, 1995, 3(6): 813-825.
    [19] Snell. Nonlinear Dynamic-Inversion Flight Control of Supermaneuverable Aircraft [D], University of Minnesota, 1991.
    [20] Agustin R M, Mangoubi R S, Hain R M, et al. Robust Failure Detection for Reentry Vehicle Attitude Control Systems [A]. In: AIAA Guidance, Navigation and Control Conference and Exhibit [C]. Roston: AIAA, 1998: 1-14.
    [21] Lu P. Regulation about Time-Varying Trajectories: Precision Entry Guidance Illustrated [A]. In: AIAA Guidance, Navigation and Control Conference and Exhibit [C]. Reston: AIAA, 1999:704-713.
    [22] Shtesel Y B, Zhu J J, Daniels D. Reusable Launch Vehicle Attitude Control Using Time-Varying Sliding Modes [A]. In: AIAA Guidance, Navigation and Control Conference and Exhibit [C]. Monterey AIAA, 2002: 1409-1418.
    [23] Khalil H K. Nonlinear Systems [M]. 3rd Ed, Upper Saddle River, New Jersey: Prentice-Hall, 2002.
    [24]冯纯伯,费树岷.非线性控制系统分析与设计[M].第二版,北京:电子工业出版社, 1997.
    [25] Chiasson J. Dynamic Feedback Linearization of the Induction Motor [J]. IEEE Transactions on Automatic Control, 1993, 38(10): 1588-1594.
    [26] Chiasson J. A New Approach to Dynamic Feedback Linearization Control of an Induction Motor[J]. IEEE Transactions on Automatic Control, 1998, 43(3): 391-396.
    [27]周岗,姚琼荟,陈永冰, et al.基于输入输出线性化的船舶全局直线航迹控制[J].控制理论与应用, 2007, 24(1): 117-121.
    [28] Marquez-Martinez L A, Moog C H. Input-Output Feedback Linearization of Time-Delay Systems [J]. IEEE Transactions on Automatic Control, 2004, 49 (5): 781-785.
    [29] Ma X, Tao G. Adaptive Actuator Compensation Control with Feedback Linearization [J]. IEEE Transactions on Automatic Control, 2000, 45(9): 1705-1710.
    [30] He S L, Reif K, Unbehauen R. A Neural Approach for Control of Nonlinear Systems with Feedback Linearization [J]. IEEE Transactions on Neural Networks, 1998, 9 (6): 1409-1421.
    [31] Leland R P. Feedback Linearization Control Design for Systems with Fuzzy Uncertainty [J]. IEEE Transactions on Fuzzy Systems, 1998, 6 (4): 492-503.
    [32] Miroslav. K, Jing. S, Petar V K. Robust Control of Nonlinear Systems with Input Unmodeled Dynamics [J]. IEEE Trans. Automat Contr., 1996, 41(6): 913-920.
    [33] Sam G S, Wang J. Robust Adaptive Tracking for Time-Varying Uncertain Nonlinear Systems with Unknown Control Coefficients [J]. IEEE Trans. Automat Contr., 2003, 48(8):1463-1469.
    [34] Franco A L D, Bourles H, De Pieri E R,et al. Robust Nonlinear Control Associating Robust Feedback Linearization and H∞Control [J]. IEEE Transactions on Automatic Control, 2006, 51 (7): 1200-1207.
    [35] Matas J, de Vicuna L G, Miret J, et al. Feedback Linearization of a Single-Phase Active Power Filter via Sliding Mode Control [J]. IEEE Transactions on Power Electronics, 2008, 23(1): 116-125.
    [36] Semsar-Kazerooni E, Yazdanpanah M J, Lucas C. Nonlinear Control and Disturbance Decoupling of HVAC Systems Using Feedback Linearization and Backstepping with Load Estimaton [J]. IEEE Transactions on Control Systems Technology, 2008, 16(5): 918-929.
    [37] Singh, S N, Yim W. Feedback Linearization and Solar Pressure Satellite Attitude Control [J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(2): 732-741.
    [38] Steinberg M L, Page A B. Nonlinear Adaptive Flight Control with a Backstepping Design Approach [A]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Reston: AIAA, 1998: 728-738.
    [39] Bajodah A H. Perturbed Feedback Linearization of Attitude Dynamics [A]. 2008 American Control Conference [C]. Seattle, 2008: 5222-5229.
    [40] Wang Q, Stengel R F. Robust Nonlinear Control of a Hypersonic Aircraft [A]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Portland: AIAA, 1999: 413-423.
    [41] Xu H J, Mirmirani M, Ioannou P A. Robust Neural Adaptive Control of a Hypersonic Aircraft [A]. AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Austin: AIAA, 2003: 1-8.
    [42] Meyer G, Su R, Hunt L R. Application of Nonlinear Transformations to Automatic Flight Control [J]. Automatica, 1984, 20 (1): 103-107.
    [43] Snell. Nonlinear Dynamic-Inversion Flight Control of Supermaneuverable Aircraft [D]. University of Minnesota, 1991.
    [44] Sastry S. Nonlinear systems: analysis, stability and control [M]. 2nd Ed,New York :Springer-Verlag, 1999.
    [45] Brinker J S, Wise K A. Stability and Flying Qualities Robustness of a Dynamic Inversion Aircraft Control Law [J]. Journal of Guidance, Control, and Dynamics, 1996, 19(6): 1270-1277.
    [46] McFarland M B, Calise A J. Neural-Adaptive Nonlinear Autopilot Design for an Agile Anti-Air Missile [A]. In: AIAA Guidance, Navigation and Control Conference [C]. San Diego: AIAA, 1996: 1-9.
    [47] McFarland M B, Calise A J. Multilayer Neural Networks and Adaptive Nonlinear Control of Agile Anti-Air Missiles [A] In: AIAA Guidance, Navigation and Control Conference [C]. San Diego: AIAA, 1997: 401-410.
    [48] Leitner J, Calise A, Prasad J V R. Analysis of Adaptive Neural Networks for Helicopter Flight Controls [J]. Journal of Guidance, Control, and Dynamics, 1997, 20(5):972-979.
    [49] Prasad J V R, Calise A J, Pei Y, et al. Adaptive Nonlinear Controller Synthesis and Flight Test Evaluation on an Unmanned Helicopter [A]. In Proceedings of the IEEE International Conference on Control Applications [C]. Hawaii: IEEE, 1999: 137-142.
    [50] Calise A J, Lee S, Sharma M. Direct Adaptive Reconfigurable Control of a Tailless Fighter Aircraft [A], In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Reston: AIAA, 1998: 88-97.
    [51] Calise A J, Lee S, Sharma M. Development of a Reconfigurable Flight Control Law for Tailless Aircraft [J], Journal of Guidance, Control, and Dynamics, 2001, 24(5):896-902
    [52] Lee S. Neural Network Based Adaptive Control and Its Applications to Aerial Vehicles [D]. Atlanta: Georgia Institute of Technology, 2001.
    [53] Johnson E N. Limited Authority Adaptive Flight Control [D]. Atlanta: Georgia Institute of Technology, 2000.
    [54] Johnson E N, Calise A J, El-Shirbiny H A, et al. Feedback Linearization with Neural Network Augmentation applied to X-33 Attitude Control [A]. In: AIAA Guidance, Navigation and Control Conference [C]. Denver: AIAA, 2000: 1-11.
    [55] Johnson M D, Calise A J, Johnson E N. Evaluation of an Adaptive Method for Launch Vehicle Flight Control [A]. In: AIAA Guidance, Navigation and Control Conference [C]. Austin: AIAA, 2003: 1-11.
    [56] Johnson M D, Calise A J, and Johnson E N. Further Evaluation of an Adaptive Method for Launch Vehicle Flight Control [A]. In: AIAA Guidance, Navigation and Control Conference [C]. Providence: AIAA, 2004: 1-17.
    [57]朱荣刚,姜长生,邹庆元, et al.新一代歼击机超机动飞行的动态逆控制[J].航空学报, 2003, 24(3): 534-539.
    [58]武国庆,姜长生,张锐, et al.基于径向基神经网络的不确定非线性系统的鲁棒自适应控制[J].航空学报, 2002, 23(6): 530-533.
    [59] Utkin V I. Variable Structure Systems with Sliding Modes [J]. IEEE Trans. Automat Contr., 1977, 22(2): 212-222.
    [60] Yu X H, Xu J X. Advances in Variable Structure System [M]. Singapore: World Scientific Publishing, 2000.
    [61] Yeh F K, Chien H H, Fu L C. Design of Optimal Midcourse Guidance Sliding Mode Control for Missiles with TVC [J]. IEEE Transaction on Aerospace and Electronic Systems, 2003, 39(3): 824-837.
    [62] Perruquetti W, Barbot J P. Sliding Mode Control in Engineering [M]. New York: Marcel Dekker, 2002.
    [63] Chen M S, Hwang Y R, Tomizuka M. A State-Dependent Boundary Layer Design for Sliding Mode Control [J]. IEEE Trans Automat Contr., 2002, 47(10): 1677-1681.
    [64] Kang B P, Ju J L. Sliding Mode Controller with Filtered Signal for Robot Manipulators Using Virtual Plant Controller [J]. Mechatronics, 1997, 7(3): 277-286.
    [65] Ha Q P, Nguyen Q H, Rye D C, et al. Fuzzy Sliding-Mode Controllers with Applications [J]. IEEE Transactions on Industrial Electronics, 2001, 48(1):38-41.
    [66]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社, 1996.
    [67] Wu Y Q, Yu X H, Man Z H. Terminal Sliding Mode Control Design for Uncertain Dynamic Systems [J]. Systems and Control Letters, 1998, 34(2): 281-287.
    [68] Tao C W, Taur J S, Chan M L. Adaptive Fuzzy Terminal Sliding Mode Controller for Linear Systems with Mismatche Time-Varying Uncertainties [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34(1): 255-262.
    [69] Zhou D, Mu C D, Xu W L. Adaptive Sliding Mode Guidance of a Homing Missile [J]. Journal of Guidance, Control and Dynamics, 1999, 22(4): 589-592.
    [70] McGeoch D J, McGookin E W, Houston S S. MIMO Sliding Mode Attitude Command Flight Control System for a Helicopter [A]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. San Francisco: AIAA, 2005: 1-15.
    [71] Shtessel Y, Tournes C, Krupp D. Reusable Launch Vehicle Control in Sliding Modes [A]. In: AIAA Guidance, Navigation, and Control Conference [C]. New Orleans: AIAA, 1997: 335-345.
    [72] Shtessel Y, McDuffie J, Jackson M, et al. Sliding Mode Control of the X-33 Vehicle in Launch and Re-Entry Modes [A]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Reston: AIAA, 1998:1352-1362.
    [73] Shtessel Y, Hall C, Jackson M. Reusable Launch Vehicle Control in Multiple Time Sale Sliding Modes [A]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Reston: AIAA, 2000: 1-11.
    [74] Hall C E, Shtessel Y B. Sliding Mode Disturbance Observer-Based Control for a Reusable Launch Vehicle [A]. In: AIAA Guidance Navigation and Control Conference and Exhibit [C]. Reston: AIAA, 2005: 1-26.
    [75]胡孟权,王建培.自适应模糊-滑模控制在重构飞行控制中的应用[J].航空学报, 2002, 23(6): 538-541.
    [76]苏心仪,朱纪红,胡金春,et al.基于模糊逻辑的直升机终端滑模控制[J].清华大学学报(自然科学版), 2004, 44(4): 30-34.
    [77] Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic Design of Adaptive Controllers for Feedback Linearizable Systems [J]. IEEE Trans. Automat Contr., 36(11), 1991: 1241-1253.
    [78] Li T S, Yang Y S, Hong B G. Adaptive Robust Dissipative Designs on Straight Path Control for Underactuated Ships [J]. Journal of Systems Engineering and Electronics, 2006, 17(1): 177-181.
    [79]陈卫田,周绍生,颜世田, et al.一类不确定非线性系统的输出反馈控制[J].控制理论与应用, 1998, 15(5): 668-673.
    [80] Jiang Z P, Hill D J. A Robust Adaptive Backstepping Scheme for Nonlinear Systems with Unmodeled Dynamics [J]. IEEE Trans Automat Contr., 1999, 44(9): 1705-1711.
    [81] Li J H, Lee P M. A Neural Network Adaptive Controller Design for Free-Pitch-Angle Diving Behavior of an Autonomous Underwater Vehicle [J]. Robotics and Autonomous Systems, 2005, 52(2-3): 132-144.
    [82]刘盛平,吴立成,陆震. PPR型平面欠驱动机械臂的点位控制[J].控制理论与应用, 2007, 24(3): 435-439.
    [83] Li T S, Yang Y S, Hong B G, et ali. A Robust Adaptive Nonlinear Control Approach to Ship Straight-Path Tracking Design [A]. 2005 American control conference [C]. Portland, 2005: 4016-4021.
    [84]付俊,冯佳昕,赵军. TCSC控制的一种新自适应Backstepping方法[J].控制与决策. 2006,21 (10): 1163-1167.
    [85]张兴华.具有参数和负载不确定性的感应电机自适应反步控制[J].控制与决策. 2006, 21(12): 1379-1383.
    [86] Smaoui M, Brun X, Thomasset D. A Study on Tracking Position Control of an Electropneumatic System Using Backstepping Design [J]. Control Engineering Practice, 2006, 14(8): 923-933.
    [87] Krstic M, Kanellakopoulos I, Kokotovic P V. Adaptive Nonlinear Control without Over-Parameterization [J]. Systems & Control Letters, 1992, 19(3): 177-185.‖
    [88] Yao B, Tomizuka M. Adaptive Robust Control of MIMO Nonlinear Systems in Semi-Strict Feedback Forms [J]. Automatica. 2001, 37(9), 1305-1321.
    [89] Li Y, Qiang S, Zhuang X, et al. Robust and Adaptive Backstepping Control for Nonlinear Systems Using RBF Neural Networks [J]. IEEE Trans. Neural Networks, 2004, 15 (3): 693-701.
    [90] Ge S S, Wang C. Adaptive Neural Control of Uncertain MIMO Nonlinear Systems [J]. IEEE Trans. Neural Networks, 2004, 15(3): 674-692.
    [91]张承进,亓学广.一般严格反馈型非线性系统的自适应控制[J].控制理论与应用, 2006, 23(4): 621-626.
    [92] Lee H, Tomizuka M. Robust Adaptive Control Using a Universal Approximator for SISO Nonlinear Systems [J]. IEEE Trans. on Fuzzy Syst., 2000, 8(1): 95-106.
    [93] Zhou S S, Feng G, Feng C B. Robust Control for a Class of Uncertain Nonlinear Systems: Adaptive Fuzzy Approach Based on Backstepping [J]. Fuzzy sets and Systems, 2005, 151(1): 1-20.
    [94] Hwang J P, Kim E. Robust Tracking Control of an Electrically Driven Robot: Adaptive Fuzzy Logic Approach [J]. IEEE Trans. Fuzzy Syst., 2006, 14(2): 232-247.
    [95] Zhang Y P, Ioannou P A. Robustness of Nonlinear Control Systems with Respect to Unmodeled Dynamics [J]. IEEE Transactions on Automatic Control, 1999, 44(1): 119-124.
    [96]胡云安,李静,晋玉强.有输入未建模动态和不确定性导弹控制器设计[J].飞行力学. 2006, 24(2): 51-55.
    [97] Wang X Y, Lei J W, Pan C P. Trigonometric RBF Neural Robust Controller Design for a Class of Nonlinear System with Linear Input Unmodeled Dynamics [J]. Applied mathematics and Computation, 2007,185(2): 989-1002.
    [98] Du H B, Shao H H, Yao P J. Adaptive Neural Network Control for a Class of Low-Triangular-Structured Nonlinear Systems [J]. IEEE Trans. Neural Networks, 2006, 17(2): 509-514.
    [99] Wang C, Hill D J, Ge S S, et al. An Iss-Modular Approach for Adaptive Neural Control of Pure-Feedback Systems [J]. Automatic, , 2006, 42(5): 723-731.
    [100]卢强,梅生伟,申铁龙, et al.非线性H∞励磁控制器的递推设计[J].中国科学(E辑), 2000, 30(1): 70-78.
    [101] Shen T L, Mei S W, Lu Q, et al. Adaptive Nonlinear Excitation Control with L2 Disturbance Attenuation for Power Systems [J]. Automatic, 2003, 39(1): 81-89.
    [102]李文磊,井元伟,刘晓平.非线性汽门控制器的自适应鲁棒逆推设计[J].中国电机工程学报, 2003, 23(1): 155-158.
    [103] Liu J K, Sun F C. Nominal Model-Based Sliding Mode Control with Backstepping for 3-Axis Flight Table [J]. Chinese Journal of Aeronautics, 2006, 19(1): 65-72.
    [104] Mazenc F, Bliman P A. Backstepping Design for Time-Delay Nonlinear Systems [J]. IEEE Trans. Automat Contr., 2006, 51(1): 149-154.
    [105] Hua C G, Guan X P, Shi P. Robust Backstepping Control for a Class of Time Delayed Systems [J]. IEEE Trans Automat Contr., 2005, 50(6): 894-899.
    [106] Hong F, Ge S S, Lee T H. Practical Adaptive Neural Control of Nonlinear Systems with Unknown Time Delays [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics,2005, 35(4): 849-854.
    [107] Ge S S, Hong F, Lee T H. Adaptive Neural Network Control of Nonlinear Systems with Unknown Time Delays [J]. IEEE Trans Automat Contr., 2003, 48(11): 2004-2010.
    [108] Ge S S, Tee K P. Approximation-Based Control of Nonlinear MIMO Time-Delay Systems [J]. Automatica. 2007, 43(1): 31-43.
    [109] Steinberg M L. A Comparison of Intelligent, Adaptive, and Nonlinear Flight Control Laws [A]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Portland: AIAA, 0999: 488-498.
    [110] Monahemi M M, Krstic M. Control of Wing Rock Motion Using Adaptive Feedback Linearization [J]. Journal of Guidance, Control and Dynamics, 1991, 13(6): 905-912.
    [111] Lian B H, Bang H. Adaptive Backstepping Control Based Autopilot Design for Reentry Vehicle [A]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Providence, RI: AIAA , 2004: 1-10.
    [112]苏丙末,曹云峰,陈欣,万胜.基于BACKSTEPPING的无人机飞控系统设计研究[J].南京航空航天大学学报, 2001, 33(3): 250-253.
    [113]吴文海,耿昌茂,罗德林,沈春林.现代战机超机动攻击研究[J].南京航空航天大学学报, 2004, 36(4): 417-421.
    [114] Su Bingwei, Chen Xin, Cao Yunfeng, Yang Yidong. Adaptive Backstepping Flight Control with Actuator Saturation [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2001, 18(1): 81-85.
    [115]连葆华,崔祜涛,崔平远.再入飞行器自动驾驶仪的自适应退步控制设计[J].中国空间科学技术, 2003,第1期: 7-14.
    [116]刘燕斌,陆宇平.基于反步法的高超声速飞机纵向逆飞行控制[J].控制与决策, 2007, 22(3): 313-317.
    [117] Shin D H, Kim Y. Nonlinear Discrete-Time Reconfigurable Flight Control Law Using Neural Networks [J]. IEEE Trans. on Control Systems Technology, 2006, 14(3): 408-422.
    [118] Pashilkar A A, Sundararajan N, Saratchandran P. Adaptive Back-Stepping Neural Controller for Reconfigurable Flight Control Systems [J]. IEEE Transactions on control systems technology, 2006, 14(3): 553-561.
    [119] Hull R A, Schumacher D, Qu Z H. Design and Evaluation of Robust Nonlinear Missile Autopilots from a Performance Perspective [A]. Proc of the American Control Conf [C]. Seattle, 1995: 189-193.
    [120] Lee T, Kim Y. Nonlinear Adaptive Flight Control Using Backstepping and Neural Networks Controller [J]. Journal of Guidance, control, and Dynamics. 2001, 24(4): 675-682.
    [121] Zhou K. On the Parameterization H∞Controllers [J]. IEEE Trans. Automat Contr., 1992, 37(9): 1442–1446.
    [122] Glover K, McFarlane D. Robust Stabilization of Normalized Coprime Factor Plant Descriptions with H∞Bounded Uncertainty [J]. IEEE Trans. Automat Contr., 1989, 34(8): 821-830.
    [123] Fan M K H, Tits A L, Doyle J C. Robustness in the Presence of Mixed Parametric Uncertainty and Unmodeled Dynamics [J]. IEEE Trans. Automat Contr., 1991, 36(1): 25– 8.
    [124] Youla D, Jabr H, Bongiorno J. Modern Wiener-Hopf Design of Optimal Controllers Part II: The Multivariable Case [J]. IEEE Trans. Automat Contr., 1976, 21(3): 319–338.
    [125] Buschek H, Calise A J. Uncertainty Modeling and Fixed-Order Controller Design for a Hypersonic Vehicle Model [J]. Journal of Guidance, Control and Dynamics, 1997, 20(1): 42-48.
    [126]郭锁风,申功璋,吴成富等.先进飞行控制系统[M].第1版,北京:国防工业出版社, 2003.
    [127] Shaughnessy J D, Pinckney S Z, McMinn J D, et al. Hypersonic Vehicle Simulation Model: Winged-Cone Configuration [R]. NASA TM-102610, 1990.
    [128]《世界航天器运载器大全》编委会著.世界航天器运载器大全[M].第1版,北京:宇航出版社, 1996.
    [129]张金槐.远程火箭精度分析与评估[M].第1版,长沙:国防科技大学出版社, 1995.
    [130]朱亮.空天飞行器不确定非线性鲁棒控制[D].南京:南京航空航天大学, 2006.
    [131] Snell. Nonlinear Dynamic-Inversion Flight Control of Supermaneuverable Aircraft [D]. University of Minnesota, 1991.
    [132]《飞机设计手册》编辑委员会编.飞机设计手册第一卷[M].第1版,北京:航空工业出版社, 1996.
    [133]鲁道夫.布罗克豪斯.飞行控制[M].第1版,北京:国防工业出版社, 1999.
    [134] Johnson E N, Calise A J. Limited Authority Adaptive Flight Control for Reusable Launch Vehicles [J]. Journal of Guidance, Control, and Dynamics, 2003, 26(6): 906-913.
    [135] Zhu J J, Banker D, Hall C E. X-33 Ascent Flight Control Deign by Trajectory Linearization– A Singular Perturbation Approach [A]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. Denver: AIAA, 2000: 1-19.
    [136] Zhu J J, Huizenga A. A Type Two Trajectory Linearization Controller for a Reusable Launch Vehicles - A Singular Perturbation Approach [A]. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit [C]. Providenc: AIAA, 2004: 1-16.
    [137] Bevacqua T, Best E, Huizenga A,et al. Improved Trajectory Linearization Flight Controller for Reusable Launch Vehicles [A]. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit [C]. Reno: AIAA, 2004: 1-16.
    [138] Karlgaard C D, Martin J G, Tartabini P V, et al. Hyper-X Mach 10 Trajectory Reconstruction [A]. In: 2005 AIAA Atmospheric Flight Mechanics Conference and Exhibit [C]. San Francisco: AIAA, 2005.
    [139]罗世彬.高超声速飞行器机体/发动机一体化及总体多科学设计优化方法研究[D].长沙:国防科学技术大学, 2004.
    [140] Marshall L A, Corpening G P, Sherrill R. A Chief Enginner’s View of the NASA X-43A Scramjet Flight Test [A]. In: 2005 AIAA Guidance, Navigation, and Control Conference and Exhibit [C]. San Francisco: AIAA, 2005.
    [141] Engelund W C, Holland S D, Cockrell C E. Aerodynamic Database Development for the Hyper-X Airframe-Integrated Scramjet Propulsion Experiments [J]. Journal of Spacecraft and Rockets, 2001, 38(6): 803-810.
    [142]徐勇勤.高超音速飞行器总体概念研究[D].西安:西北工业大学, 2005.
    [143] David L R, Michael R P, Lee H P. Investigation of Piloting Aids for Manual Control of Hypersonic Maneuvers [R]. NASA TP-3525, 1995.
    [144]陈谋.不确定非线性综合火力/飞行/推进系统鲁棒控制方法研究[D].南京:南京航空航天大学, 2003.
    [145]张庆振,安锦文,刘小刚.基于飞机总能量控制系统(TECS)的飞行航迹速度解耦控制方法研究[J].西北工业大学学报, 2004, 22(3): 384-387.
    [146] Isidori A. Nonlinear control systems [M]. 3rd Ed, London, UK:Springer-Verlag, 1995.
    [147] Cybenko G. Approximation by Superpositions of Sigmoidal Function [J]. Mathematics of Control, Signals, and Systems. 1989, 2(4): 303–314.
    [148] Hornik, K, Stinchcombe M, White H. Multilayer Feedforward Networks are Universal Approximators [J]. Neural Networks, 1989, 2(5): 359–366.
    [149] Park J, Sandberg I W. Universal Approximation Using Radial Basis Function Networks [J]. Neural Computation, 1991, 3(2): 246-257.
    [150] Narendra K S, Parthasarathy K. Identification and Control of Dynamical Systems Using Neural Networks [J]. IEEE Trans. on Nerual Networks, 1990, 1(1): 4-27.
    [151] Sanner R M, Slotine J J E. Gaussian Networks for Direct Adaptive Control [J]. IEEETransactions on Neural Networks, 1992, 3(6): 837-863.
    [152] Sadegh N. A Perceptron Network for Functional Identification and Control of Nonlinear Systems [J]. IEEE Transactions on Neural networks, 1993, 4(6): 982-988.
    [153] Chen F C, Khalil H K. Adaptive Control of Nonlinear Systems Using Neural Networks [J]. International Journal of Control, 1992, 55(6): 1299-1317.
    [154] Chen F C, Liu C C. Adaptively Controlling Nonlinear Continuous-Time Systems Using Multilayer Neural Networks [J]. IEEE Transactions on Automatic Control, 1994, 39(6): 1306-1310.
    [155] Fang C, Lee L, Chang F. Robust Control Analysis and Design for Discrete-Time Singular Systems [J]. Automatica, 1994, 30(11): 1741-1750.
    [156]董文瀚,孙秀霞,林岩.反推自适应控制的发展及应用[J].控制与决策, 2006, 21 (10): 1081-1087.
    [157]胡云安,晋玉强,张友安, et al.基于神经网络的严反馈块非线性系统的鲁棒控制[J].控制与决策, 2004, 19 (7): 808-812.
    [158] Swaroop S, Hedrick J K, Yip P P, et al. Dynamic Surface Control for a Class of Nonlinear Systems [J]. IEEE Trans. Automat. Contr., 2000, 45 (10): 1893-1899.
    [159] Wang D, Huang J. Neural Network-Based Adaptive Dynamic Surface Control for a Class of Uncertain Nonlinear Systems in Strict-Feedback Form [J]. IEEE Trans. Neural Networks, 2005, 16 (1): 195-202.
    [160]李红春,张天平.基于动态面控制的MIMO自适应神经网络控制[J].扬州大学学报, 2006, 9 (4): 17-24.
    [161] Yang Z J, Miyazaki K, Kanae S, et al. Robust Position Control of a Magnetic Levitation System via Dynamic Surface Control Technique [J]. IEEE Trans. Ind. Electron., 2004, 51 (1): 26-34.
    [162] Ying H. General SISO Takagi-Sugeno Fuzzy Systems with Linear Rule Consequent Universal Approximators [J]. IEEE Transctions on Fuzzy Systems, 1998, 6(4): 582-587.
    [163] Taniguchi T, Tanaka K, Ohtake H, et al. Model Construction, Rule Reduction, and Robust Compensation for Generalized Form of Takagi-Sugeno Fuzzy Systems [J]. IEEE Transctions on Fuzzy Systems, 2001, 9(4): 525-538.
    [164] Lien C H, Yu K W, Chen W D, Wan Z L, et al. Stability Criteria for Uncertain Takagi-Sugeno Fuzzy Systems with Interval time-varying Delay [J]. Control Theroy & Applications, IET, 2007, 1(3): 764-769.
    [165] Wu S J, Lin C T. Optimal Fuzzy Controller Design in Continuous Fuzzy System: Global Concept Apprach [J]. IEEE Transctions on Fuzzy Systems, 2000, 8(6): 713-729.
    [166] Choi D J, Park P G. H∞State-Feedback Controller Design for Discrete-Time Fuzzy Systems Using Fuzzy Weighting-Dependent Lyapunov Function [J]. IEEE Transctions on Fuzzy Systems, 2003, 11(2): 271-278.
    [167] Yang G H, Dong J X. Control Synthesis of Singularly Perturbed Fuzzy Systems [J]. IEEE Transctions on Fuzzy Systems, 2008, 16(3): 615-626.
    [168]王立新.自适应模糊系统与控制-设计与稳定性分析[M].北京:国防工业出版社, 1995.
    [169]丁刚,张曾科,韩曾晋.非线性系统的鲁棒自适应模糊控制[J].自动化学报, 2002, 28(3):356-362.
    [170] Tong S T, Li H X, Chen G R. Adaptive Fuzzy Decentralized Control for a Class of Large-Scale Nonlinear Systems [J]. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, 2004, 34(1): 770-775.
    [171] Li H X, Tong S C. A Hybrid Adaptive Fuzzy Control for a Class of Nonlinear MIMO Systems [J]. IEEE Transactions on Fuzzy Systems, 2003, 11(1): 24-34.
    [172] Pytelkova. R, Husek. P. Stability of Slowly Varying Takagi-Sugeno Fuzzy Systems [A]. IFSA World Congress and 20th NAFIPS International Conference [C]. Vancouver, 2001: 227-232.
    [173] Hori T, Tanaka K, Wang H O. A Piecewise Takagi-Sugeno Fuzzy Model Construction and Relaxation of Stability Conditions [A]. Proceedings of the 41st IEEE Conference on Decision and Control [C]. 2002: 2149-2150.
    [174] Wu H W, Mendel. J M. On Choosing Models for Linguistic Connector Words for Mamdani Fuzzy Logic Systems [J]. IEEE Transactions on Fuzzy Systems, 2004, 12(1):29-44.
    [175] Liu P Y. Mamdani Fuzzy System: Universal Approximation to a Class of Random Processes [J]. IEEE Transactions on Fuzzy Systems, 2002, 10(6): 756-766.
    [176] Yang Y S. Direct Robust Adaptive Fuzzy Control (DRAFC) for Uncertain Nonlinear Systems Using Small Gain Theorem [J]. Fuzzy Sets and Systems, 2005, 151 (1): 79-97.
    [177] Jiang Z P, Mareels I. A Small Gain Control Method for Nonlinear Cascade Systems with Dynamic Uncertainties [J]. IEEE Trans. Automat. Contr., 1997, 42 (3): 292-308.
    [178] Yang Y S, Zhou C G. Adaptive Fuzzy H∞Stabilization for Strict-Feedback Canonical Nonlinear Systems via Backstepping and Small-Gain Approach [J]. IEEE Trans. Fuzzy Syst., 2005, 13 (1):104-114.
    [179] Yang Y S, Feng G, Ren J. A Combined Backstepping and Small-Gain Approach to Robust Adaptive Fuzzy Control for Strict-Feedback Nonlinear Systems [J]. IEEE Trans. Syst., Man, Cybern, 2004, 34 (3): 406-420.
    [180] Komada S, Ishida M, Ohnishi K, et al. Disturbance Observer-Based Motion Control of Direct Drive Motors [J]. IEEE Transactions on Energy Conversion. 1991, 6(3): 553– 559.
    [181] Tomita M., Senjyu T, Doki S, et al. New Sensorless Control for Brushless DC Motors Using Disturbance Observers and Adaptive Velocity Estimations [J]. IEEE Transactions on Industrial Electronics. 1998, 45(2): 274–282.
    [182] Hamada Y, Otsuki H. Repetitive Learning Control System Using Disturbance Observer for Head Positioning Control System of Magnetic Disk Drives [J]. IEEE Transactions on Magnetics. 1996, 32(5): 5019–5021.
    [183] White M T, Tomizuka M, Smith C. Improved Track Following in Magnetic Disk Drives Using a Disturbance Observer [J]. IEEE/ASME Transactions on Mechatronics. 2000, 5(1): 3– 11.
    [184] Oh Y, Chung W K. Disturbance-Observer-Based Motion Control of Redundant Manipulators Using Inertially Decoupled Dynamics [J]. IEEE/ASME Transactions on Mechatronics. 1999, 4(2): 133–146.
    [185] Komada S, Machii N, Hori T. Control of Redundant Manipulators Considering Order of Disturbance Observer [J]. IEEE Transactions on Industrial Electronics. 2000, 47(2): 413–420.
    [186] Chen W H, Balance D J, Gawthrop P J, et al. A Nonlinear Disturbance Observer for Robotic Manipulators [J]. IEEE Transactions of Industrial Electronics. 2000, 47(4): 932-938.
    [187] Gorez R, Galardini D, Zhu K Y. Internal Model Control and Disturbance Observers [A]. In: Proceedings of the 30th IEEE Conference on Decision and Control [C]. Brighton:IEEE,1991: 229–234.
    [188]姜长生,陈谋.基于RBF神经网络的一类不确定非线性系统自适应[J].航空学报, 2003, 16(1): 36-41.
    [189]朱亮,姜长生,张春雨.基于径向基神经网络干扰观测器的空天飞行器自适应轨迹线性化控制[J].航空学报, 2007, 28(3):673-677.
    [190] Kim E. A Discrete-Time Fuzzy Disturbance Observer and Its Application to Control [J]. IEEE Transactions on Fuzzy Systems. 2003, 11(3): 399-410.
    [191] Kim E. A Fuzzy Disturbance Observer and Its Application to Control [J]. IEEE Transactions on Fuzzy Systems. 2002, 10(1): 77-84.
    [192]黄国勇.基于Terminal滑模的空天飞行器再入鲁棒自适应控制[D].南京:南京航空航天大学. 2007.
    [193]关新平,陈彩莲,范正平.基于backstepping方法的混沌系统自适应模糊控制[J].物理学报. 2002, 51(4): 753-758.
    [194] Y u W, Li X. Fuzzy Identification Using Fuzzy Neural Networks with Stable Learning Algorithms [J]. IEEE Transactions on Fuzzy Systems. 2004, 12(3): 411-420.
    [195] Zhang D, Deng L F, Cai K Y, So A. Fuzzy Nonlinear Regression with Fuzzified Radial Basis Function Network [J]. IEEE Transactions on Fuzzy Systems. 2005, 23(6): 742-760.
    [196] Che Y C, Teng C C. A Model Reference Control Structure Using a Fuzzy Neural Network [J]. Fuzzy Sets and Systems. 1995, 73(3): 291-312.
    [197] Ge S S, Wang C. Adaptive NN Control of Partially Known Nonlinear Strict-Feedback Systems [A]. Proceedings of the American Control Conference [C]. Arlington, 2001: 1241-1246.
    [198]刘艳军,王伟,王向东.一类不确定非线性纯反馈系统的自适应鲁棒模糊控制[J].控制与决策, 2007, 22(6): 697-706.