冷带轧机液压伺服系统的鲁棒变结构控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷带轧机液压伺服系统是具有非线性特性、参数不确定性和未知外部扰动的复杂系统,这给系统的控制带来了一定的困难。为了尽量削弱这些不确定干扰对系统性能的影响,设计鲁棒性较强的控制器,满足冷带轧机生产的要求,本文对冷带轧机液压伺服系统进行了鲁棒变结构控制方法的研究。
     本文首先根据冷带轧机液压伺服系统的结构和工作原理,建立了内环轧机液压伺服位置系统数学模型,进一步,结合冷带轧机厚度检测过程中存在的测量延时,建立了外环轧机液压厚度控制系统的数学模型。
     其次,介绍了反步控制的基本设计方法,然后针对轧机液压伺服位置系统设计了反步位置控制器,进一步,将反步递推方法和动态滑模方法相结合,设计了轧机液压伺服位置系统的反步动态滑模控制器,使系统的位置输出快速准确跟踪位置给定信号,动态滑模方法可得到连续的动态滑模控制律,削弱了应用传统的滑模控制方法造成的抖振现象。
     然后,针对轧机液压伺服位置系统存在的非线性特性、参数不确定性,以及控制输入前具有不确定系数的问题,提出了一种自适应反步滑模控制方法,有效解决了由于控制输入前具有不确定系数导致的所设计的控制量与自适应律互相嵌套的难题。把自适应反步法和滑模控制方法相结合,给出了不确定参数的自适应律,并对系统跟踪误差的收敛性进行了证明,仿真结果表明该方法有效的克服了系统非线性与参数不确定性的影响,实现了快速准确的位置跟踪。
     最后,针对冷带轧机液压厚控系统存在的参数不确定性、外部扰动、测量延时问题,提出了一种鲁棒保性能控制方法。利用Lyapunov稳定性理论,以线性矩阵不等式的形式,给出了使闭环系统渐近稳定及鲁棒保性能控制器存在的条件及控制器的设计方法,同时也保证系统的性能指标不超过某个确定的上界。通过仿真证明了该方法能实现板带出口厚度的有效控制。
Hydraulic servo system of cold strip rolling mill is a complex system which containsnonlinear characteristic, parameter uncertainty and unknown external disturbance, and itmakes the system difficult to control. In order to eliminate the uncertain disturbances anddesign the controller with strong robustness to meet the requirements of cold strip millproduction, robust variable structure control methods are researched in this paper.
     Firstly, a mathematical model is established for the hydraulic servo position systemaccording to its structure and working principle. Then the model of hydraulic gaugecontrol system is erected based on the time delay process of gauge detect device.
     Secondly, backstepping control method is introduced, and then the backsteppingposition controller is designed for the hydraulic servo position system of rolling mill.Further more, the backstepping control method and the dynamic sliding mode controlmethod is combined and the backstepping dynamic sliding mode controller is designed,which makes the position output of the system track the given signal rapidly andaccurately. The dynamic sliding mode method can obtain the continuous control law andovercome the chattering phenomenon caused by the application of the traditional slidingmode control method.
     Then, an adaptive backstepping sliding mode control method is proposed for thehydraulic servo position system of rolling mill, which contains nonlinear characteristics,parametric uncertainty and the control input with uncertain coefficient. By combining theadaptive backstepping and the sliding mode method, it can improve the robustness of thesystem. In the adaptive backstepping sliding mode controller design, adaptive law of theuncertain parameters is given and the stability of the system tracking is also proved.Simulation results show that the designed controller can effectively overcome theinfluence caused by the nonlinear characteristics and parametric uncertainty and achievefast and accurate tracking.
     Finally, an robust guaranteed-cost control method is proposed for the thicknesscontrol system , which contains parametric uncertainty, external disturbance and the detection delay. By using Lyapunov stability theory, the condition to make the closed-loopsystem asymptotically stable and robust guaranteed-cost controller exist is given in theform of LMI, and it also make sure that the system performance does not exceed a definedupper. Furthermore, the design method of robust optimal guaranteed-cost controller isgiven by solving a linear matrix inequality constrained convex optimization problem. Asimulation example is given to illustrate the efficacy of the proposed method.
引文
[1]王春行.液压控制系统[M].北京:机械工业出版社, 1999: 1-5.
    [2]吴奕嶙,瞿新红.液压伺服控制系统的特点[J].中国高新技术企业, 2008,7(15): 59-62.
    [3]王占林.近代液压控制[M].北京:机械工业出版社, 1997: 1-16.
    [4] Liu G P, Daley S. Optimal-tuning Nonlinear PID Control of Hydraulic Systems[J]. ControlEngineering Practice, 2000, 8(9): 1045-1053.
    [5] Zeng H, Sepehri N. Adaptive Backstepping Control of Hydraulic Manipulators with FrictionCompensation Using LuGre Model[C]. Proceeding of the 2006 American Control Conference,Minneapolis, USA: IEEE, 2006: 3164-3169.
    [6] Hisseine D. Robust Tracking Control for a Hydraulic Actuation System[C]. Proceeding of the2005 IEEE Conference on Control Applications, Toronto, Canada: IEEE, 2005:422-427.
    [7] Bonchis A, Corke P I, Rye D C, et al. Variable Structure Methods in Hydraulic Servo SystemsControl[J]. Automatica, 2001, 37(4): 589-595.
    [8]郑剑飞,冯勇,郑雪梅,等.不确定非线性系统的自适应反演终端滑模控制[J].控制理论与应用, 2009, 26(4): 410-414.
    [9] Lee S Y, Cho H S. A Fuzzy Controller for an Electro-hydraulic Fin Actuator Using Phase PlaneMethod[J]. Control Engineering Practice, 2003, 11(6): 697-708.
    [10] Knohl T, Unbehauen H. Adaptive Position Control of Eletrohydraulic Servo Systems UsingANN[J]. Mechatronics, 2000, 10(1-2): 127-143.
    [11]黄镇海.神经网络变结构在液压伺服系统控制中的应用[J].中国计量学院学报, 2005, 16(3):199-202.
    [12]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社, 2005: 279-302.
    [13]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论应用, 2007, 24(3):407-418.
    [14]李春华,孙约,罗琦.非线性系统的反演自适应动态滑模控制[J].计算机工程与设计, 2009,30(1): 185-187.
    [15]王洪瑞,冯玉东,刘秀玲,等.基于反演设计的机器人自适应动态滑模控制[J].计算机工程与应用, 2010, 46(8): 211-213.
    [16]刘向东,王伟.一类迟滞模型的动态滑模跟踪控制器设计[J].控制与决策, 2007, 22(8):878-888.
    [17]蒲明,吴庆宪,姜长生,等.基于模糊干扰观测器的自适应二阶动态滑模控制[J].控制理论与应用, 2011, 28(6): 805-812.
    [18]武玉强,顾建忠,冯纯伯.带有干扰的线性时变系统的非线性鲁棒控制[J].控制理论与应用,2006, 23(1): 103-107.
    [19] Ursu I, Ursu F, Popescu F. Backstepping Design for Controlling Electro hydraulic Servos[J].Journal of the Franklin Institute, 2006, 343(1): 94-110.
    [20]管成,朱善安.电液伺服系统的多滑模鲁棒自适应控制[J].控制理论与应用, 2005, 22(6):931-938.
    [21] Karimi A, Feliachi A. Decentralized Adaptive Backstepping Control of Electric Power Systems[J].Elcetric Power Systems Research, 2008, 73(3): 484-493.
    [22] Guan C, Pan S. Adaptive Sliding Mode Control of Electro-hydraulic System with NonlinearUnknown Parameters[J], Control Engineering Practice, 2008, 16(11): 1275–1284.
    [23] Ruan S Y, Li G J, Jiao X H. Adaptive Control for VSCHVDC Systems Based on BacksteppingMethod[J]. Electric Power Systems Research, 2007, 77(5): 559-565.
    [24] Hua C C, Feng G, Guan X P. Robust Controller Design of a Class of Nonlinear Time DelaySystems via Backstepping Method[J]. Automatica, 2008, 44(2): 567-573.
    [25]方一鸣,韩永成,赵琳琳,等.控制量前具有不确定系数的电液伺服系统自适应控制[J].控制理论与应用, 2009, 26(2): 156-160.
    [26]刘晓飞,焦晓红,王春艳.基于测量延时降维观测器的冷轧机厚控系统鲁棒控制[C].第29届中国控制会议,北京:中国自动化协会, 2010: 2047-2052.
    [27]陈明,张士勇,童朝南.轧机厚控系统时滞相关鲁棒容错H∞设计[J].控制与决策, 2011,26(1): 101-110.
    [28] Li G, Khajepour A. Robust Control of a Hydraulically Driven Flexible Arm Using BacksteppingTechnique[J]. Journal of Sound and Vibration, 2005, 280(3-5): 759-775.
    [29] Richard J P. Time-delay Systems: an Overview of Some Recent Advances and Open Problem[J].Automatica, 2003, 39(10): 1667-1694.
    [30] Zheng F, Wang Q G, Lee T H. Adaptive Robust Control of Uncertain Time Delay Systems[J].Automatica, 2005, 41(8): 1375-1383.
    [31] Yu L, Chu J. An LMI Approach to Guaranteed Cost Control of Linear Uncertain Time-delaySystems[J]. Automatica, 1999, 35(6): 1155-1159.
    [32] Qin C T, Duan G R. Optimal Robust Guaranteed Cost Control of Uncertain Linear ContinuousTime Systems via Dynamical Output Feedback[C]. Proceedings of the 6th World Congress onIntelligent Control and Automation, Dalian, China: IEEE, 2006:21-23.
    [33]俞立.鲁棒控制-线性矩阵不等式处理方法[M].北京:清华大学出版社, 2002: 241-255.
    [34]逄海萍,刘成菊,庄克玉,等.同时含状态和输入时滞系统的最优滑模控制[J].系统仿真学报, 2006, 18(2): 727-730.
    [35] Hien L V, Phat V N. Exponential Stability and Stabilization of a Class of Uncertain LinearTime-delay Systems[J]. Journal of The Franklin Institute, 2009, 346(6): 611-625.
    [36]吴玉香,周东霞,胡跃明.一类不确定非线性系统的鲁棒自适应控制[J].控制理论与应用,2008, 25(6): 1053-1058.
    [37]李渊,何凤有,谭国俊.双馈电机系统滑模变结构反演控制的研究[J].电机与控制学报,2009, 13(1): 15-19.
    [38]郑剑飞,冯勇,杨旭强.非匹配不确定多变量系统高阶终端滑模控制[J].电机与控制学报,2009, 13(1): 117-122.
    [39] Tang R, Zhang Q. Dynamic Sliding Model Control Scheme for Electro-hydraulic Position ServoSystem[J]. Procedia Engineering, 2011, 24(5): 28-32.
    [40]刘强,冯培恩,潘双夏.基于干扰观测器的非对称液压缸鲁棒运动控制[J].浙江大学学报,2006, 40(4): 594-599.
    [41]赵琳琳,方一鸣,仲伟峰,等.冷带轧机厚控系统自适应鲁棒输出反馈动态控制器设计[J].控制理论与应用, 2008, 25(4): 787-790.
    [42] Ibrir S, Xie W F, Su C Y. Adaptive Tracking of Nonlinear Systems with Non-symmetricDead-zone Input[J]. Automatica, 2007, 43(3): 522-530.
    [43]胡剑波,辛海良.含有不灵敏区非线性系统的增益调调度度自适应变结构控制[J].控制理论与应用, 2010, 27(6): 708-714.
    [44]李晓强,王丹,黄加亮,等.一类非线性时滞系统的鲁棒模糊自适应控制[J],控制与决策,2010, 25(7): 1045-1049.
    [45]杜红彬,余昭旭.一类仿射非线性系统的自适应神经网络输出反馈变变结构控制[J],控制理论与应用, 2008, 25(6): 1002-1044.
    [46]杨勇.液压伺服系统自适应模糊变结构控制[J],电子学报, 2008, 25(6): 1002-1044.
    [47]周丽,姜长生,都延丽.一种基于反步法的鲁棒自适应终端滑模控制[J],控制理论与应用,2010, 25(7): 1045-1049.
    [48] Yan J, Lin J S, Liao T L. Robust Dynamic Compensator for a Class of Time Delay SystemsContaining Saturating Control Input[J]. Chaos, Solitons & Fractals, 2007, 31(5): 1223-1231.
    [49]贾新春,郑南宁,袁泽剑.线性不确定系统经动态输出反馈的分层次控制策略[J].控制理论与应用, 2003, 20(3): 449-453.
    [50]李娇,刘玉忠,史书慧,等.一类切换系统的动态输出反馈控制器设计[J].电机与控制学报,2006, 10(6): 627-631
    [51]王银河,单荣立,韩东方.基于状态反馈的一类非线性系统动态输出反馈镇定[J].控制与决策, 2007, 22(2): 238-240.
    [52]方一鸣,范志远,焦晓红,等.输入有饱和的轧机液压伺服系统的多模型切换控制[J].控制理论与应用, 2011, 28(3): 438-442.
    [53]方一鸣,王志杰,焦晓红.轧机液压伺服位置系统多模型切换滑模变结构控制[J].电机与控制学报, 2010, 14(5): 91-96.
    [54] Sun Z D, Ge S S. Analysis and Synthesis of Switched Linear Control Systems[J]. Automatica,2005, 50(2): 154-168.
    [55] Lian J, Zhao J. Robust H∞Control of Uncertain Switched Systems: a Sliding Mode ControlDesign[J]. Acta Automatica Sinica, 2009, 35(7): 965-970.
    [56]方一鸣,赵琳琳,欧发顺.冷带轧机两侧压下位置系统鲁棒动态输出反馈同步控制[J].自动化学报, 2009, 35(4): 438-442.
    [57]欧发顺,方一鸣,赵琳琳,等.冷带轧机两侧压下系统自适应同步控制研究[J].冶金设备,2009, 6(3): 22-26.
    [58] Zhao G F, Ma G L, Guo J, et al. Adaptive Synchronous Control of Servo System Driven by TwoMotors[C]. 2004 8th International Conference on Control, Automation, Robotics and Vision,Kunming, China: IEEE, 2004: 1990-1993.
    [59]苏东海,韩国惠.伺服阀控制非对称液压缸同步控制性能分析[J].沈阳工业大学学报, 2004,26(6): 605-608.
    [60]方一鸣,焦晓红,王益群.极点配置自校正控制及其在冷带轧机厚控系统中的应用[J].控制理论应用, 2000, 17(2): 240-243.
    [61] Diks C, Manzan S. Test for Serial Independence and Linearity Based on Correlation Integrals[J].Studies in Nonlinear Dynamics& Econometricsl, 2002, 6(2): 1-20.
    [62]王天成,王才,王军威,等.变时滞不确定控制系统的保性能控制器设计[J].中国矿业大学学报, 2005, 34(4): 504-508.