特高压同步电网继电保护关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国电力能源和负荷中心逆向分布特点突出,无论是电力能源大容量长距离的输送,还是负荷中心区域电力资源更大规模的优化配置,都需要特高压同步电网的强大支撑。因此,特高压同步电网在继电保护领域出现的新问题值得深入研究,以充分发挥其第一道防线的作用,确保电力系统运行的安全和稳定。本文从“特高压同步大电网”和“两条1000kV特高压输电线路”两个角度对其继电保护配置中出现的关键问题进行了分析,主要分为如下五个方面。
     首先,同步大电网中振荡现象出现频繁且影响严重,如果处理不当往往成为大停电事故的主要诱因之一。我国距离保护振荡闭锁原理多年来在对电力系统振荡的处理中发挥了重要的作用,根据电网多年运行经验和统计数据,振荡闭锁短时开放时间通常取为150-300ms,但是考虑到系统条件和运行方式极为多变,短时开放时间的整定始终没有较为严谨的理论证明,这也是我国振荡闭锁原理的一个空白。故本文综合考虑各影响因素选取了比较合理的系统模型,建立起使距离保护测量阻抗摆入其二段保护范围的等效摆入功角和系统振荡最初一个周期内转子运动特性之间的数学关系,对短时开放时间进行了比较具有创新性的理论证明,权作抛砖引玉,以期能够作为我国振荡闭锁理论的重要补充。另一方面,系统振荡过程中的正确选相也是继电保护领域的一个难题,本文以目前广泛使用的零负序电流比相辅以阻抗测量元件确认的选相原理为基础,深入分析了阻抗测量元件在系统振荡过程中的行为特性,提出了一种适用于系统振荡过程的选相新原理,即在辅助阻抗测量元件判定程序中增加200ms固定延时,以等待非故障相或两非故障相的相间测量阻抗摆出距离保护三段动作区域,固定延时的选择从工程角度考虑了系统振荡周期、主保护和后备保护配合原则等因素。新选相策略与现行保护接口方便可靠,目前已配置于部分较高电压等级输电线路的保护配置之中做进一步的完善和改进,具有比较突出的工程价值。
     第三,晋东南—南阳—荆门特高压示范工程对我国特高压同步电网的建设有十分重要的意义,本文就此线路中的各种保护配置做了详细的RTDS仿真实验,发现晋东南—南阳段送电线路晋东南侧出口附近发生单相接地故障后,南阳侧保护安装处测量的零序电流会发生非常严重的畸变,对主保护所采用的零序电流纵联差动保护和零序方向纵联保护,以及后备保护所采用的两段式零序方向过电流保护和反时限零序过电流保护造成严重威胁。利用拉普拉斯变换和节点电压法对零序等值网络进行了分析,发现畸变主要由晋东南侧串联补偿电容的放电振荡过程引起,进而提出了利用突变量启动信号强制触发串补电容火花间隙的工程化实用改进方案,并对信号传输延迟和串补站阻尼装置的选择等重要影响因素进行了灵敏度分析。RTDS实验验证了所提改进方案的准确性和可行性,具有比较突出的工程价值。
     第四,淮南—皖南—浙北—沪西特高压工程是我国第二条1000kV特高压输电线路,全程采用平行双回线布置方式,带来的新问题就是特高压送电线路中比较严重的线间和相间互容,在某些故障情况下会使潜供电流和恢复电压不能满足熄弧和绝缘恢复的要求,影响自动重合闸装置的成功率。目前广泛采用中性点经小电抗器接地的并联电抗器双回补偿模式抑制其影响,但当平行双回线路处于检修状态时,为了正常运行线路发生故障后重合闸的顺利进行和检修线路人员设备的安全,需要保证两条平行线路之间电气联系的可靠隔离,从而对补偿精度产生较大影响。特别是在发生最严重的同名相跨线故障后,潜供电流不符合熄弧要求。针对这一问题,本文分别从补偿的精确性,操作的可靠性和装置的经济性角度提出了双回补偿模式的三种优化措施,适用于平行双回线路正常运行状态和检修状态。RTDS仿真验证了三种优化措施对各种故障后的潜供电流和恢复电压均有良好的抑制效果。
     最后,特高压同步电网紧邻负荷中心,输电走廊的日益匮乏和系统运行方式的灵活多变使同杆并架多回输电线路,尤其是部分同杆多回线的布置方式所占比重逐步增大。故本文提出了一种适合于同杆多回线各种布置方式下的故障测距新原理,其最为突出优势是不要求两端采样数据的同步性,并在算法中引入了同步补偿算子,从算法原理上消除了同步采样这一常用假设带来的误差。同步补偿算子计算方式简单,无需利用迭代等复杂算法。同时,此原理基于输电线路分布参数方程,仅需要所研究线路两端保护安装处测量的正负序电气量,除纵联保护信道外不需要额外的通信设备,从算法原理上彻底规避了不均匀零序耦合和特高压线路较大分布电容造成的影响。本章所提出的故障定位算法原理明确,结果可靠,对于同杆多回线各种布置方式下发生的单线故障或跨线故障均可以进行准确定位,且已配置于我国1000kV交流特高压输电线路继电保护装置之中,现场运行情况表明了上述理论分析的准确性。
     综上所述,本文以工程建设为导向,就特高压同步电网建设初期在继电保护领域出现的五个关键问题进行了较为深入的研究,具有比较突出的工程价值和科研意义。
The electrical power energy and load center in China are distributed inversely, therefore the UHV (Ultra High Voltage) synchronous power grid is necessary for the huge power transmission over long corridors, as well as the optimal configuration over wide regions. It is well understood that the protective relaying is always recognized as primary defending line for the security and reliability of power system. As a result, the new issues of protection strategy for UHV synchronous power grid should be reconsidered deeply. Five critical issues of protective relaying in UHV synchronous power grid and two UHV transmission lines are investigated in this paper, which are described as below.
     Firstly, power swing is always a threaten common and influential for power system, which may become one of the most significant reasons for blackout. Nowadays, the power swing blocking strategy of distance relay in China is that the distance relay zone-Ⅰ and zone-Ⅱ are only available in the initial time quantum for about150ms to300ms, defined as the open-time, based on the operation experiences and statistic datum over years. However, the theoretical analysis for this open-time is still a blind area considering the complicated operating conditions of power system. Therefore the open-time is analyzed theoretically. The reasonable model for power system is chosen, which is utilized to establish a complicated relationship between the rotor characteristics in the first swing period and the equivalent power angle. The equivalent power angle is defined as the angle that makes the measured impedance of distance relay zone-Ⅱ swing into its protective region. The analysis involved is expected to be an important supplement for the theory basis of power swing blocking strategy in China. At the same time, the correct fault phases discrimination during power swing is also difficult, which is the second research aspect in this paper. Nowadays, one of the fault phases selector widely used in China is based on the relative phases between fault current of zero-sequence and negative sequence with additional confirmation by impedance measurements. The measured impedance of distance relay during power swing is comprehensively analyzed in this paper. Then a new fault phases selective principle is proposed based on the fault phases selector mentioned above, appropriate for normal operation state and power swing. A delay of200ms is added for the measured impedance of un-faulted phases to swing out of its protective region. The new fault phases selector proposed in this paper was utilized in real project. The matches with other protective schemes are easy and reliable, making it more valuable in an engineering point of view.
     Thirdly, the first UHV demonstration project from Jindongnan to Jingmen is of great importance for the future UHV power grid in China. The protection schemes for this transmission line are investigated in details, a special problem was observed on the Jindongnan-Nanyang transmission line. The zero-sequence current measured at remote terminal relay was severely deviated from sinusoid after the occurrence of a single line grounding (SLG) fault near the Jindongnan side, significantly threatening protective relays based on the zero-sequence components. Therefore Laplace transformation and nodal voltage algorithm is applied on equivalent networks of zero sequences. The series capacitor of the Jindongnan side was confirmed to be the main contributor of such distortion. An improved scheme was proposed, which was to spark out the gap according to the signal sent by initial procedure immediately. The correctness and effectiveness of proposed scheme were verified by numerical simulations on RTDS.
     Fourthly, the parallel transmission lines are applied in the second UHV project for Huainan to Huxi, making the secondary arc current and recovery voltage not accordance with the requirements for successful auto-reclosure because of the inter-phase and inter-line capacitance. Nowadays, the shunt reactors with neutral reactor in the neutral point are always utilized to restrain the secondary arc current, especially in double-circuit model. While one of the parallel transmission lines is in maintenance state, the electrical isolation between line I and II must be maintained at all time for the safety of devices and staffs. Therefore the compensation effect is greatly weakened especially under a cross-country fault. Three optimal schemes are proposed for the double-circuit compensation model mentioned above, which focus on the accuracy, reliability and economy. The proposed schemes are verified by relevant simulations on RTDS, appropriate for normal operating state and maintenance state.
     At last, UHV power grid is adjacent to load center. The lack of transmission corridor and the flexible operation conditions of power system increases the multiple-circuit transmission lines, especially lines with some shared towers. A new fault locating principle is proposed in this paper, appropriate for different arrangement modes for multiple-circuit transmission lines. The most important advantage of this scheme is that the synchronous sampling is not necessary and hence a synchronous operator is introduced to eliminate the corresponding errors. Meanwhile, it uses the comprehensive positive-negative-sequence components of the voltage and current un-synchronously sampled from two ends of individual lines. The additional communication devices are unnecessary. And the transmission line equations based on distributed parameters are applied to avoid the influence caused by distributed capacitance. RTDS simulation shows the accuracy of this fault locating scheme, involving different single line faults and cross-country faults. The scheme was configured into the protection of1000kV UHV transmission lines for further improvement by engineering experiences.
     Oriented to project demand, five critical issues for UHV synchronous power grid are investigated comprehensively in this paper. Some valuable solving schemes are proposed and also configured in real operations. It is hopeful that the work is acceptable in the view point of engineering project and scientific research.
引文
[1]刘振亚.落实科学发展观加快建设坚强的国家电网[Z].中国电力报,2005.
    [2]刘振亚.特高压电网[M].北京:中国经济出版社,2005.
    [3]张运洲.对我国特高压输电规划中几个问题的探讨[J].电网技术,2005,29(19):11-14.
    [4]詹奕,尹项根.高压直流输电与特高压交流输电的比较研究[J].高电压技术,2001,27(4):44-46.
    [5]特高压输电技术及经济可行性研究[Z].国家电网公司科技项目,1994.
    [6]中国电力科学研究院.1000kV级交流输电系统最高运行电压选择的研究[R],2005.
    [7]刘振亚.加快建设坚强国家电网促进中国能源可持续发展[J].中国电力,2006,39(9):1-3
    [8]舒印彪.1000kV交流特高压输电技术的研究和应用[J].电网技术,2005,29(19):1-6.
    [9]舒印彪.交流特高压输电线路关键技术的研究及应用[J].中国电机工程学报,2007,27(36):1-7.
    [10]Kovalev. V, Panibratets. A, Volkova. O et al. The equipment for the AC 1150 kV transmission lines[Z]. Moscow:All-Russian electro-technical institute(GUP VEI),2005.
    [11]Okamoto H. System design in 1000kV AC transmission conducted by TEPCO[Z].
    [12]中村秋夫,冈本浩,曹祥麟.东京电力公司的特高压输电技术应用现状[J].电网技术,2005,29(6):1-5.
    [13]谷定樊,周沛洪.特高压输电系统过电压、潜供电流和无功补偿[J].高电压技术,2005,31(11):37-39.
    [14]张文亮,吴维宁,胡毅.特高压输电技术的研究与我国电网的发展[J].高电压技术,2003,29(9):16-18.
    [15]中国电力工程顾问集团公司.交流1000kV特高压试验示范工程一次主设备技术条件[Z],2005.
    [16]舒印彪,张文亮,周孝信.特高压同步电网安全性评估[J].中国电机工程学报,2007,27(34):1-6.
    [17]易强,周浩,计荣荣等.交流特高压线路高抗补偿度上限[J].电网技术,2011,35(7):6-18.
    [18]董新洲,苏斌,薄之谦等.特高压输电线路继电保护特殊问题的研究[J].电力系统自动化,2004,28(22):19-22.
    [19]贺家李,李永丽,郭征等.特高压输电线继电保护配置方案:(一)特高压输电线的结构与运行特点[J].电力系统自动化,2002,26(23):1-6.
    [20]贺家李,李永丽,郭征等.特高压输电线继电保护配置方案:(二)保护配置方案[J].电力系统自动化,2002,26(24):1-6.
    [21]李斌,李永丽,贺家李.特高压长线路电容电流对距离保护的影响[J].天津大学学报,2006,39:83-87.
    [22]Xu Z. Y., Du Z. Q., Ran L. et al. A current differential relay for a 1000-kV UHV transmission line[J]. IEEE trans. on power delivery,2007, 22(3):1392-1399.
    [23]闫晓卿,徐振宇,杨奇逊.1000kV特高压输电线路零序保护改进方案[J].中国电机工程学报,2012,32(28):122-128.
    [24]柴济民,郑玉平,吴通华.交流1000kV特高压输电线路距离保护特殊问题[J].电力系统自动化,2007,31(12):55-60.
    [25]Xu Z. Y., Huang S. F., Ran L., et al. A distance protection relay for a 1000kV UHV transmission line, IEEE trans. on power delivery,2008.
    [26]Xu Z. Y, Du Z. Q., Yang Q. X., The key technical problems for a 1000kV UHV transmission line[C], CIGRE, Paris,2008.
    [27]Xu Z. Y., Jiao S. H., Ran L., et al. A new fault locating scheme for EHV/UHV transmission lines, IET generation, transmission and distribution,2008.
    [28]Zhou Z. X., Zhou C. X., Zhang X. L., et al. Protection device technical specification for 1000kV UHV AC pilot project[C], IEC/CIGRE UHV symposium, Beijing,2007.
    [30]Amew. Power system operation corporation limited[R]. New Delhi: National load DespatchCentre,2012-08-30T11:50.
    [31]Amew. Power system operation corporation limited[R]. New Delhi: National load DespatchCentre,2012-07-31T18:30.
    [32]印永华,郭剑波,赵建军等.美加“8.14”大停电事故初步分析以及应吸取的教训[J].电网技术,2003,27(10):8-11.
    [33]李春艳,孙元章,陈向宜等.西欧“11.4”大停电事故的初步分析及防止我国大面积停电事故的措施[J].电网技术,2006,30(24):16-21.
    [34]Repot of the enquiry committee on grid disturbance in Northern Region on 30th July 2012 India Northern, Eastern & North-Eastern region on 31st July 2012[R]. New Delhi,2012-08-16.
    [35]汤涌,卜广全,易俊.印度“7.30”、“7.31”大停电事故分析及启示,2012,32(25):167-174.
    [36]A. G. Phadke, J.S. Thorp. Expose hidden failures to prevent cascading outages [J]. IEEE computer applications in power,1996,9(3):20-23
    [37]朱声石.高压电网继电保护原理与技术[M].北京:中国电力出版社,2005
    [38]王梅义.电网继电保护应用[M].北京:中国电力出版社,1998.
    [39]沈国荣,邓绍龙,朱声石.区分振荡与短路的新原理[J].电力系统自动化,1990,14(1):7-12.
    [40]P. Kundur. Power System Stability and Control [M], New York:power system engineering series,1994.
    [41]IEEE Power System Relaying Committee Working Group D6 Report, Power swing and out-of-step considerations on transmission lines[R]. 2005.
    [42]L. Martuscello, E. Krizauskas, J. Holbach, Y.C. Lu. Tests of distance relay performance on stable and unstable power swings reported using simulated data of the August 14th 2003 system disturbance[R]. The Power System Conference,2009.
    [43]刘凯,李小滨,索南加乐.一种新的高压线路保护稳定破坏检测元件[J].电力系统自动化,2009,33(19):56-60.
    [44]刘凯,索南加乐.一种新的高压线路保护振荡闭锁实现方法[J].电力自动化设备,2011,31(4):7-16.
    [45]刘凯,索南加乐.基于线路两端电压间夹角的三相故障开放判据[J].电力系统自动化,2010,34(7):66-69.
    [46]袁兆强,吴强,易传炳.振荡闭锁期间不对称故障的快速识别方法[J].继电器,2007,35(8):6-11.
    [47]张艳霞,陈超英.自适应振荡过程的Ucoscp精确算法[J].电力系统自动化,2003,27(15):63-66.
    [48]S.M. Brahma. Distance relay with out of step blocking function using wavelet transform[J]. IEEE trans. on power delivery,2007,22(3): 1360-1366.
    [49]陈皓.小波变换原理识别电力系统故障及振荡中短路的研究[J].电力自动化设备,2000,20(5):18-20.
    [50]乐全明,费铭薇,郁惟镛等.电网振荡与故障识别新方案研究[J].中国 电机工程学报,2006,26(16):33-37.
    [51]林湘宁,刘沛,程时杰.电力系统振荡中轻微故障识别的小波算法研究[J].中国电机工程学报.2000,20(3):39-44.
    [52]熊卫华,赵光宙.联合AGR的神经网络在电力系统故障和振荡识别中的应用[J].电网技术,2006,30(3):22-26.
    [53]段玉倩,贺家李.基于人工神经网络的距离保护[J].中国电机工程学报,1999,19(5):67-70.
    [54]毛鹏,张兆宁,林湘宁等.基于小波神经网络网络的电力系统振荡和故障识别[J].电力系统自动化,2002,26(11):9-13.
    [55]郁惟镛,范广军,迟忠君.基于模糊集合理论的电力系统振荡与短路的识别[J].继电器,2002,20(3):4-7.
    [56]焦绍华,刘万顺,杨奇逊等.用模糊集合理论识别电力系统振荡中的短路的研究[J].中国电机工程学报,1998,18(6):443-448.
    [57]柳焕章,周泽听,周春霞等.继电保护振荡闭锁的改进措施[J].中国电机工程学报,2012,32(19):125-133.
    [58]葛耀中.新型继电保护与故障测距原理与技术.西安:西安交通大学出版社,1996.
    [59]林湘宁,刘沛,杨春明等.基于相关分析的故障序分量选相元件[J].中国电机工程学报.2002,22(5):16-21.
    [60]许庆强,索南加乐,宋国兵等.一种电流故障分量高压线路保护选相元件[J].电力系统自动化,2003,27(2):52-55.
    [61]李红岩,王安定,张保会.一种新型故障检测和故障选相方法[J].继电器,1997,25(2):10-16.
    [62]徐振宇,杨奇逊,刘万顺等.一种序分量高压线路保护选相元件[J].中国电机工程学报,1997,17(3):214-216.
    [63]索南加乐,许庆强,宋国兵等.电力系统振荡过程中序分量选相元件动作行为分析[J].电力系统自动化,2003,27(7):50-54.
    [64]许庆强,索南加乐,杨立.基于故障边界条件的高压输电线路故障选相元件[J].西安交通大学学报,2006,40(12):1446-1449.
    [65]吴大立,尹项根,胡玉峰等.高压线路保护实用选相方案[J].电力系统自动化,2007,31(17):50-54.
    [66]许庆强,索南加乐,柳焕章等.基于相间故障弧光电压特征的高压线路选相元件[J].电力系统自动化,2006,30(4):65-70.
    [67]焦绍华,刘万顺,杨奇逊等.电力系统振荡中不对称故障的选相方法 [J].华北电力大学学报,1999,26(2):6-11.
    [68]于辉.一种基于高频暂态分量的振荡中不对称短路的选相方案[J].电力系统保护与控制,2008,36(12):25-30.
    [69]邹力,赵青春,林湘宁等.基于数学形态学的电力系统振荡中故障识别和改进的选相方法[J].中国电机工程学报,2006,26(13):37-42.
    [70]毛鹏,戴斌,白日昶.一种新型振荡中故障选相元件[J].电力系统自动化,2009,33(5):61-65.
    [71]徐振宇.1000kV特高压输电线路保护的现状及发展[J].电力设备,2008,9(4):17-20.
    [72]徐振宇,杜兆强,孟岩等.零、负序方向元件的特殊问题研究[J].电力自动化设备,2008,28(5):21-25.
    [73]丁晓兵,赵曼勇,徐振宇.接地故障零序方向元件拒动保护改进方案[J].电力系统自动化,2006,30(9):88-90.
    [74]索南加乐,孟祥来,陈勇等.基于故障类型的零序方向元件[J].中国电机工程学报,2007,27(1):25-30.
    [75]蒋苏静,毕天姝,徐振宇等.平行双回线路纵联零序方向误动原因分析及负序功率方向研究[J].电力系统保护与控制,2009,37(24):21-26.
    [76]赖庆辉,陈福峰,许庆强等.纵联零序方向元件的特殊问题分析及解决方案[J].电力自动化设备,2010,30(12):88-91.
    [77]刘浩,韦芬卿,俞波等.纵联零序方向保护零序弱馈拒动的改进方案及其仿真[J].电力系统自动化,2009,33(22):75-78.
    [78]汪萍,陈久林.纵联零序方向保护误动原因分析及其对策[J].电力自动化设备,2007,27(7):122-125.
    [79]李钢,路洁,白晶等.一起平行运行线路纵联零序方向保护误动分析[J].电力系统自动化,2008,32(14):104-107.
    [80]曾耿晖,黄明辉,刘之尧等.同杆线路纵联零序保护误动分析及措施[J].电力系统自动化,2006,30(20):103-107.
    [81]赵晓明,黄晓明,杨涛等.一起500kV线路高频零序保护误动分析[J].电力系统保护与控制,2008,36(17):94-99.
    [82]上官帖,谌争鸣,熊华强.一起零序保护后加速误动分析及防范措施[J].继电器,2008,36(8):87-94.
    [83]马宜军,刘朝辉,王永红等.一起零序后加速保护误动事故分析及对策[J].电力系统自动化,2012,36(19):110-113.
    [84]B.R. Shperling, A. Fakheri. Single-phase switching parameters for untransposed EHV transmission lines[J]. IEEE trans, on power apparatus and systems,1979,98(2).
    [85]H.N. Scherer, B.R. Shperling, J.W. Chadwick. Single-phase switching tests on 765kV and 750kV transmission lines[J]. IEEE trans, on power apparatus and systems,1985,104(6).
    [86]赵一.500千伏同杆双回线路重合闸方案的研究[D].重庆:重庆大学,2008.
    [87]李雨,邓春,韩仲卿.500kV同杆双回紧凑型线路并联补偿特性[J].电网技术,2010,34(10):109-114.
    [88]罗琳琳.750kV同杆双回紧凑型线路电气特性和继电保护研究[D].北京:华北电力大学,2008.
    [89]龚有军,朱普轩,曾嵘.750kV同塔同窗同相序紧凑型输电技术的可行性研究[J].电网技术,2008,32(13):50-54.
    [90]R.N. Nayak. Optimization of neutral grounding reactor parameters-an analysis for a double circuit EHV line[C]. IEEE Power India Conference, 2006.
    [91]I.M. Dudurych, T.J. Ga;;agher, E. R.osolowski. Arc effect on single-phase reclosing time of a UHV power transmission line[J]. IEEE trans. on power delivery,2004,19(2):854-860.
    [92]K. Ngamsanroaj, S. Premrudeepreechacharn, S. Chimklai. Simulation study of the secondary arc extinction due to single line to ground fault on the Thailand 500kV line from Mae Moh to Tha Ta Ko[C]. UPEC 43rd international,2008.
    [93]W. Shi, F. Li, Y. Han et al. The effect of ground resistance on secondary arc current on an EHV transmission line[J]. IEEE trans. on power delivery, 2005,20(2):1502-1506.
    [94]T. Tran-Quoc, N. Hadj-Said, J.C. Sabonnadiere et al. Reducing dead time for single-phase auto-reclosing on a series-capacitance compensated transmission line[J]. IEEE trans. on power delivery,2000,15(1):51-56.
    [95]Yutaka Goda, Shoji Matsuda, Tsuginori Inaba et al. Forced extinction characteristics of secondary arc on UHV (1000kV class) transmission lines[J]. IEEE trans. on power delivery,1993,8(3):1322-1330.
    [96]M. Jannati, B. Vahidi, S.H. Hosseinian. A novel approach for optimizing dead time of extra high voltage transmission lines optimization of electrical and electronic equipment[C]. OPTIM Conference,2008.
    [97]R.M. Hasibar, A.C. Legate, J. Brunke. The application of high-speed grounding switches for single-pole reclosing on 500kV power systems[J]. IEEE trans, on power apparatus and systems,1981,100(4):1512-1515.
    [98]Y. Yamagata, K. Tanaka, Y. Terasawa. Development of interrupting chamber for 1000kV HSGS with a delayed-zero-current interrupting performance[C]. Proceedings of EMPD,1995,1:404-409.
    [99]E.D. Kimbark. Selective-pole switching of long double-circuit EHV line[J]. IEEE trans, on power apparatus and systems,1976,95(1): 219-229.
    [100]王苗苗.特高压可控并联补偿线路的潜供电流抑制研究[D].北京:华北电力大学,2009.
    [101]刘海军,韩民晓,文俊等.特高压双回线路并联电抗器中性点小电抗的优化设计[J].电力自动化设备,2009,29(11):87-97.
    [102]王皓,李永丽,李斌.750kV及特高压输电线路抑制潜供电弧的方法[J].中国电力,2005,38(12):29-32.
    [103]商立群,施围.超高压同杆双回输电线路中熄灭潜供电弧的研究[J].电力系统自动化,2005,29(10):60-72.
    [104]Wiszniewski. Accurate fault impedance locating algorithm[J]. IET generation transmission & distribution,1983,130(6):311-314.
    [105]J.M. Popovic, Z.M. Radojevic. Digital fault-location algorithm including grounding impedance at fault place[J]. IET generation transmission & distribution,2001,148(4):291-295.
    [106]M. Gilany, D.K. Ibrahim, S.T. Eldine. Travelling-wave-based fault-location scheme for multiend-aged underground cable system[J]. IEEE trans. on power delivery,2007,22(1):82-89.
    [107]C.Y. Evrenosoglu, A. Abur. Travelling wave based fault location for teed circuits[J]. IEEE trans. power delivery,2005,20(2):1115-1112.
    [108]D. Chanda, N.K. Kishore, A.K. Sinha. A wavelet multiresolution-based analysis for location of the point of strike of a lightning overvoltage on a transmission line[J]. IEEE trans. on power delivery,2004,19(4): 1727-1733.
    [109]D. Spoor, J.G. Zhu. Improved single-ended travelingwave fault-location algorithm based on experience with conventional substation transducers[J]. IEEE trans. on power delivery,2006,21(3):1714-1720.
    [110]董新洲,葛耀中,徐丙垠.利用暂态电流行波的输电线路故障测距研究[J].中国电机工程学报,1999,19(4):76-80.
    [111]毛鹏,孙雅明,张兆宁.基于神经网络原理的高压架空输电线路故障测距模型的研究[J].电力系统及其自动化学报,1999,1 1(3):66-73.
    [112]全玉生.高压架空输电线路故障测距新算法的研究[D].西安:西安交 通大学,1999.
    [113]余晓丹,刘仲仆,王钢等.应用模糊神经网络实现故障测距[J].中国电力,1998,31(3):10-13.
    [114]周小谦.在国家电力公司电网建设专家委员会第六次全体会议上的讲话[J].电网技术,2002,26(2):1-7.
    [115]M.S. Sachdev, R. Agarwal. A technique for estimation transmission line fault locations from digital impedance relay measurements[J]. IEEE trans. on power delivery,1988,3(1):121-129.
    [116]藤林,刘万顺,李营等.一种实用的新型高压输电线路故障双端测距精确算法[J].电力系统自动化,2001,25(18):24-27.
    [117]黄熊,尹项根,辛振涛.基于分布参数模型的平行双回线故障测距新算法[J].电力自动化设备,2003,23(11):5-8.
    [118]M. Sukumar, Brahma, A. Girgis. Fault location on a transmission line using synchronized voltage measurements[J]. IEEE trans. on power delivery,2004,19(4):1619-1622.
    [119]K.G. Firouzjah, A. Sheikholeslami. A current independent synchronized phasor measurement based method for fault location on transmission lines[J]. International conference electrical engineering Pakistan,2007.
    [120]梁军,孟昭勇,车仁飞等.精确双端故障测距新算法[J].电力系统自动化,1997,21(9):24-27.
    [121]D. Novosel, D.G. Hart, E. Udren et al. Unsynchronized two-terminal fault location estimation[J]. IEEE trans.1996,11(1):130-138.