多变量过程智能辨识与解耦控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实际工业生产中普遍存在着多变量耦合现象,为了实现其精确控制,首先需要解决的是系统模型的准确性问题,相比传统的系统辨识方法,本文采用了粒子群优化算法的智能辨识方法,以辨识的系统模型为预测模型,提出了多变量系统的智能预测函数解耦控制方法。
     在多变量模型的辨识方面,本文应用了粒子群优化算法,定性地分析系统参数空间范围,把系统辨识问题转化为参数空间寻优,利用粒子群优化算法在寻优过程中有效的避免局部最优,在整个参数空间内并行寻找获得系统参数的最优解。通过对多种模型的仿真实验研究表明,粒子群优化算法在多变量系统模型辨识中优于遗传算法。
     在多变量系统的解耦控制方面,研究了多变量系统预测函数解耦控制算法。将多变量系统的解耦控制问题化简为若干个单变量系统的预测函数控制,采取分散优化策略代替整体优化,利用预测函数控制算法的特点,引入基函数增加了设计的自由度,减少了在线计算量,使参数设计和算法过程求解大为简化,然后再利用该算法获得一个解析的解耦控制量计算方程;其控制器参数均可离线计算,而且算法简单,便于实现复杂、高维多变量系统的解耦控制。通过对多变量一阶滞后耦合系统和二阶滞后耦合系统的仿真表明,该方法具有很好的解耦控制效果。
     在预测函数控制的模型失配问题方面,针对多变量系统中的随机性和不确定性造成的预测模型失配,提出了智能预测函数解耦控制方法,主要包括:模糊预测函数解耦控制、遗传算法预测函数解耦控制和粒子群优化算法预测函数解耦控制。
     模糊预测函数解耦控制方法就是将模糊数学的方法引入到预测函数解耦控制中,利用模糊建模的方法解决预测函数解耦控制方法中由于模型失配严重而造成的控制无法稳定等问题。遗传算法和粒子群优化算法在参数优化中具有很好的辨识优化效果,利用遗传算法和粒子群优化算法对失配模型进行优化处理,以优化的模型作为预测模型进行解耦控制,形成遗传算法预测函数解耦控制和粒子群优化算法预测函数解耦控制。这些方法能够有效地克服控制模型的失配及系统的不确定性,具有很好的实时性。通过对实际工业对象的仿真及与自整定PID控制的比较表明,该方法具有很好的控制效果。
Multivariable coupling phenomenon is existed widely in industry practice. In order to control multivariable systems accurately, it is needed to solve accuracy problem of system models. The method of system identification for particle swarm optimization (PSO) algorithm is used by contrast with traditional system identification. Using identified system models as predictive models, the multivariable decoupling control method of intelligent predictive function is introduced.
     The PSO algorithm is used in multivariable model identification, which turned system identification problems into optimization problems in parameter space by qualitatively analyze the scope of system parameter space. The PSO algorithm can effectively avoid getting into local optimum and is used to obtain the optimal solution by searching in the whole parameter space in parallel. The simulations were done for different model examples. The experiment results know that PSO algorithm is an effective method that performed better than genetic algorithm (GA) for system identification.
     In the aspect of MIMO systems decoupling control, a multivariable predictive function decoupling control (PFDC) algorithm is proposed. This algorithm can decompose the decoupling control problem of an MIMO system into predictive function controls (PFC) of several SISO systems. The decentralized optimization method was adopted to deal with coupled variables instead of the whole optimization. Utilizing the characteristics of PFC, base functions increase freedom of design, reduce the online calculation amount significantly, and thus efficiently simplify parameter design and the calculation load. Then, an analytical linear decoupling control equation can be derived with the PFDC algorithm, and the controller parameters can be calculated off-line. Therefore, the obtained algorithm is simple and can solve complicated high dimensions multivariable coupling control problems. The simulations were done for multivariable coupling systems of the first order plus time delay and the second order plus time delay, which show that the proposed control system is efficient and effective.
     Regarding to the model mismatch caused by randomicity and uncertainty of multivariable system processes, the intelligent PFDC is proposed, which mainly include fuzzy PFDC (F-PFDC), GA-PFDC and PSO-PFDC.
     The method of F-PFDC is importing fuzzy mathematics into PFDC. By using the fuzzy modeling method, it solves the instability in control process which is caused by severe model mismatch. GA and PSO have excellent effect in parameter optimization, which can be applied to mismatched model optimization. Taking optimized models as predictive models, GA-PFDC and PSO-PFDC are composed. The mentioned methods effectively get ride of the model mismatch and system uncertainty, and have good real-time performance. Via the comparison of practical industry model simulation and self-turning PID control, the proposed control system is efficient and effective.
引文
[1]方崇智,萧德云.过程辨识.北京:清华大学出版社,1998,2-4
    [2]Gopinath.On the Identification of Linear Time-invariant Systems from Input-Output Data.Bell Dydtem Techn,1969,48:1101-1113
    [3]R.Guidorzi.Canonical structure in the Identification of Multivariable system.Automatica,1975,11(4):361-373
    [4]H.EI.Sherief,N.K.Sinha.Stochastic Approximation Algorithm for the Identification of Linear Multivariable System.IEEE Trans.On Automatic Control.1979.24:331-332
    [5]王秀峰,卢桂章.多变量线性系统的递推辨识算法.自动化学报,1981,7(4):274-282
    [6]舒迪前,刘立.多变量自校正调节器及其在电加热炉上的应用.自动化学报,1985,11(1):21-29
    [7]邓自立,郭一新.多变量CARMA模型的结构辨识.自动化学报,1986,12(1):18-24
    [8]潘立登.多变量系统子模型辨识.北京化工大学学报,1988,5(4):80-90
    [9]L.Ljung.Subspace Identification-Theory for the User.Prentice Hall:Englewood Cliffs,NJ,1999
    [10]彭志红,蔡自兴.基于遗传算法的非线性系统状态空间辨识.信息与控制,2001,30(4):289-293
    [11]薛振框,李少远.MIMO非线性系统得多模型建模方法.电子学报,2005,33(1):52-56
    [12]孙陆梅,闫永跃.低阶加纯滞后对象参数辨识方法.华北电力大学学报,2006,33(5):47-44
    [13]A.S.Boksenhoom,R.Hood.General Algebraic Method to Control Analysis of Complex Engine Types.1949
    [14]Tsien H S.Engineering Cybernetics.New York:McGraw Hill Book Company,1954
    [15]R.J.Kavanagh,R.C.Nolan.Generation of Random Signals with a Specified Spectral Density Matrix.IEEE Transactions on automatic control,1964,300-301
    [16]B.S.Morgan.The Synthesis of Linear Multivariable System by state feedback.J.A.C.C.,1964,64,468-472
    [17]Yue Fu,Tianyou Chai,Hong Wang.Nonlinear Indirect Adaptive Decoupling Control Based on Neural Networks and Multiple Models.Proceedings of the 2006American Control Conference Minneapolis,2006,3692-3697
    [18]Jianhe Lei,Liankui Qiu,Ming Liu,Quanjun Song,Yunjian Ge.Application of Neural Network to Nonlinear Static Decoupling of Robot Wrist Force Sensor. Proceedings of the 6th World Congress on Intelligent Control and Automation,June,2006,5282-5285
    [19]胡慧,刘国荣.多变量系统模糊自适应解耦控制方法综述.湖南工程学院学报,2004,14(3):11-18
    [20]薛昊洋,刘红军.基于BP神经网络的多变量PID解耦控制.仪器仪表标准化与计量,2005,7-9
    [21]王晓哲,李界家,吴成东.多变量系统解耦方法综述.沈阳建筑工程学院学报,2000,16(2):143-149
    [22]Stephen M.Sato,Philip v.Lopresti.On the generalization of state feedback decoupling theory.IEEE Transactions on automatic control,1971,133-139
    [23]P.L.Falb,W.A.Wolovich.Decoupling in the Design and Synthesis of Multivariable Control Systems.IEEE Transactions on automatic control,1967,12(6):651-659
    [24]汪宁,严德崑.多变量系统CARMA模型近似解耦法.工业仪表与自动化装置,2002(3):11-13
    [25]张晓婕.多变量时变系统的CARMA模型近似解耦法.中国计量学院学报,2004,15(4):284-286
    [26]佘文学,周凤岐,周军.一类不确定非线性系统变结构自适应鲁棒控制.西北工业大学学报,2004,22(1):25-28
    [27]H.N.Koivo.A multivariable self-tuning controller.Automatica,1980,16(4):351-366
    [28]柴天佑.多变量间接自适应解耦控制算法.自动化学报,1991,17(2):182-190
    [29]K.G.Arvanitis.Adaptive Decoupling Control of Linear Systems Without a Persistent Excitation Requirement.Journal of the Franklin Institute,1996,681-715
    [30]王昕,李少远.多模型自适应前馈解耦控制器.上海交通大学学报,2005,39(3):361-365
    [31]张振山,柴天佑,李小平.棒材连轧机立式活套的多变量自适应解耦控制.自动化学报,2001,27(6):744-751
    [32]Gupta M M.Multivariable structure of fuzzy control system.IEEE Transactions on System,1986,16(5):638-656
    [33]Wang D H,Chai T Y,Zhang H G.A new composition algorithm for fuzzy inference.Control and Decision,1994,9(1):59-63
    [34]王宁.多变量系统的神经元网络智能控制.电工技术学报,1995,5(2):69-73
    [35]靳其兵,曾东宁,王云华.多变量系统的神经网络解耦新方法.东北大学学报(自然科学版),1999,20(3):250-253
    [36]徐承伟.模糊关系系统的反馈解耦.自动化学报,1989,15(6):537-539
    [37]李辉.一种多变量模糊神经网络解耦控制器的设计.控制与决策,2006,21(5):593-596
    [38]吴黎明,柴天佑.一类非线性离散时间系统的神经网络解耦策略.自动化学 报,1997,23(2):207-212
    [39]郝久玉,陈伟,李惠敏.多变量模糊控制系统的前馈解耦.天津大学学报,2004,37(5):396-399
    [40]Chai T Y,Wang X,Yue H.Multivariable Intelligent decoupling control and its application.In:Proceedings of the 3rd World Congress on Intelligent Control and Automation.2000,23-29
    [41]徐立新,强文义,周彦.基于模糊神经网络的发电用单轴燃气轮机的解耦控制.汽轮机技术,2004,46(6):421-424
    [42]Su Baili,Chen Zengqiang,Yuan Zhuzhi.Multivariable Decoupling Predictive Control with Input Constraints and Its Application on Chemical Process.Chinese J.Chem.Eng.,2005,14(2):216-222
    [43]胡军.多变量系统的干扰和输入输出同时解耦问题.郑州轻工业学院学报(自然科学版),2005,20(4):89-91
    [44]王全良,甄新平,潘立登.多变量系统解耦内模控制及其PID转化应用方法的研究.北京化工大学学报,2005,32(6):87-89
    [45]Kristinsson K,Dumont G.A.System identification and control using genetic algorithms.IEEE Trans.Systems Man and Cybernetics,1992,22(5):1033-1046
    [46]Kennedy J,Eberhart R C.Particle Swarm Optimization.In:Proceedings of IEEE International Conference on Neural Networks.Piscataway,1995,1942-1948
    [47]Shi Y,Eberhart R C.Particle Swarm Optimization:Developments,Applications and Resource.In:Proc Congress on Evolutionary Computation 2001.Piscataway,2001,81-86
    [48]丁峰,丁韬.CAR模型的几种相关辨识方法.清华大学学报(自然科学版),2000,40(2):61-65
    [49]Mamat R,Fleming P J.Method for on-line identification of a first order plus dead-time process model.Electronics letters,1995,31(15):1297-1298
    [50]张成乾,张国强.系统辨识与参数估计.北京:北京机械工业出版社,1986,23-27
    [51]张洪钺,胡干耀.现代控制理论-系统辨识.北京:北京航空学院出版社,1987,45-57
    [52]王树青,金晓明.先进控制技术及应用.化工自动化及仪表,1999,26(2):61-65
    [53]周西峰.系统辨识与建模的一种新方法.信息与控制,2000,4(2):131-138
    [54]COLORN IA,DOR IGO M,MAN IEZZO V.Distributed Optimization by Ant Colonies.In:Proceedings of the First European Conference on Artificial Life.1991.134-142
    [55]李晓斌,寇得民,于波,等.自适应粒子群优化算法在系统辨识和参数优化 中的应用,仪器仪表学报,2007,28(8):341-345
    [56]Richalet J.Industrial application of model based predictive control.Automatica,1993,29(5):1251-1270
    [57]潘红华,苏宏业,褚健.具有时滞和干扰的多变量系统预测函数控制方法的研究.控制理论与应用,2000,17(6):813-817
    [58]谢春利,李平.多变量系统预测函数解耦控制.系统工程与电子技术,2003,25(5):584-587
    [59]Young C Cho,Wook hyun Kwon,Christos G Cassandras.Optimal control for steel annealing processes as hybrid systems.In:Proceedings of the 39th IEEE Conference on Decision and Control.Sydney(Australia),2000,540-545
    [60]李晓斌,刘丁,郭军献,等.真空退火炉的建模与优化.控制与决策,2005,20(2):218-221
    [61]李晓斌,刘丁,刘强.真空退火炉智能变结构控制方法的研究与应用.材料热处理学报,2006,27(1):124-129
    [62]李晓斌,常蓬彬.基于自适应免疫遗传算法的真空退火炉变参数PID温度控制系统.兰州大学学报(自然科学版),2005,41(6):69-72
    [63]李晓斌,寇得民.真空退火温度的建模与解耦控制,机械工程学报,已录用,待发表,稿件编号2007-1073
    [64]Bojarevice V,Harding R A.The development and experimental validation of a numerical model of an induction skull melting furnace.Metallurgical and Materials Transactions,2004,35(4):785-803
    [65]李欣峰,梅炽,殷志云.阳极焙烧炉结构仿真与优化.中国有色金属学报,2000,10(2):282-286
    [66]张立麒,郑楚光,徐明厚.环型阳极焙烧炉热工过程的数值模拟.中国有色金属学报,2003,13(6):1528-1533
    [67]Detlef M,Michael S.Improvement of existing anode baking furnaces by use of an advanced firing and control system-benefits and results.Light Metals,2000,487-491
    [68]Jaffar A,Khalil M.K,Wolfgang K.L.The impact of the firing and control system on the efficiency of the baking process.Light Metals,2003,589-594
    [69]李晓斌,寇得民.焙烧烟气温度建模与预测函数解耦控制,控制工程,2009,16(2)
    [70]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法.系统工程理论与实践,2002,22(11):32-38
    [71]EUSUFFM M,LANSEY K E.Optimization of Water Distribution Network Design Using Shuffled Frog Leaping Algorithm.Journal of Water Resources Planning and Management,2003,129(3):210-225
    [72]李晓斌,寇得民,姜云,等.重油加热输送的智能预测控制方法.仪器仪表学 报,2007,28(8):508-513
    [73]李晓斌,寇得民.基于PSO优化的燃油供给压力动态跟踪控制.控制工程,2008,15(6)
    [74]TAKAGI T,SUGENO M.Fuzzy identification of systems and its applications to modeling and control.IEEE Trans SMC,1985,15(1):116-132
    [75]邵青,冯汝鹏.非线性系统模糊辨识的新方法.控制与决策,2001,16(1):83-89
    [76]Nozaki K,Ishibuchi H,Tanaka H.A simple but powerful heuristic method for generating fuzzy rules from numerical data.Fuzzy Sets and Fuzzy Systems,1997,86(3):251-270
    [77]赵景波,李瑞年.基于模糊补偿的预测函数控制的仿真研究.系统仿真学报,2003,15(9):1325-1327
    [78]SKRJANC,MATKO.Predictive Functional Control Based on Fuzzy Model for Heat-Exchanger Pilot Plant.IEEE Trans on Fuzzy Systems,2000,8(6):705-712
    [79]邹健,诸静.模糊预测函数控制在水泥回转窑分解炉温控系统中的应用研究.硅酸盐学报,2001,29(4):318-321