电液位置伺服控制系统的模糊滑模控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着科技的发展,采用电液伺服控制的机械系统愈来愈复杂,并且存在非线性、参数不确定性、机械谐振、未建模动态特性、传感器动力学特性、外负载干扰等因素影响,对控制系统的精度、响应能力、稳定性及鲁棒性的要求则愈来愈高,系统的复杂性与苛刻的控制性能要求之间形成了尖锐的矛盾。
     滑模变结构控制是一种非线性控制器,当系统状态穿越状态空间的不同区域时,反馈控制器的结构按照一定的规律发生变化,使得控制系统对被控对象的内在参数变化和外部扰动具有一定的适应能力,保证系统的性能达到期望的品质。滑模变结构控制系统的鲁棒性要比一般常规的连续控制系统强。但是对于一个实际的滑模变结构控制系统,控制力受限、系统惯性、切换开关的时间与空间滞后、检测误差及离散化形成的准滑模等,都会造成抖振。抖振现象给变结构控制在实际系统中的应用带来了困难,因此对其控制信号抖振的消弱成为变结构研究的热点问题。在解决抖振问题的研究上,国内外研究者提出了许多方法,这些方法要么在消弱抖振的同时也降低了系统鲁棒性,要么系统过于复杂,无法应用到实际工程领域。因此,设计一种满足实时性、鲁棒性要求,并有效抑制抖振的先进滑模变结构控制策略具有重要的理论意义与工程应用价值。
     滑模变结构控制和模糊控制是各自独立发展起来的两类控制方法,二者都是对不确定系统进行控制的有效方法,它们的结合会进一步提高控制效果。本文针对滑模变结构控制存在的问题,设计模糊滑模变结构控制器,通过控制特性的互补来获得满意的控制性能。作者提出按照系统的实时性和鲁棒性的要求设计模糊滑模控制算法,对提出的方法进行理论分析、混合仿真以及系统的试验验证,从而为可靠的工程应用奠定理论和方法基础。
     电液控制系统影响因素复杂,不能用精确模型来描述其所有特性,所以,在控制系统的分析和设计中,往往采用简化模型。设计中被忽略的因素可能会引起控制系统品质的恶化、甚至导致不稳定。为提高建模精度,在对阀控缸电液位置伺服系统分析的基础上,考虑系统参数不确定性,建立了基于位置变量与偏差变量的系统状态空间模型,通过数字仿真初步确定控制器参数。为更接近实际系统,使用实际的液压-机械系统物理模型和数字控制器模型,实现阀控缸电液位置控制系统的混合仿真,从而建立一个更加接近实际控制状态的模型。
     分析了滑模变结构控制器设计的基本问题及其Lyapunov稳定性,阐述了模糊控制器的设计及其稳定性分析问题,并探讨了模糊理论与滑模变结构理论的几种结合方案。针对现有模糊滑模变结构控制策略的缺陷,提出对模糊滑模变结构控制进行更深入的研究,以满足实际工程应用要求。
     针对固定参数的趋近律滑模变结构算法无法根据系统参数的变化和干扰的变化进行实时调整的缺点,提出模糊控制器来调整趋近律参数的方法。基于模糊自适应指数趋近律函数切换滑模控制,对非线性、扰动和参数不确定性有较好的鲁棒性,并且克服了常规滑模抖振大和控制力频繁切换的缺点,且实时性强、控制精度高。将这种方法应用于某大型钢铁集团公司硅钢厂电液单辊CPC控制系统,并以其物理模型与模糊自适应指数趋近律函数切换滑模控制器模型,进行混合仿真。研究表明,系统在综合考虑非线性、扰动及各种参数不确定性的情况下,模糊自适应指数趋近律函数切换滑模控制能够稳定工作,有效地抑制了抖振。
     比例滑模策略保留了线性控制的某些优点,但抖振的存在不仅会降低控制精度,甚至会激发系统的未建模动态或引起机械谐振,这些不足严重制约了比例滑模变结构控制在大负载高精度电液位置系统中的应用。为避免抖振对系统精度与稳定性影响,提出了采用模糊模型,根据切换函数及其导数的状态自调整比例滑模切换增益,以柔化控制信号。作者研制的大型钢铁集团公司液压EPC大负载高精度位置伺服系统的混合仿真结果表明,通过模糊理论实现增益自调整,有效降低抖振,既实现了高精度控制,又保留了滑模策略抗参数摄动及抗扰动能力强的特点。
     最后以DSPACE平台设计了电液伺服综合试验系统,实现了基于模糊滑模控制策略的快速原型试验。构建了电液伺服综合试验系统的硬件,设计了基于结构不变性原理的电液位置系统加载策略。针对电液位置系统的非线性、参数不确定性及外力扰动,采用提出的基于模糊自适应趋近律函数切换滑模及模糊自调整增益比例滑模方法,进行了实时控制试验,通过与常规控制策略的比较,验证了所提策略的有效性。
In recent years, with the development of technology, electro-hydraulic servo controlled mechanical systems increasingly become complex, and there are non-linear, parameter uncertainty, mechanical resonance, unmodelled dynamic charcteristics, sensor dynamic charcteristics, load disturbance factors, etc.And the control system accuracy, responsiveness, stability and robustness requirements are higher and higher, so that a sharp contradiction appears between the system's complexity and demanding performance requirements of the control.
     Sliding mode variable structure control is a nonlinear controller.When the system state goes through the different areas of the state space, and the feedback controller structure changes according to certain rules,the control system has a certain ability to adapt the object system internal parameter variations and external disturbance,and ensure the system performance to achieve the desired quality. Sliding mode variable structure control system has better robustness than the conventional continuous control systems.But for a real sliding mode variable structure systems, it exists control limited, the system inertia switch in time and space lag, testing errors and the formation of discrete quasi-sliding mode and so on, which can cause buffeting. It made it difficult to the variable structure control in the application of the actual system, so the issue is to weaken the buffeting of variable structure for its control signal. During solving the problems, there are a number of ways, but the problem exists that either reduce the system robustness at the same time weaken the buffeting, or policy is too complex only for the computer simulation that can not be putted into practical engineering applications. Therefore, the design an advanced sliding mode variable structure strategy has very real significance that meets the real-time, robustness requirements, and effectively inhibits the buffeting.
     Sliding mode variable structure control and fuzzy control is developed independently of the two types of control methods, both are the effective methods for the uncertain control system, and their combination will further enhance the control effect. In this paper, according to the sliding mode variable structure control problems, fuzzy sliding mode controller was designed, by complementary controlling properties to obtain satisfactory control performance. In accordance with the real-time and robustness requirements, the fuzzy sliding mode algorithm was designed.By theoretical derivation, the hybrid simulation and test verification, it will lay the theoretical and methodological foundation for liable engineering applications.
     Influence factors of electro-hydraulic control system are very complex so accurate model is not described all features. In the analysis and design of system, simplified model is often used. Negligible factors may cause the quality deterioration and even instability of control system. On the basis of systematic analysis on electro-hydraulic servo valve control cylinder system, to improve modeling accuracy and consider the uncertainty of system parameters, system state-space model is established by using variables and deviation variables. For a more realistic system, using the actual hydraulic-mechanical system physical model and the digital controller model, the thesis achieves the hybrid simulation of electro-hydraulic valve-controlled cylinder position control system, so as establish a more realistic control state model.
     The thesis analyzes the basic problems and Lyapunov stability of sliding mode controller, describes the design and stability analysis of fuzzy controller, and investigates several programs of the fuzzy theory and sliding mode variable structure theory combination. For the deficiencies of fuzzy sliding mode variable structure control strategy, fuzzy sliding mode variable structure control for more in-depth study is proposed by the author in order to meet the practical engineering applications.
     The fuzzy controller is designed for adjusting the reaching law parameters, because the algorithm of reaching law sliding mode variable structure with fixed parameters can be not real-time adjusted with the system parameter and interfere changes. Switch sliding mode control of fuzzy adaptive reaching law index function has good robustness for non-linear, disturbance and parameter uncertainty, and overcomes the conventional sliding mode control big buffeting and frequent switch shortcomings. The system has stronger real-time and higher control accuracy. The control method is used in a large steel iron and steel group silicon electro-hydraulic single-roller CPC system, which the physical model and switch sliding mode controller model of fuzzy adaptive reaching law index function is for hybrid simulation. Studies show that the control system works stably and effectively suppresses chattering on the condition of the system comprehensive consideration nonlinearity, disturbance and parameters uncertainty.
     The proportion sliding mode strategy retains the linear control advantages, but the presence of buffeting will reduce the control precision, even stimulate the system unmodeled dynamics or cause mechanical resonance. These deficiencies seriously restricted the application of the proportion of sliding mode control in large-load high-precision electro-hydraulic position system. In order to avoid chattering influence on the system accuracy and stability, self-tuning sliding mode switching gain is designed to soften the control signal, according to the switch function and its derivative of the fuzzy model. As example of some iron and steel group EPC, which is a big load high precision hydraulic position servo system, is simulated hybrid. The results show that the system achieves the gains self-adjusting by fuzzy theory, effectively reduces the buffeting, implements high-precision control, and retains characteristics of the anti-parameter perturbations and anti-disturbance ability.
     Electro-hydraulic servo test system on Dspace is designed to achieve a fuzzy sliding mode control strategy based on rapid prototyping test. The electro-hydraulic servo test system hardware is designed, the system load policy on structural invariance principle was designed. For the electro-hydraulic position system of nonlinear, parameter uncertainty and external disturbances, by using proposed fuzzy adaptive reaching law and fuzzy self-tuning gain proportional sliding mode for real-time control, by comparison with the conventional control strategy to verify the validity of the proposed strategy.
引文
[1]王春行.液压控制系统[M].北京:机械工业出版社,2006:6-7,41-43,69-73.
    [2]王占林.近代电气液压伺服控制[M].北京:北京航空航天大学出版社,2005:2-18.
    [3]李洪人.液压控制系统[M].北京:国防工业出版社,1981:10-14,315.
    [4]刘长年.液压伺服系统优化设计理论[M].北京:冶金工业出版社,1989:155-157.
    [5]王占林.液压伺服控制[M].北京:北京航空航天大学出版社,1987:389-390.
    [6]李福义.液压技术与液压伺服系统[M].哈尔滨:哈尔滨工程大学出版社,1992:182-183,267-269.
    [7]成大先.机械设计手册-液压控制[M].北京:化学工业出版社,2004:75-79.
    [8]李连升.刘绍球.液压伺服理论与实践[M].北京:国防工业出版社,1990:87-104.
    [9]张卫国,曹永刚,陈涛.用数字滤波器改善光电经纬仪机械谐振频率的方法[J].光学精密工程,1999,7(2):77-80.
    [10]刘玉生,陈江,李兴源.含未建模动态的非线性参数系统的鲁棒自适应控制[J].四川大
    学学报,2005,37(5):147-153.
    [11]Liu Yusheng, Li Xingyuan. Robust adaptive control of nonlinearsystems with unmodeled dynamics [J].IEEE Proceedings-ControlTheory and Applications,2004,151(1):83-88.
    [12]Zhang Youping, Ioannou P A. Robustness of nonlinear control systems with respect to unmodeled dynamics [J].IEEE TransAutomat Contr,1999,44(1):119-124.
    [13]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1998年,130,241-248.
    [14]师黎,孔金生.反馈控制系统导论[M].北京:科学出版社,2005:26-27.
    [15]徐湘元.自适应控制理论与应用[M].北京:电子工业出版社,2006:1-3.
    [16]宋志安.基于MATLAB的液压伺服控制系统分析与设计[M].北京:国防工业出版社,2007:5-7.
    [17]Ito K, Ikeo S.PID control performance of a water hydraulic servomotor system[C], SICE 2002.Proceedings of the 41 st SICE Annual Conference,2002(3):1732-1735.
    [18]Heinrichs, B.N. Sepehri, A. B. Thornton Trump. Position-Based Impedance Control of an Industrial Hydraulic Manipulator[J].IEEE Control Systems Magazine,1997,17 (1):46-52.
    [19]王幼民,范恒灵.基于正交试验法的电液伺服系统PID控制[J].农业机械学报,2007,38(7):196-199.
    [20]Newton D. A. Application of a Neural Network Controller to Control a Rotary Drive System with High Power Efficiency[C]. Innovation in Fluid Power, Proceedings of Seventh Bath International Fluid Power Workshop,1995:41-54.
    [21]Xu Zibin,Min Jianqing,Jian Ruan. Adaptive backstepping neural network control of electro-hydraulic position servo system[C].2nd International Symposium on Systems and Control in Aerospace and Astronautics.2008:1-4.
    [22]Azimian H,Adlgostar R,Teshnehlab M..Velocity control of an electro hydraulic servomotor by neural networks[C].2005 International Conference on Physics and Control, PhysCon.2005:677-682.
    [23]Istif, Ilyas. A simulation study for the application of two different neural network control algorithms on an electro-hydraulic system[J].The International Society for Optical Engineering.2005:599-563.
    [24]Zhao Hong,Dang Kaifang,Lin Tingqi. A online-trained neural network controller for electro-hydraulic servo system[C]. Proceedings of the World Congress on Intelligent Control and Automation.2002,4:2983-2986.
    [25]王益群,孙福.PID神经网络在电液弯辊伺服控制系统中的应用[J].机床与液压,2008,36(3):83-86.
    [26]王军,张幽彤,王宪成等.神经网络结构PID方法在电液供油提前器中的应用研究[J]兵工学报,2008,29(10):1163-1166.
    [27]靳宝全,熊诗波,杨洁明.基于模糊PID的跳汰机排料伺服控制系统[J],煤矿机械,2006,27(10):135-137.
    [28]Zhao Chunyu, Gao Ke, Liu Xiujuan. Control of electro-hydraulic servo system for a material test system using fuzzy nerual network. Proceedings of the 7th World Congress on Intelligent Control and Automation.2008:9351-9355.
    [29]张福波,王贵桥,杜林秀等.电液伺服疲劳试验机波形幅值的模糊补偿[J].振动、测试与诊断,2008,28(2):96-99.
    [30]Huang Y J,Kuo T C,Lee H K.Fuzzy-PD controller design with stability equations for electro-hydraulic servo systems[C]. International Conference on Control, Automation and Systems.2007:2407-2410.
    [31]K K Ahn,D Q Truong. Online tuning fuzzy PID controller using robust extended Kalman filter [J]. Journal of Process Control.2009,19(7):1207-1214.
    [32]马俊功,王世富,王占林.电液伺服速度系统的模糊增益调度控制[J].北京航空航天大学学报[J],2007,33(3):294-297.
    [33]倪敬,项占琴,潘晓弘等.管捆成形电液系统自学习粗糙-模糊PID控制研究[J].机械工程学报,2006,42(10):224-228.
    [34]Kaddissi C,Kenne J P,Saad M. Indirect Adaptive Control of an Electro-Hydraulic Servo System Based on Nonlinear Backstepping[C]. IEEE International Symposium on Industrial Electronics.2006,4:3147-3153.
    [35]Yao Bin,Fanping Bu,George T. C. Chiu. Non-linear adaptive robust control of electro-hydraulic systems driven by double-rod actuators[J]. International Journal of Control.2001,74(8):761-775.
    [36]管成,潘双夏.电液伺服系统的非线性鲁棒自适应控制[J].机械工程学报,2007,27(4):107-112.
    [37]Moon ByungYoung.Study of parameter identification using hybrid neural-genetic algorithm in electro-hydraulic servo system[C]. Proceedings of The International Society for Optical Engineering.2005:659-735,.
    [38]吴忠强,刘冲,奥顿.电液伺服系统的模糊神经网络并行自学习鲁棒控制[J].中国机械工程,2003,14(22):1914-1918.
    [39]Meng Yadong, Li Changchun, Yan Hao. Design of Electro-Hydraulic Servo Force Feedback System Based on the GPC with Simplified Model[C].2008 International Conference on Advanced Computer Theory and Engineering.2008:232-236.
    [40]章卫国,杨向忠.模糊控制理论与应用[M].西安:西北工业大学出版社,1999:4-5,172.
    [41]Zadeh L.A. Fuzzy Sets. Information Control[M],1965,8:338-353.
    [42]Zadeh L.A. Fuzzy Algorithm. Information Control[M],1968,12:94-102.
    [43]Zadeh L.A.A Rationale for Fuzzy Control[J].Trans.ASME J. Dynamic System Measure
    Control,1972,94:3-4.
    [44]Chang S S,Zadeh L.A. Fuzzy Mapping and Control[J].IEEE Trans,SMC,1972,2(1):30-34.
    [45]诸静.模糊控制原理与应用(第2版)[M].北京:机械工业出版社,2005:4-10.
    [46]Mamdani E H.Application of Fuzzy Algorithms for Simple Dynamic Plant[J]. Proc.IEEE,1974,121(12):1585-1588.
    [47]Larsen PM. Industrial Application of Fuzzy Logic Control[J].Int.J.Man Mach Studies, 1980,12(1):3-10.
    [48]Takagi T,Sugeno M. Fuzzy Identification of Systens and Its Application to Modeling and Control[J].IEEE Trans,SMC,1985,15(1):116-132.
    [49]Hirota H,Pedrycz W.Analysis and Synthesis of Fuzzy Systems by The Use of Fuzzy Sets[J],Fuzzy sets and Systems,1993,10(1):1-14.
    [50]Jin Y C,Zhu J.Neural Network Based Fuzzy Identification and Its Application to Modeling and Control of Complex Systems[J].IEEE Trans,SMC,1995,25(6):990-997.
    [51]Jin Y C,Zhu J.Adapive Fuzzy Modeling and Identification with Its Application[J]. International Journal of System Science,1995,26(2):197-212.
    [52]Procyk T J,Mamdani E H.A Linguistic Self-Organizing Process Controller.Automatica[J], 1979,15(1):15-30.
    [53]李东辉.:Fuzzy控制规则的自整问题和Fuzzy控制系统寻优及其仿真研究[J].模糊数学,986,(3):53-61.
    [54]Hung-Ching Lu,et al.A Heuristic Self-tuning Fuzzy Controller[C]. Fuzzy Sets and Systems,1994,61:249-264.
    [55]Ray K S,et al. Application of Circle Criteria for Stability Analysis of Linear SISO and MIMO Systems Associated with Fuzzy Logic Controller[C].IEEE Trans, SMC,1984,14(2):345-349.
    [56]赵明洁,杨莹春,诸静.基于Popov超稳定性理论的模糊自适应控制器设计方法[J].自动化学报,2001,27(3):406-410.
    [57]石辛民,郝整清.模糊控制及其MATLAB仿真[M].北京:清华大学出版社,2008:7-10,121.
    [58]A.Visioli.Tuning of PID controllers with fuzzy logic[J].IEE Proc.Control Theory
    Appl.2001,148(1):1-8
    [59]Chung H Y,et al.A PI-type fuzzy controller with self-tuning scaling factors[J]. Fuzzy Sets and Systems,1998,93(1):23-28.
    [60]Wang C C,Feng S M. A switching type of fuzzy controller[C]. The 3th IEEE Internet Conf on Fuzzy Systems,Orlando,Florida,USA.1994.30-34.
    [61]Misir D,et al. Design and analysis of a fuzzy proportional-integral-derivative controller[J]. Fuzzy Sets and Systems.1996,79(3):297-314.
    [62]Xu J X,et al.Parallel structure and tuning of a fuzzy PID controller[J]. Automatica. 2000,36(4):673-684.
    [63]Wu Z Q,Mizumoto M. PID type fuzzy controller and parameters adaptive method[J]. Fuzzy Sets and Systems.1996,78(1):23-35.
    [64]Woo Z W,et al. A PID type fuzzy controller with self-tuning scaling factors[J]. Fuzzy Sets and Systems.2000,115(3):321-326.
    [65]Cho H J,et al. Fuzzy-PID hybrid control:Automatic rule generation using genetic algorithms[J]. Fuzzy Sets and Systems.1997,92(3):305-316.
    [66]Li T H S,Shieh M Y. Design of a GA-based fuzzy PID controller for non-minimum phase systems[J]. Fuzzy Sets and Systems.2000,111 (2):183-197.
    [67]Katata R,de Geest D,Titli A.Fuzzy controller:design,evaluation,parallel and hierarchical combination with a PID controller [J]. Fuzzy Sets&Systems.1995,71:113-129.
    [68]Kim J H,Kim K C,Chong K P.Fuzzy precompensated PID controllers[C]. IEEE Transactions on Control Systems Technology.1995,2:406-411.
    [69]庞富胜.用HG-Z80单板机实现电炉炉温的模糊线性复合控制[J].微型机与应用,1987,(4):35-36.
    [70]Richalet.Model Predictive Heuristic Control[J]:Application to Industria Processes. Automatica.1978,14(5):413-428.
    [71]李少远,李柠.复杂系统的模糊预测控制及其应用.北京:科学出版社,2003:3-4.
    [72]Culal Batur. Predictive Fuzzy Expert controllers[J].Computers in Eng.1991,20(2): 199-209.
    [73]李静如.模糊预测控制及其应用研究[J].控制理论与应用,1992,9(3):283-286.
    [74]睢刚,陈来九.模糊预测控制及其在过程气温控制中的应用[J].中国电机工程学报,1996,16(1):17-21.
    [75]Martin F, et al.Nonlinear Predictive Control Based on The Extraction of step Response Models from Takagi-Sugeno Fuzzy Systems[C].Proc.of ACC.1997:2878-2882.
    [76]邹健,诸静.模糊预测函数控制在水泥回转窑分解炉温度控制系统中的应用研究[J].硅酸盐学报,2001,29(4):318-321.
    [77]Michael A Goodrich, et al.Model Predictive Satisfying Fuzzy Logic Control.IEEE Trans. Fuzzy systems[C].1999,7:319-332.
    [78]Sousa J M, Kaymak U. Model Predictive Control Using Fuzzy Decision Function IEEE Trans[J].SMC,2001,31(1):54-56.
    [79]王寅.模糊非线性内模控制算法及其在PH值控制中的应用[J].化工学报,1997,48(3):347-353.
    [80]Xie W F, et al. Fuzzy Adaptive Internal Model Control [C].IEEE Trans.on Industrial Electronics.2000,47(1):193-202.
    [81]Xie W F. Evaluation of A Hybrid Fuzzy Internal Model Control [J].Control and Computerss.1999,25(3):65-72.
    [82]刘金琨.智能控制[M].北京:电子工业出版社,2005:148-149.
    [83]蔡自兴.智能控制导论[M].北京:中国水利水电出版社,2007:136-137.
    [84]Lee S C, Lee E T. Fuzzy Sets and Neural Networks.Cybermetics[C].1974,4:83-103.
    [85]Takagi H. Neural Networks Designed on Approximate Reasoning Architecture and Their Applications[J].IEEE Trans.on Neural Network.1992,3(5):752-760.
    [86]Jang J S R, et al. Functional Equivalence Between Radial Basis Function Networks and Fuzzy systems[J].IEEE Trans.on Neural Network.1992,4(1):156-159.
    [87]Wang Y N. An Adaptive Control Using Fuzzy Logic Neural Network and Its Application[J].控制理论与应用.1995,12(4):437-444.
    [88]王丰尧.滑模变结构控制[M].北京:机械工业出版社,1995:41-43,322.
    [89]高为炳.变结构控制的理论及设计方法[M].北京:中国科学出版社,1990:134-141.
    [90]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005:2-14,109-181.
    [91]姚琼荟,黄继起,吴汉松.变结构控制系统[M].重庆:重庆大学出版社,1997:5-7,137.
    [92]胡耀明.变结构控制理论与应用[M].北京:科学出版社,2003:2-3.
    [93]张昌凡,何静.滑模变结构的智能控制理论与应用研究[M].北京:科学出版社,2005,2-3.
    [94]高为炳,程勉.变结构控制的品质控制[J].控制与决策,1989,4(4):1-6.
    [95]Slotine J J,Sastry S S.Tracking control of nonlinear systems using sliding surfaces with application to robot manipulator[J].International Journal of Control.1983,38(2):465-492.
    [96]Chung S C,Lin C L.A transformed lure problem for sliding mode control and chattering reduction[J].IEEE Transactions on,Automatic Control.1999,44(3):563-568.
    [97]Slotine T T E,Hedrick J K,Misawa E A.Nonlinear state estimation using sliding observers[C].Proc.25th Conf.Dec,Cont,Althens,Greece,Dec.1986:332-339.
    [98]Bruton J A,Zinober S I.Continuous approximations of variable structure control[C]. Int.J.SYS.SCI,1986,17(6):252-259.
    [99]Chen M S,Hwang Y R,Tomizuka M.A state-dependent boundary layer design for sliding mode control[J].IEEE Transaction on,Automatic Control,2002,47(10):1677-1681.
    [100]Seshagiri S,On introduction integral action in sliding mode control.Decision and Control[C],Proceeding of the 41st IEEE Conference on,2002,2:1473-1478.
    [101]W.J.Wang,GH.Wu,D.C.Yang.Variable Structure Control Design for Uncertain Discrete -Time Systems[J].IEEE Trans.1994,39(1):99-102.
    [102]Sami Z.Sarpturk,Yorgo Istefanopulos,Okyay Kaynak.On the Stability of Discrete-Time Sliding Mode Control systems[J].IEEE Trans.1987,32(10):930-932.
    [103]S.K.Spurgeon.Hyperplane Design Techniques for Discrete-Time Variable Structure Control systems.Int.J.Control[J].1992,55(2):445-456.
    [104]C.Y.Chan.Servo-Systems with Discrete-Variable Structure Control systems[C]. System & Control Letters.1991,17:321-325.
    [105]Milosavljevic C. General Conditions for the Existence of a Quasisliding Mode on the Switching Hyperplane in Discrete Variable Structure Systems[C].Automat.Remote Control.1985,46:307-314.
    [106]Xinghuo Yu.Discrete variable structure control systems[J]. Int. J.Systems.1993,24(2): 273-386.
    [107]Furuta K.Sliding mode control of a discrete system[J]. Systems & Control Letters.1990, 14(2):145-152.
    [108]Wang W J,Wu G H,Yang D C. Variable structure control design uncertain discrete time systems[J].IEEE Trans.AC.1994,39(1):99-102.
    [109]Gao W B,Wang Y F,Homaifa A. Discrete time variable structure control Systems [J] IEEE Trans.on Ind.Electr.1995,42(2):117-122.
    [110]姚琼荟,宋立忠,温洪.离散变结构控制系统的比例-等速-变速控制[J].控制与决策,2000,15(37):290-332.
    [111]Xu J,Lee T,Wang M. Design of variable structure controllers with continuous switching control[J].Int J.Contr.1996,65(3):409-431.
    [112]Koshkouei A J,Zinober A S I.Sliding mode control of discrete-time systems[J].Journal of Dynamic Systems,Measurement and control.2000,122:793-802.
    [113]Kachroo P,Tomizuka M.Chattering reduction and error convergence in the sliding mode control of nonlinear systems[J].IEEE Transactions on Automatic Control.1996, 41(7):1063-1068.
    [114]Krupp D,Shtessel Y B.Chattering-free sliding mode control with unmodeled dynamics[C].American Control Conference.1999:530-534.
    [115]Yongsoon E,Dong I D C.Robustness of multivariable discrete time variable structure control[J].Int.J.Contr.1999,72(12):1106-1115.
    [116]Lee S S,Park J K.Design of power system system stabilizer using observer/sliding mode,observer/sliding mode-model following and H-/sliding mode controllers for small-signal stability study [J].International Journal of Electrical Power & Energy Systems.1998,20(8):543-553.
    [117]宋立忠,陈少昌,姚琼荟.多输入不确定系统离散变结构控制设计[J].控制与决策,2003,18(4):468-471.
    [118]Lin F J,Chiu S L,Shyu K K.Novel sliding mode controller for synchronous motor drive[J].IEEE Transaction on Aerosoace and Electronic Systems.1998,34(2):532-542.
    [119]Lin F J,Shyu K K, Lin Y S.Variable structure adaptive control for PM synchronous servomotor drive[J].IEEE Proc-Electr.Power Appl.1999,146(2):173-185.
    [120]Song J B,Ishida Y.A robust sliding mode control for pneumatic servo systems[J].International Journal Engineering science.1997,35(8):711-723.
    [121]Erbatur K,Kawamura A.Chattering elimination via fuzzy boundry layer tuning[C]. IECON 02 Industrial Electronics Society,IEEE 2002 28th Annual Conference. 2002,3:2131-2136.
    [122]孙宜标,郭庆鼎,孙艳娜.基于模糊自学习的交流直线伺服系统滑模变结构控制[J].电工技术学报,2001,16(1):52-56.
    [123]Huang S J,Huang K S,Chiou K C.Development and application of a novel radial basis function sliding mode controller[C].Mechatonics.2003,13:313-329.
    [124]达飞鹏,宋文忠.基于输入输出模型的模糊神经网络滑模控制[J].自动化学报,2000,26(1):136-139.
    [125]Lin F J, Chou W D.An induction motor servo drive using sliding mode controller with genetic algorithm[J].Electric Power Systems Research.2003,64(2):93-108.
    [126]Parma G,Menezes B R,Braga A P,Costa M A. sliding mode neural network control of an induction motor drive[J].International Journal of Adaptive Cobtrol and Signal Processing.2003,17(6):501-508.
    [127]Yanada H,Ohnishi H.Frequency-shaped sliding mode control of an electrohydraulic servomoto[J].Journal of Systems and Control and Dynamics.1999,213(1):441-448.
    [128]Chen Hong Ming, Su Juhng Perng. Design of a cascade hybrid fuzzy terminal sliding mode controller for an electro-hydraulic position servo system[C]. First International Conference on Innovative Computing, Information and Control.2006,1:505-508.
    [129]刘云峰,缪栋.电液伺服系统的自适应模糊滑模控制研究[J].中国电机工程学报,2006,26(14):140-144.
    [130]Lizalde C,Loukianov A,Sanchez E.Force tracking neural control for an electro-hydraulic actuator via second order sliding mode[C].Proceedings of the 2005 IEEEInternational Symposium on, Mediterrean Conference on Control and Automation. 2005:292-297.
    [131]Chen Ning, Dong Hongzhao. Multiple sliding mode adaptive control of the closed electro-hydraulic proportional system[C]. Proceedings of the World Congress on Intelligent Control and Automation.2008:7307-7312.
    [132]Zhang Youwang, Gui Weihua. Compensation for secondary uncertainty in electro-hydraulic servo system by gain adaptive sliding mode variable structure control[J]. Journal of Central South University of Technology.2008,15(2):256-263.
    [133]Chen Hongming, Jyh-Chyang Renn, Juhng-Perng Su. Sliding mode control with varying boundary layers for an electro-hydraulic position servo system[J]. The International Journal of Advanced Manufacturing Technology.2005,26(2):117-123.
    [134]方一鸣,聂颖,王众.电液伺服位置系统的变结构自适应鲁棒控制[J].计算机仿
    真,2006,23(11):149-153.
    [135]段锁林,安高成,薛军娥等.电液伺服力控系统的自适应滑模控制[J].机械工程学报,2002,38(5):109-113.
    [136]Mohseni S A,Shooredeli M A,Teshnehlab M.Decoupled sliding-mode with fuzzy neural network controller for EHSS velocity contro[C],1.2007 International Conference on Intelligent and Advanced Systems.2007:7-11.
    [137]Perron M,De Lafontaine J,Desjardins Y. Sliding-mode control of a servomotor-pump in a position control application[C],. Canadian Conference on Electrical and Computer Engineering.2005:1287-1291.
    [138]Shoorehdeli M A,Teshnehlab M,Shoorehdeli H A.Velocity control of an electro hydraulic servo system[C]. Conference Proceedings-IEEE International Conference on Systems, Man and Cybernetics.2007:1536-1539.
    [139]LoukianovA G, Rivera J,Orlov Y V,Morales Teraoka E Y. Robust trajectory tracking for an electrohydraulic actuator[J],, IEEE Transactions on Industrial Electronics.2009,56(9): 3523-3531.
    [140]管成,朱善安.一类非线性系统的微分与积分滑模自适应控制及其在电液伺服系统中的应用[J].中国电机工程学报,2005,25(4):103-108。
    [141]冯巧玲.自动控制原理[M].北京:北京航空航天大学出版社,2003:323-352.
    [142]卢志刚,吴世昌,于灵慧.非线性自适应逆控制及其应用[M].北京:国防工业出版社,2004:45-46.
    [143]杨勇,罗安,覃爱娜.基于边界层模糊调节的液压系统准滑模变结构控制[J].湖南大学学报,2006,33(3):68-71.
    [144]靳宝全,杨洁明,梁义维.电液伺服单辊对中系统建模方法研究[J],机床与液压,2009,37(9):97-99.
    [145]靳宝全,熊诗波,梁义维等.考虑反馈机构动刚度的轧机伺服压下系统建模与仿真[J],中国机械工程,2008,19(11):1330-1335.