火电厂热工对象先进控制策略研究——多变量及键图控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DCS在我国火电机组中虽已广泛应用,但其控制策略均采用常规PID控制。因火电机组控制对象的复杂性,其设备和工作原理涉及多个领域,多个变量,动态特性具有非线性、大滞后和时变等特点,这种基于单回路固定模型的传统控制策略限制了控制品质的提高,因此开发出适合火电厂过程的先进控制策略具有重要意义。本文深入研究了多变量热工对象的先进控制策略问题,同时对键图模型先进控制进行了初步探索,主要内容可归纳为:
    针对非线性多变量对象,提出了基于模糊神经网络的非线性控制策略,使非线性引发的解耦模型无法实现和线性控制器品质差的问题,得到有效解决。文中首次提出了一种模糊神经网络学习算法:移动小论域法,设计了规则少的模糊神经网络非线性在线新控制器,并提出基于分散预测补偿和基于神经网络非线性补偿器的两种模糊神经网络多变量控制方案,
    针对大时滞多变量对象,设计了基于内模解耦的先进控制方案。内模控制含有Smith预估和逆控制思想,再融合解耦技术,可获得大时滞多变量对象高的控制品质。文中给出基于对消法的无时滞和有时滞两种多变量对象的时域内模解耦方案;又基于预测内模设计法,首次提出基于单值MAC的内模解耦多变量控制算法,包括输入无约束和输入有约束两种情况。
    从提高实时性角度出发,对大时滞多变量对象,本文还提出了在线计算复杂性低的预测函数先进控制策略。文中给出一阶时滞对象预测函数与规范串联前馈解耦技术相结合的多变量透明控制方案,又首次提出预测函数的多变量直接控制算法,并研究其在迟延平衡和迟延不平衡两种类型多变量对象上的解耦特性。
    为拓宽热工过程先进控制策略的研究领域,本文还对目前国际上新兴的键图模型控制进行了初探。首次将键图模型引入国内热力系统动力学领域,并直接研究基于键图模型的新型控制方法。文中成功首创了火电厂自然循环锅炉蒸发系统键图模型,汽包水位的动态仿真曲线证实,键图模型精度高;提出的基于无因果划键图模型的定性和定量信息混合控制方法,具有鲁棒性和精确性兼顾的好控制品质。
    最后将上述先进控制策略进行了应用仿真。非线性多变量球磨机对象和具有大惯性、大时滞耦合的汽-汽交换器多变量再热汽温对象上仿真结果证实,本文的研究对丰富火电厂多变量对象的控制具有重要理论意义和实用价值;键图新控制算法的仿真则为热工过程先进控制和控制理论发展提供了一个全新思路。
Although DCS is widely applied into power plant, its control strategy still depends on conventional PID theory. Due to the high complexity of fossil-fueled power plant, which involves equipments of multi-field and multivariable with the characteristics of nonlinear, large delay and time varying, the control performance is somewhat stunted by conventional control strategy based on single-loop, fixed parameter model. Therefore, it is important to develop advanced control strategies for thermal process control. In this dissertation advance control strategies of multivariable thermal process has been explored, and a control method based on bond graph model has also been discussed preliminarily.
    Facing nonlinear, multivariable process, a fuzzy neural network control strategy is presented. It not only realizes decoupling model with nonlinear, but also overcomes the low quality of linear controller. Both a learning algorithm of fuzzy neural network named small dynamic universe and a fuzzy neural network controller (FNNC) with simplified rules are firstly proposed. Then multivariable control scheme of FNNC with nonlinear decoupling based on distributed predictive compensation or neural network compensator is given.
    For the multivariable process with large delay, an internal model decoupling control structure is provided. An internal model control, which implies the principle of Smith estimator and inverse control, combines decoupling technology to achieve good performance for multivariable process with large delay. According to the cancellation method, IMC for multivariable process with or without large delay are designed individually. Besides, the MAC multivariable control algorithm based on prediction approach is proposed, which includes no input constraint condition and input constraint condition.
    In order to improve real-time performance of the algorithm, for large delay multivariable process a predictive functional control (PFC) with low complexity of calculation is proposed. A transparency control that incorporates P criterion decoupling into predictive functional control for first order plant of large delay is developed. Furthermore, a multivariable PFC is firstly presented and control performance is tested and studied on delay-balanced system and delay-unbalanced system.
    For enlarging the scope to advanced control of thermal process, on the other hand, the dissertation also preliminarily research on bond model control, which is a new control field in the world. A bond graph model is firstly introduced into thermaldynamics
    
    
    in our country and a control algorithm based on bond graph model is developed. Bond graph model of vaporization system of natural circulation boiler is successfully built and a simulation curve of the drum level demonstrates the high precision of the model. Further, a hybrid qualitative and quantitative control method based on bond graph of no causality stroke is put forward and can achieve a control performance of both robustness and precision.
    Simulation results of above advanced control strategy are also carried out. Tests on ball mill system with nonlinear coupling and reheat steam temperature with large time constant, large delay using steam-steam exchanger show that multivariable control strategies developed have important theoretical and practical advantage for process control of power plant. The bond graph control opens a new window to research on control theory and thermal process control.
引文
[1] 李子连, 王汉生. 火电厂热工自动化的发展、现状及前景. 中国电力, 1996, 29(12): 23-47
    [2] 杨庆柏. 21世纪火电厂热工自动化展望. 中国电力, 1999, 32(1): 45-48
    [3] 肖伯乐. 我国火力发电厂自动化技术的发展以及前景展望. 动力工程, 1999, 17(5): 46-59
    [4] 俞金寿. 工业过程先进控制. 中国石化出版社, 2002
    [5] D.C.Karnopp D.L.Margolis and R.C.Rosenberg System dynamics: modeling and simulation of mechatronic systems. John wiley and sons Inc, New York ,2000
    [6] 梁伟平. 球磨机制粉系统智能控制算法的研究及应用. [博士论文]. 保定:华北电力大学,2000
    [7] 徐盛仪, 付明地. 球磨机制粉系统动态数学模型及其MMS仿真. 重庆大学学报, 1994, 17(5): 115-120
    [8] 吕剑虹, 张世军, 陈来九. 自学习多变量汽温控制系统, 东南大学学报, 1995, 25(5) : 33-38
    [9] 李道林. 国产电站锅炉再热汽温调节实用技术探讨, 动力工程, 1999, 19(1): 17-22
    [10] 王东风, 于希宁, 宋之平. 制粉系统的球磨机的动态模型及分布式神经网络逆系统控制.中国电机工程学报, 2002, 22(1): 97-101
    [11] 白焰. 神经解耦控制在钢球磨煤机中间储仓式制粉系统中的应用研究[博士论文]. 沈阳:东北大学,1997
    [12] 田涛. 自适应预估控制及其在火电厂DCS中的应用[博士论文]. 北京:华北电力大学, 2000
    [13] 李旭. 蒸汽发生器的动态特性[博士论文]. 北京:清华大学, 1988
    [14] 刘建江. 大型火电厂中的H∞控制[博士论文]. 北京:清华大学, 1999
    [15] 宋春平. 自适应预估控制研究及其在火电机组中的应用. [博士论文]. 北京:清华大学, 2000
    [16] 王永初. 解耦控制系统. 成都:四川科学技术出版社, 1985
    [17] Falb P.L, Wolovich WA. Decoupling in the design and synthesis of multivariable control systems. IEEE Trans Auto Control. 1969, AC-12(6): 651-659
    [18] Gilbert EG. The Decoupling of multivariable system by state feed back. SIAM Joural of Control, 1969, 7(1): 50-63
    [19] Sinba PK. A new condition for output feedback decoupling of multivariable systems. IEEE Trans Auto Contro, 1979, AC-24(3): 476-478
    [20] Wolovich WA. Static Decoupling. IEEE Trans Auto Control, 1976, AC-18(5): 536-537
    [21] Cremer M. A precompensator of minimal order for decoupling a linear multivariable system.. Int I Control, 1971, 15: 1089-1103
    [22] Sinha PK.Dynamic Compensation for state feedback decoupling of multivartiable system. Int J control, 1976, 24(5): 673-684
    [23] Furuta K, Kamiyawa S. Feedback and inverse systems. Int J Control, 1977, 25(2):
    
    
    229-241
    [24] 高建兵,王诗宓. 弱内耦合系统的三角解耦极点配置算法. 控制理论与应用, 1989, 6(2): 93-99
    [25] Rosenbrock H.H. Computer-aided control system design. London: Academic Press, 1974
    [26] Mac Farlane AGJ, Kouvaritakis B. A design technique for linear multivariable feedback system.. Int J control, 1977, 25(6): 837-874
    [27] Patel R.V, Munro N. Multivariable system theory and design. Oxford, England: pergamon press, 1982
    [28] Owens DH. Dyadic approximation method for multivariable control system analysis with a Nuclear-Reactor Application. IEE proc, 1973, 120(7): 801-809
    [29] Owens DH. Dyadic expansion for the analysis of linear multivariable systems. IEE proc. 1974,121(7): 713-716
    [30] Owens DH. Feedback and Multivariable systems. London: Peter Peregrinus, 1978
    [31] Mayne DQ. The design of linear multivariable systems. Automatica, 1973, 9(2): 201-207
    [32] 金以慧. 过程控制. 北京:清华大学出版社, 1995
    [33] C.C. Hang, K.J.strom. Refinements of the Ziegler-Nichols tuning formula. IEE proceeding-control theory and applications, 1991, 138(2): 111-118
    [34] Simth O.J.M. A controller to overcome dead time. ISAJ, 1958, 2: 28-33
    [35] Giles R.F, Bartley T.M. Gain-adaptive dead time compensation, ISA.Trans, 1977, 1: 21-30
    [36] Leva A, Maffezzon C and Scattonlini R. Self-tuning PI-PID regulators for stable systems with varying delay. Automatica, 1994, 30(7): 1171-1183
    [37] 张卫东, 孙优贤. 大纯滞后对象的H2鲁棒控制. 控制理论与应用, 1996, 13(4): 495-498
    [38] 楮健, 胡协和等. 离散时滞系统最优跟踪控制及应用. 自动化学报, 1995, 21(1): 24-31
    [39] Mizuno N and Fujii S. Discrete time multivariable adaptive control for non-minimum phase plants with unknown dead time. IFAC Adaptive Systems in control and signal processing. San Francisco, USA,1983,363-368
    [40] 阮学斌, 祝和云, 孙红等. 多时滞多变量系统的自校正控制及应用. 自动化学报, 1992, 18(1): 116-119
    [41] 邓自立, 黄先日. 多变量解耦极点配置组合自校正前馈控制器.自动化学报, 1991, 17(5): 116-119
    [42] 罗毅, 田涛, 杨志远, 宋春平. 具有可调增益前移的自适应预估控制及其在电厂DCS中的应用. 中国电机工程学报, 2000,20(10): 84-88
    [43] 陆会明, 刘禾, 吕跃刚, 董树新. 模型参考自适应预估在锅炉再热汽温控制中的应用. 2001中国控制与决策学术年会论文集, 西安, 2001:230-233
    [44] Richalet J,Rault A,Testud J L,et al. Model predictive heuristic control: application to industrial processes. Automatica, 1978, 14(2): 413-428
    
    [45] Cutler C R and Ramaker B L.Dynamic Matrix Control— a computer control algorithm. Automatic Control Conference, SanFranciso, 1980
    [46] Clarke D W, Mohtadi C, and Tuffs P S. Generalized predictive control-part Ⅰ: the basic algorithm. Automatica, 1987, 23(2): 137-148
    [47] Clarke D W, Mohtadi C, and Tuffs P S. Generalized predictive control-part Ⅱ: ex tension and interpretation. Automatica, 1987, 23(2): 149-160
    [48]?席裕庚. 预测控制. 国防工业出版社. 1993
    [49] 舒迪前. 预测控制系统及其应用. 机械工业出版社. 1996
    [50] 王伟. 广义预测控制理论及应用. 科学出版社, 1998
    [51] 任锦堂. 键图理论及应用:系统建模与仿真. 上海交通大学出版社, 1992
    [52] Thoma J and Ould Bouamama B. Modelling and simulation in thermal and chemical engineering: a bond graph approach. Germany: Springer-Verlag Berlin Heidelberg, 2000
    [53] 林山. 多体系动力学的键图模拟和仿真. [硕士论文]. 杭州:浙江大学, 1991
    [54] 杨亮. 泵压力脉动对节流调速系统动态特性影响的研究. [硕士论文]. 哈尔滨:哈尔滨工业大学, 1998
    [55] 李成金. 大型多动力系统动态响应特性优化设计方法. [博士论文]. 西南交通大学, 1993
    [56] Abouaissa H and Ferney M. Qualitative modeling and analysis of dynamic systems: an unified approach based on bond-graph and colored petri nets. Proceedings of IFAC information control in manufacturing. Nancy-Metz France, 1998: 307-312
    [57] Garcia C.E. Morari M. Internal model control.1. A unifying review and some new results. I&EC Process Des. Dev. 1982, 21(2): 308-323
    [58] Richalet J et al. Predictive functional control: application to fast and accurate robots. IFAC 10th World Congress. Munich: 1987: 251-258
    [59] 金晓明, 王树青, 荣冈. 预测函数控制(PFC)-一种新型预测控制略. 化工自动化及仪表, 1999, 26(2): 74-80
    [60] 章卫国, 杨向忠. 模糊控制理论与应用. 西安:西北工业大学出版社,1999
    [61] Jang J.R. ANFIS: Adaptive-Network-Based Fuzzy Inference System[J]. IEEE Trans on Syst .Man and Cerby. 1993, 23(3): 666-684
    [62] 张乃尧, 阎平凡. 神经网络与模糊控制. 清华大学出版社, 1998
    [63] 杨锡运,徐大平.一种模糊神经网络学习算法:移动小论域法. 系统仿真学报, 2002, 8: 992-994
    [64] 王立新. 自适应模糊系统与控制:设计与稳定性分析. 北京:国防工业出版社. 1995
    [65] Wang, L.X.and Mendel, ,J.M. Fuzzy basic function, universal approximation and orthogonal least squares learning. IEEE Transactions on Neural Networks, 1992, 3(5): 807-814
    [66] Lin.C.T . A neural fuzzy control system with structure and parameter learning. Fuzzy set and system., 1995, 70: 183-212
    [67] Takagi. I, & Sugeno, M. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on System Man and Cybernetics, 1985, 15: 116-132
    [68]Chen C L, Chang F Y. Design and analysis of neural/fuzzy variable structural PID
    
    
    control systems. IEEE Pro-Control Theory Application, 1996, l43(2): 200-208
    [69] 舒怀林. PID神经元网络多变量控制系统分析. 自动化学报, 1999, 25(1):105-111
    [70] 柴天佑. 多变量自适应解耦控制. 科学出版社及应用, 2001: 169-171
    [71] Morari M. Zafiriou E. Robust Process Control. Prentice-Hall, 1988
    [72] 郑恩让,张玲. 内模控制在造纸生产定量控制中的应用. 化工自动化及仪表, 2001, 28(3): 23-24
    [73] 庄圣贤,陈永校,李肇基. 异步电机定子电流的内模自适应控制及实现. 控制理论与应用. 2001, 17(4): 553-556
    [74] 张井岗等. 直流电动机调速系统的内模控制. 电机与控制学报. 1998, 2(2): 126-128
    [75] Garcia C.E. Morari M. Internal model control .2. design procedure for multivariable systems. I&EC Process Des. Dev. 1985, 24(2): 472-484
    [76] Garcia C.E. Morari M. Internal model control .3 multivariable control law computation and tuning guidelines. I&EC Process Des. Dev. 1985,24(2): 484-494
    [77] Garcia C.E. Morari M. Internal model control .4 PID controller design. I&EC Process Des. Dev. 1986, 25(1): 252-265
    [78] 赵曜.基于内模结构的鲁棒有限拍控制及其与预测控制的比较. 中国过程控制会议论文集, 中国科学出版社, 1995: 157-162
    [79] 张井岗, 吴聚华, 曾建潮. 模型参考自适应内模控制及其仿真研究. 系统仿真学报, 1997, (4): 38-43
    [80] 郭庆鼎,孙艳娜. 基于内模原理的直线永磁同步伺服电机H_∞控制.?控制理论与应用, 2000, 17(4): 509-512
    [81] 刘建江, 倪维斗, 杨艳萍. 一种鲁棒simth预估器的设计方法. 清华大学学报, 1999, 39(9): 54-57
    [82] 李益国, 沈炯, 吕震中. 火电单元机组负荷模糊内模控制及其仿真研究. 中国电机工程学报, 2002, 22(4): 90-93
    [83] 陈捷, 王宁, 王树青. 汽油调和过程的神经内模优化控制. 控制理论与应用. 1999, 16(8): 532-535.1999
    [84] 李新利. 神经网络在线解耦算法的研究. 北京:华北电力大学硕士论文, 2001
    [85] Rouhani R,Mehra R K. Model algorithmic control (MAC); basic theoretical properties. Automatica, 1982,18(4): 401-414
    [86] Kuntze H B, Jacubasch A, Richalet J, et al. On the predictive functional control of an elastic industrial robot. Proc. 25th CDC, Athens, Greece: 1986: 1877-1881
    [87] Cuadrado D, Nicodeme P, et al. Application of global identification and predictive functional control to a tracking turret, European control conference, Grenoble, France, 1991, (7): 2-5
    [88] Compas J M, Decarreau P, et al. Industrial applications of predictive functional control to rolling mill, fast robot, river dam. Proc 3th IEEE conference on control applications, Glasgow, UK, 1994, 3: 1643-1655
    [89] 金晓明, 王树青,荣冈. 先进控制技术及应用:第五讲 预测函数控制(PFC)—一种新型预测控制策略. 化工自动化及仪表, 1999, 26(6): 74-79
    [90] 张智焕, 王树青, 王宁. 液压机器人的预测函数控制. 控制与决策, 2002, 17(1):
    
    
    120-122
    [91] 潘红华, 苏宏业, 胡剑波, 楮健. 预测函数控制及其在导弹控制系统中的应用. 火力与控制指挥, 2000, 25(2): 56-59
    [92] 张泉灵. 预测函数控制及应用研究. 浙江大学博士论文. 1999
    [93] Skrjanc I, Matko D. Predictive Functional control Based on fuzzy model for heat-exchanger pilot plant, Proc 14th triennial world congress of IFAC Q-9c-02-6,Beijing, china, 1999: 341-345
    [94] 邹健, 诸静. 模糊预测函数控制在水泥回转窑分解炉温控系统中的应用研究. 硅酸盐学报, 2001, 29(4): 318-321
    [95] 陈琦, 金晓明, 王树青. 芳烃生产过程精馏塔的先进控制, 信息与控制, 1999, 28(增刊):333-337
    [96] 王国玉, 韩璞, 王东风. 预测函数控制及其应用研究. 系统仿真学报, 2002, 14(8): 1087-1091
    [97] 张泉灵, 王树青. 化学反应器温度跟踪预测函数控制的研究及应用. 控制理论与应用, 2001, 18(4): 559-563
    [98] 孙建平. 时滞及非最小相位系统智能复合控制策略研究. [博士论文]. 保定:华北电力大学, 2001
    [99] 胡家升, 潘红华, 苏宏业, 楮健. 预测函数控制系统的闭环性能分析. 控制理论与应用, 2001, 18(5): 774-778
    [100] Qiang Bi, Wen-jian Cai. Robust identification of first-order plus dead-time model from step response. Control engineering practice. 1999, (7): 71-77
    [101] 张尚才. 工程系统的键图模拟和仿真. 机械工业出版社, 1993
    [102] Rosenber R C. Exploiting bond graph causality in physical system models. Trans. ASME J. .Dya. Sys. Meas. and contro, 1987, 109(4): 378-383
    [103] Dean Karnopp. Alternative bond graph causal patterns and equation formulations for dynamic systems. Trans. ASME J. .Dya. Sys. Meas. and control, 1983, 105(6): 58-63
    [104] Rosenberg R C. The ENPORT-6 user’s manual. Lansing: Rosencode associates Inc, 1986
    [105] Meerman. TUTSIM user’s manual for apple-Ⅱ computers. Enschede:twente university press,1983
    [106] 郭金洪. 键图模拟和仿真软件UNISIMS系统的设计与实现. 浙江大学硕士论文, 1988
    [107] 陈少中. 键图仿真技术与图形交互式键图仿真软件的开发. 浙江大学硕士论文, 1992
    [108] 李利, 樊志新等. 面向功率键合图的通用仿真软件的研究. 计算机仿真, 2000, 17(4): 47-51
    [109] 方旭东, 诸文农, 牛铭奎. 连续系统键图模型状态空间方程的自动实现. 吉林工业大学自然科学学报. 1999, 29(2): 18-23
    [110] Barreto J.M. The role of bond graphs in qualitative modeling. [C]. In: Proceedings of the 12th IMACS world congress on scientific computation. 1988, 1(1): 84-87
    [111] Hang Wang and Derek Linkens. Intelligent supervisory control : a qualitative bond
    
    
    graph reasoning approach. World scientific publishing Co, 1996
    [112] 南京工学院,西安交通大学热能动力教研室. 电厂锅炉原理. 水利电力出版社, 1984
    [113] 章臣樾. 锅炉动态特性及其数学模型. 北京:水利电力出版社, 1987
    [114] 王广军, 辛国华. 热力系统动力学及其应用. 科学出版社, 1997
    [115] 范仲元. 水和水蒸汽热力性质图表. 中国电力出版社, 1996
    [116] Arlb J, Sueur Dauphin-Tanguy G. Disturbance rejection by static state feedback on bond graph model. Proceeding of IFAC 14th Triennial World Congress, Bejing P. R. China, 1999, 297-302
    [117] Dauphin-Tanguy G and Gruyitch ly T. Strict monotonous asymptotic energetic stability part Ⅱ: bond graph resolutions. Proceeding of IFAC 14th Triennial World Congress, 1999, Bejing, China, 1999, 443-448
    [118] Granda J J. Computer generation of physical system differential equations using bond graphs. Journal of Franklin institute, 1985, 319(1/2): 243-255
    [119] D. Sbarbaro et al. Neural control of a steel rolling mill. IEEE Control Systems Magazine 1993, 13(4): 69-75
    [120] 杜建吉等. 料位监控技术在DTM350/580球磨机上的应用. 中国电力, 2000, 33(3):56-58
    [121] 姚刚,周洪等. 我国火力发电厂钢球磨煤机控制系统研究. 湖北电力, 1999, 23(4): 15-18
    [122]于西宁,边立秀,孙建平. 磨煤机解耦控制系统的设计与调试. 河北电力技术, 1994, 6: 10-13
    [123] 姚钢,周洪等. 球磨机神经元解耦控制系统. 东北电力技术. 2000, 2: 6-9
    [124] 王东风. 多变量智能控制在电厂制粉系统中的应用研究. [博士论文]. 保定:华北电力大学,2001