非线性模型预测控制的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的发展和科学技术的进步,对产品的质量和产量要求的不断提高,对生产经济效益的不断追求以及工业生产过程日趋大型化、复杂化,工作点的变化范围大,使得以往采用工作点附近的线性化模型来设计控制器的线性预测控制方法已不能满足控制性能要求。因此,关于非线性模型预测控制的研究已成为控制工程界的重要研究命题。本文在前人研究工作基础上,从实际出发,对非线性预测控制的若干问题进行了较为深入的研究,其中包括:
     (1)针对一类Wiener模型描述的非线性系统,提出了一种改进的非线性预测控制方法。该方法将Wiener模型线性部分的控制增量信号描述成Laguerre级数展开式,将预测控制中在预测时域内优化求解未来控制输入序列转化为优化求解一组无记忆的Laguerre系数,以减少优化所需的计算量;利用静态T-S模糊模型来逼近Wiener模型的非线性部分,进而利用线性预测控制方法求解控制律。CSTR过程仿真结果表明该方法是可行的。
     (2)针对MIMO非线性系统,提出了一种自适应模糊预测函数控制方法。该方法利用T-S模型进行建模,然后利用加权递推最小二乘法在线辨识模型后件参数,以克服模型失配的影响;在每一采样点进行单步线性化,将T-S模型描述的非线性系统转化为线性时变的状态空间模型,从而解决了非线性预测控制中如何获得预测模型以及非线性优化求解的问题。pH中和过程仿真结果表明该方法具有良好的跟踪性能和较强的鲁棒性。
     (3)针对一类满足扇形界条件的不确定模糊模型描述的非线性系统,提出了一种输出反馈鲁棒预测控制方法。该方法不需要系统状态完全可测,仅仅利用系统测量输出和不可测状态的界限值来确定保证闭环系统稳定的预测控制器。仿真结果表明该方法能够获得较好的控制效果。
     (4)针对一类具有状态时滞的离散不确定非线性系统,提出了一种扩展鲁棒预测控制方法。该方法将鲁棒预测控制的‘worst-case'目标函数优化问题转化为具有LMI约束的线性目标最小化问题。在LMI优化问题可行解存在条件下,该方法保证了闭环系统的鲁棒渐近稳定。CSTR过程的仿真结果显示了该方法是有效的、可行的。
     (5)将微粒群优化(PSO)算法用于输入受限非线性系统,提出了一种基于PSO的非线性模型预测控制方法。该方法采用双模控制策略,在不变集外,利用PSO算法优化求解预测控制律,使系统状态进入不变集;在不变集内,利用线性状态反馈使系统状态渐近稳定。仿真结果表明该方法的优化效率优于遗传算法。
     (6)针对采用常规控制出口温度波动大、燃烧状况差等特点,设计开发了以计算量
With the development of modern industry and progress of science technology, the process industry is changed to more complex and with strong nonlinear characteristics so that linear model predictive control (LMPC) may not always obtain satisfactory control results. Predictive control based nonlinear model (NMPC) has become an important research issue in the control engineering fields. Some problems of nonlinear predictive control are researched in this dissertation, and the main research works are as follows:(1) An improved nonlinear predictive control approach based on Wiener model is proposed for a class of nonlinear systems. Laguerre functions are used to describe control input of linear section of Wiener model, optimization solutions of the future control input sequences are converted into optimization of a set of immemorial Laguerre coefficients in prediction horizon. Fuzzy static model is used to approximate nonlinear section of Wiener model, optimization of nonlinear predictive control is converted into linear optimization problem. Simulation results of CSTR show that the proposed approach is feasible.(2) An adaptive fuzzy predictive functional control approach based on T-S model for multivariable nonlinear systems is proposed. The premise parameters of T-S fuzzy model are kept constant;the model consequent parameters are identified online by using the weighting recursive least square method in order to overcome the influence of model mismatch on the performance of the control system. T-S fuzzy model is linearized to be time-varying state space model in each sample point. Two major difficulties in nonlinear predictive control to obtain accurate prediction model and to solve nonlinear optimization online are effectively solved. Simulation results of pH neutralization process show that the proposed approach is an effective control strategy with excellent tracing ability and robustness.(3) An output feedback robust predictive control approach based on uncertain fuzzy models satisfying the sector bounds is proposed for a class of nonlinear systems. The system states don't need exactly measurable, only the measure outputs and the extreme values of the unmeasured states are used to determine the controller. Stability of the closed-loop system is demonstrated. Simulation results show that the proposed approach is valid.(4) An extended robust predictive control approach for discrete uncertain nonlinear systems with state time-delay is presented. The minimization problem of the 'worst-case' objective function is converted into the linear objective minimization problem involving linear matrix inequalities constraints (LMIs). The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability on robust performance index is given. Simulation results of CSTR process show that the proposed
    approach is effective and feasible.(5) A particle swarm optimization (PSO)-based predictive control approach is proposed for input constrained nonlinear systems. The dual-mode control strategy and the invariant set theory are used. Outside the invariant set, predictive control law is solved by PSO algorithm. Inside the invariant set, the system states are stabilized gradually by linear state feedback control. Simulation results show that the optimal efficiency of the proposed approach is better than GA.(6) Aiming at the status of outlet temperature fluctuating greatness and thermal efficiency reduction based on conventional control, the advanced control system is designed and exploited for delayed coking furnace. Predictive functional control with little computing quantity and strong robustness is used as the core algorithm, in addition feedforward control and feedback control. CS3000 distributed control system (DCS) is used as the exploitation platform. All kinds of conventional control module, calculation module and logic module of DCS are used to make configuration of advanced control algorithm. The system is safe and credible, dispenses with appending new hardware. Since the system runs, outlet temperature and oxygen content of the furnace become much calmer, burning status is improved, and thermal efficiency is increased.
引文
[1] 席裕庚.预测控制[M].北京:国防工业出版社,1993.
    [2] 舒迪前.预测控制系统及其应用[M].北京:机械工业出版社,1996.
    [3] Garcla C E, Prett D M, Morari M. Model predictive control: Theory and practice-a survey [J]. Automatica, 1989, 25(3): 335-348.
    [4] Richer N L. Model predictive control: State of the art [A]. In Arkun Y, Ray W H (Eds.), Chemical Process Control-CPC Ⅳ, International Conference on Chemical Process Control [C], Amsterdam: Elsevier, 1991, pp: 271-296.
    [5] Morari M, Lee J H. Model predictive control: The good, the bad, and the ugly [A]. In Arkun Y, Ray W H (Eds.), Chemical Process Control-CPC Ⅳ, International Conference on Chemical Process Control [C], Amsterdam: Elsevier, 1991, pp: 419-444.
    [6] Muske K R, Rawlings J B. Model predictive control with linear models [J]. AIChE Journal, 1993, 39(2): 262-287.
    [7] 席裕庚,许晓鸣.预测控制的现状、机理及发展前景[M].孙优贤,钱积新编,工业过程模型化及控制,杭州:浙江大学出版社,1988,pp:1-6.
    [8] 席裕庚,许晓鸣,张钟俊.预测控制的研究现状和多层智能预测控制[J].控制理论与应用,1989,6(2):1-7.
    [9] 徐立鸿.预测控制的研究现状及问题[J].控制理论与应用,1994,11(1):121-125.
    [10] 梁春燕,谢剑英.预测控制中的若干问题研究[J].自动化与仪器仪表,1999,84(4):10-13.
    [11] Morari M, Lee J H. Model predictive control: Past, present and future [J]. Computers and Chemical Engineering, 1999, 23: 667-682.
    [12] Mayne D Q, Rawlings J B, Rao C V, Scokaert P O M. Constrained model predictive control: Stability and optimality [J]. Automatica, 2000, 36:789-814.
    [13] 席裕庚,耿晓军,陈虹.预测控制性能研究的新进展[J].控制理论与应用,2000,17(4):469-475.
    [14] 翟春艳,李书臣.模糊预测控制算法[J].自动化仪表,2004,25(3):1-5.
    [15] Richalet J, Rault A, Testud J L, Papon J. Model predictive heuristic control: Application to industrial processes [J]. Automatica, 1978, 14(5): 413-428.
    [16] Cutler C R, Ramaker B L. Dynamic matrix control-a computer control algorithm [A]. Proceedings of the American Control Conference [C], San Francisco, 1980.
    [17] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control: Part Ⅰ-Ⅱ. Basic algorithm [J]. Automatica, 1987, 23(2): 137-160.
    [18] Lelic M A, Zarrop M B. Generalized pole placement self-tuning controller [J]. International Journal of Control, 1987, 46(2): 547-568.
    [19] Garcia C E, Morari M. Internal model control, 1. —A unifying review and some new results [J]. IEC Process Des. Dev., 1982, 21(2): 308-323.
    [20] 张泉灵.预测函数控制及应用研究[D].浙江大学博士学位论文,1999.
    [21] Rawlings J B, Meadows E S, Muske K. Nonlinear model predictive control: A tutorial and survey [A]. Proceedings of IFAC ADCHEM [C], Japan, 1994.
    [22] Allgower F, Badgwell T A, Qin S J, Rawlings J B, Wright S J. Nonlinear predictive control and moving horizon estimation-an introductory overview [A]. In Frank P M (Eds.), Advances in control: highlights of ECC'99, Berlin: Springer, 1999.
    [23] Rawlings J B. Tutorial overview of model predictive control [J]. IEEE Control Systems Magazine, 2000, 20: 38-52.
    [24] Qin S J, Badgwell T A. An overview of nonlinear model predictive control applications. In Kantor J C, Garcia C E, Carnahan B (Eds.), Nonlinear model predictive control. Basel: Birkhauser, 2000.
    [25] 陈虹,刘志远,解小华.非线性模型预测控制的现状与问题[J].控制与决策,2001,16(4):385-391.
    [26] Norquay S J, Palazoqlu A, Romaqnoli J A. Model predictive control based on Wiener models [J]. Chemical Engineering Science, 1998, 53(1): 75-84.
    [27] Norquay S L, Palazoglu A, Romagnoli J A. Nonlinear model predictive control of pH neutralization using Wiener models [A]. Proceedings of the 13th IFAC Worm Congress [C], San Fransisco, 1996, pp: 31-36.
    [28] Ania L C, Osvaldo E, Agamennoni J L. A nonlinear model predictive control system based on Wiener piecewise linear models [J]. Journal of process control, 2003, 13: 655-666.
    [29] Genceli H, Nikolaou M. Design of robust constrained model-predictive controllers with Volterra series [J]. AIChE Journal, 1995, 41(9): 2098-2107.
    [30] Doyle F J, Ogunnaike B A, Pearson R K. Nonlinear model-based control using second-order Volterra models [J]. Automatica, 1995, 31(5): 697-714.
    [31] 黄道平,朱学峰.基于Hammerstein广义模型的多变量非线性预测控制[J].暨南大学学报,(自然与医学版),1998,19(1):13-19.
    [32] Zhu X F. Nonlinear predictive control based on Hammerstein models [J]. Control Theory & Applications, 1994, 11(5): 564-575.
    [33] 张泉灵,王树青.基于Hammerstein模型的非线性预测函数控制[J].浙江大学学报(工学版),2002,36(2):119-122.
    [34] 李嗣福,刘勇,刘禾.基于Laguerre函数模型的预测控制算法[J].中国科学技术大学学报,1999,29(3):281-288.
    [35] 夏伯锴,袁璞.基于Laguerre函数模型的大纯滞后系统预测控制[J].石油大学学报,2002,26(6):110-112.
    [36] Wang L P. Discrete model predictive controller design using Laguerre functions [J]. Journal of Process Control, 2005, 14: 131-142.
    [37] Christos C Z, Dumont G A. Deterministic adaptive control based on Laguerre series representation [J]. International Journal of Control, 1988, 48(6): 2333-2359.
    [38] 赵豫红,顾钟文,付烈勇,周春晖.双线性系统的一种预测控制算法[J].浙江大学学报(增刊),1998,pp:111-116.
    [39] Kim E, Lee H, park M. A simply identified Sueno-type fuzzy model via double clustering [J]. Information Sciences, 1998, 110: 25-39.
    [40] Bruce E P. Building a model-based fuzzy controller [J]. Fuzzy Sets and Systems, 1996, 79: 3-13.
    [41] Taniguchi T, Tanaka K, Wang H O. Fuzzy descriptor systems and nonlinear model following control [J]. IEEE Transactions on Fuzzy Systems, 2000, 8(4): 442-452.
    [42] Chen F C, Khalil H K. Adaptive control of a class of nonlinear discrete-time systems using neural networks [J]. IEEE Transactions on Automatic Control, 1995, 40(5): 791-801.
    [43] Piche S, Sayyar-Rodsari B, Johnson D, Gerules M. Nonlinear model predictive control using neural networks [J]. IEEE Control systems magazines, 2000, 20(3): 53-62.
    [44] Alexandridis A, Sarimveis H. Nonlinear adaptive model predictive control based on self-correcting neural network models [J]. AIChE Journal, 2005, 51(9): 2495-2506.
    [45] Sadeghian A R, Lavers J D. On the use of recurrent neuro-fuzzy networks for predictive control [A]. IEEE Joint 9th IFSA World Congress and 20th NAFIPS International Conference [C], 2001, 1: 233-238.
    [46] Jalili-Kharaajoo M, Besharati F. Intelligent predictive control of a solar power plant with neuro-fuzzy identifier and evolutionary programming optimizer [A]. IEEE Conference on Emerging Technologies and Factory Automation [C], 2003, 2:173-176.
    [47] Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15: 116-132.
    [48] Tanaka K, Sugeno M. Stability analysis and design of fuzzy control systems [J]. Fuzzy Sets and Systems, 1992, 45: 135-156.
    [49] Oliver H, Oliver N, Olaf M. Nonlinear systems identification and predictive control of a heater exchanger based on local fuzzy model [A]. Proceedings of the American Control Conference [C], 1997, pp: 3294-3298.
    [50] Xie K M, Zhang J W, Lin T Y. A new dynamic matrix control algorithm based on FNN-TS fuzzy model [A]. Proceedings of the IEEE ICIPS [C], Beijing, 1997.
    [51] Hadjili M L, Wertz V. Generalized predictive control using Takagi-Sugeno fuzzy models [A]. Proceedings of the IEEE International Symposium on Intelligent Control intelligent Systems and Semiotics [C], 1999, pp: 15-17.
    [52] Roubos J A, Mollov S, Babuska R, Verbruggen H B. Fuzzy model based predictive control using Takagi-Sugeno models [J]. International Journal of Approximate Reasoning, 1999, 22: 3-30.
    [53] Abonyi J, Nagy L, Szeifert F. Fuzzy model-based predictive control by instantaneous linearization [J]. Fuzzy Sets and Systems, 2001, 120(1): 109-122.
    [54] 刘忠信,孙青林,陈增强,袁著祉等.基于T-S模型的钻杆对中自适应预测控制[J].控制与决策,2002,17(3):372-375.
    [55] Mahfoufa M, Kandiahb S, Linkensa D A. Fuzzy model-based predictive control using an ARX structure with feedforward [J]. Fuzzy Sets and Systems, 2002, 125: 39-59.
    [56] 王寅,荣冈,王树青.基于模糊模型的非线性预测控制策略[J].控制理论与应用,2002,19(4):599-603.
    [57] Liu B, Shen Q, Su H Y, Chu J. A nonlinear predictive control algorithm based on fuzzy on-line modeling and discrete optimization [J]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 2003, pp: 816-821.
    [58] Sarimveis H, Bafas G. Fuzzy model predictive control of non-linear processes using genetic algorithms [J]. Fuzzy Sets and Systems, 2003, 139: 59-80.
    [59] 刑宗义,胡维礼,贾利民.基于T-S模型的模糊预测控制研究[J].控制与决策,2005,20(5):495-499.
    [60] Graham B P, Newell R B. Fuzzy identification and control of a liquid rig [J]. Fuzzy Sets and Systems, 1988, 26: 255-273.
    [61] 雎刚,陈来九.模糊预测控制及其在过热汽温控制中的应用[J].中国机电工程学报,1996,16(1):17-21.
    [62] 雎刚,陈来九.模糊预测控制及其应用研究[J].控制与决策,1997,12(1):83-87.
    [63] 金晓明,荣冈,王树青.基于模糊模型的多变量预测控制算法[J].控制与决策,1998,13(4):332-336.
    [64] 雎刚,陈来九.一种新的预测控制算法:模糊预测控制算法[J].控制理论与应用,1998,15(1):143-147.
    [65] Wong C H, Shah S L, Bourke M M, Fisher D G. Adaptive fuzzy relational predictive control [J]. Fuzzy Sets and Systems, 2000, 115: 247-260.
    [66] 李静如等.模糊预测控制及应用研究[J].控制理论与应用,1992,9(3):283-287.
    [67] Sousa J M, Kaymak U, Verhaegen M, Verbruggen H B. Convex optimization in fuzzy predictive control [A]. Proceedings of the 35th IEEE Conference on Decision and Control [C], 1996, 3: 2735-2740.
    [68] Kaymak U, Sousa J M, Verbruggen H B. A comparative study of fuzzy and conventional criteria in model-based predictive control [A]. Proceedings of the 6th IEEE Conference on Fuzzy Systems [C], Barcelona, Spain, July 1997, pp: 907-914.
    [69] Sousa J M, Setnes M, Baputista L F. Model predictive algorithms based on fuzzy discrete alternatives [A]. Proceedings of the IEEE International Conference on Fuzzy Systems [C], Seoul, Korea, August 1999, pp: 228-233.
    [70] Thompson R, Dexter A. A fuzzy decision-making approach to temperature control in air-conditioning systems [J]. Control Engineering Pratice, 2003, 13: 689-698.
    [71] 冯晓云,赵冬梅,李治.基于满意优化的模糊多目标预测控制算法研究[J].西南交通大学学报,2002,37(1):99-102.
    [72] 李少远,席裕庚.模糊动态环境下复杂系统的满意优化控制[J].自动化学报,2002,28(3):408-411.
    [73] 张智焕.复杂系统预测控制算法及其应用研究[D].浙江大学博士学位论文,2002.
    [74] 李柠,李少远,席裕庚.MIMO系统的多模型预测控制[J].自动化学报,2003,29(4):516-523.
    [75] Bitmead R R, Gevers M, Wertz V. Adaptive optimal control-the thinking man's GPC [M]. Prentice-Hall, New York, 1990.
    [76] Rawlings J B, Muske K R. The stability of constrained receding horizon control [J]. IEEE Transactions on Automatic Control, 1993, 38(10): 1512-1516.
    [77] Keerthi S S, Gilibert E G. Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: stability and moving horizon approximations [J]. Journal of Optimization Theory and Application, 1988, 57: 265-293.
    [78] Mosca E, Lemos J M, Zhang J. Stabilizing I/O receding horizon control [A]. IEEE Conference Decision and Control [C], Honlulu, hawall, 1990, pp: 2518-2523.
    [79] Kouvaritakis B, Rossiter J A, Chang A O T. Stable generalized predictive control: An algorithm with guaranteed stability [J]. IEE Proceedings-Control Theory and Applications, 1992, 139(4): 349-362.
    [80] Mayne D Q, Michalska H. Receding horizon control of nonlinear systems [J]. IEEE Transactions on Automatic Control, 1990, 35(7): 814-824.
    [81] Genceli H, Nikolaou M. Robust stability analysis of constrained L_1-norm model predictive control [J]. AIChE Journal, 1993, 39(2): 1954-1965.
    [82] Michalska H, Mayne D Q. Robust receding horizon control of constrained nonlinear systems [J]. IEEE Transactions on Automatic Control, 1993, 38(11): 1623-1633.
    [83] Chen H, Allegower F. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability [J]. Automatica, 1998, 34(10): 1205-1217.
    [84] De Nicolao G, Magni L, Scattolini R. Stabilizing nonlinear receding horizon control via a nonquadratic terminal state penalty [A]. Proc IMACS Multiconf CESA [C], Hille, 1996, pp: 185-187.
    [85] Chen H, Scherer C W, Allgoewer F. A game theoretic approach to nonlinear robust receding horizon control of constrained systems [A]. Proceedings of the American Control Conference [C], 1997, pp: 3073-3077.
    [86] De Nicolao G., Magni L, Scattolini R. Stabilizing predictive control of nonlinear ARX models [J]. Automatica, 1997, 33(9): 1691-1697.
    [87] Scokaert P O M, Rawlings J B. Constrained linear quadratic regulation [J]. IEEE Transactions on Automatic Control, 1998, 43(8): 1163-1169.
    [88] Lee J W, Kwon W H, Choi J. On stability of constrained receding horizon control with finite terminal weighting matrix [J]. Automatica, 1998, 34(12): 1607-1612.
    [89] Chen W H, Ballance D J, O'reilly J. Model predictive control of nonlinear systems: Computational burden and stability [J]. IEE Proceedings Part D: Control Theory and Applications, 2000, 147(4): 387-394.
    [90] Lee Y I, Kouvaritakis B, Cannon M. Constrained receding horizon predictive control for nonlinear systems [J]. Automatica, 2003, 38(12): 2093-2102.
    [91] Chen W H, Ballance D J, O'reilly J. Optimisation of attraction domains of nonlinear MPC via LMI methods [A]. Proceedings of the American Control Conference [C], 2001, pp: 3067-3072.
    [92] Chen W H, Hu X B. Model predictive control of linear systems with nonlinear terminal control [J]. International Journal of Robust and Nonlinear Control, 2004, 14: 327-339.
    [93] Cannon M, Deshmukh V, Kouvaritakis B. Nonlinear model predictive control with polytopic invariant sets [J]. Automatica, 2003, 39: 1487-1494.
    [94] Yang T H, Polak E. Moving horizon control of nonlinear systems with input saturation, disturbances and plant uncertainty [J]. International Journal of Control, 1993, 58(4): 875-903.
    [95] De Oliveira S L, Morari M. Robust model predictive control for nonlinear systems [A]. Proceedings of the 33rd IEEE Conference on Decision and Control [C], 1994, 4: 3561-3566.
    [96] De Oliveira S L, Morari M. Contractive model predictive control for constrained nonlinear systems [J]. IEEE Transactions on Automatic Control, 2000, 45(6): 1053-1071.
    [97] Xi Y G. New design method for discrete time multivariable predictive controllers [J]. International Journal of Control, 1989, 49(1): 45-56.
    [98] Scokaert P O M, Rawlings J B, Meadows E S. Discrete-time stability with perturbations: Application to model predictive control [J]. Automatica, 1997, 33(3): 463-470.
    [99] Campo P J, Morari M. Robust predictive control [A]. Proceedings of the American Control Conference [C], 1987, pp: 1021-1026.
    [100] 陈忠保,李嗣福.模型不确定系统的鲁棒控制[J].控制理论与应用,2000,17(2): 259-263.
    [101] Tadmor G. Receding horizon revisited: An easy way to robustly stabilize an LTV system [J]. Systems & Control Letters, 1992, 18: 285-299.
    [102] Lee J W, Kwon W H, Lee J H. Receding horizon H_∞ tracking control for time-varying discrete linear systems [J]. International Journal of Control, 1997, 68(2): 385-399.
    [103] Magni L, Nicolao G D, Scattolini R. Output feedback and tracking of nonlinear systems with model predictive control [J]. Automatica, 2001, 37: 1601-1607.
    [104] 陈虹,刘志远.一种基于H_∞理论的鲁棒预测控制方法[J].自动化学报,2002,28(2):296-300.
    [105] Findeisen R, Imsland L, Allgower F, Foss B A. Efficient nonlinear model predictive control [A]. Proceedings of the American Control Conference [C], Anchorage, AK, 2002, pp: 4752-4757.
    [106] Kothare M V, Balakrishnan V, Morari M. Robust constrained model predictive control using linear matrix inequalities [J]. Automatica, 1996, 32(10): 1361-1379.
    [107] Lu Y H, Arkun Y. Quasi-rain-max MPC algorithms for LPV systems [J]. Automatica, 2000, 36: 527-540.
    [108] Casavola A, Giannelli M, Mosca E. Min-max predictive control strategies for input-saturated polytopic uncertain systems [J]. Automatica, 2000, 36(1): 125-133.
    [109] Wan Z Y, Kothare M V. Computationally efficient scheduled model predictive control for constrained nonlinear systems with stability guarantees [A]. Proceedings of the American Control Conference [C], Anchorage, AK, 2002, pp: 4487-4492.
    [110] Wan Z Y, Kothare M V. Efficient robust constrained model predictive control with a time varying terminal constraint set [J]. Systems & Control Letters, 2003, 48: 375-383.
    [111] Wan Z Y, Kothare M V. An efficient off-line formulation of robust model predictive control using linear matrix inequalities [J]. Automatica, 2003, 39: 837-846.
    [112] Findeisen R, Imsland L, Allgower F, Foss B A. Output feedback stabilization of constrained systems with nonlinear predictive control [J]. International Journal of Robust and Nonlinear control, 2003, 13: 211-227.
    [113] Wan Z Y, Kothare M V. Robust output feedback model predictive control using off-line linear matrix inequalities [J]. Journal of Process Control, 2002, 12: 763-774.
    [114] Wan Z Y, Kothare M V. Efficient scheduled stabilizing output feedback model predictive control for constrained nonlinear systems [A]. Proceedings of the American Control Conference [C], 2003, pp: 489-494.
    [115] Adetola V, Guay M. Nonlinear sampled-data output feedback receding horizon control [J]. Journal of Process Control, 2005, 15: 469-480.