氧化铝回转窑热工分析与控制应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熟料在回转窑中的煅烧是烧结法生产氧化铝工艺中的关键工序,对氧化铝的产量和质量有着直接的影响。近年来,我国氧化铝工业产量不断增加,对产品质量的要求也日益提高。因此,深入了解熟料烧结过程中的各个影响因素,实现回转窑生产过程的自动控制对提高氧化铝产量与质量,降低工人劳动强度,实现生产节能降耗,促进氧化铝工业的技术进步具有重要的理论与实践意义。
     由于回转窑生产过程具有大惯性、大时滞、非线性、时变、多干扰等特征,且窑体处于旋转状态,温度在线测量困难,参数检测严重滞后。目前氧化铝回转窑生产过程控制中所应用的集散控制系统仅能起到监测以及一些常规控制作用,没有充分利用信息资源,这些问题影响了回转窑生产过程优化与智能控制的实现。在现有工艺流程和生产设备的情况下,在线仿真、图像处理、模糊控制、软测量等先进过程控制技术对解决上述问题具有独特的优越性。
     本文在对回转窑热平衡和传热过程进行分析的基础上,通过对窑筒体非稳态传热过程以及窑内物料流动和传热过程的研究,证明了窑筒体传热过程在一个蓄热、放热周期内可以简化为稳态换热以及窑内同一横截面上物料内部温度分布基本趋于一致,为建立回转窑一维传热数学模型提供了理论依据。
     通过研究导出了回转窑内物料自然堆角的计算公式,建立了物料与被覆盖窑壁间热传导的物理数学模型,并求出了物料与被覆盖窑壁间的热传导综合传热系数,推导了窑内各辐射换热量的计算公式和变导热系数多层筒壁的温度表达式,并结合煤粉燃烧、物料热解、窑壁散热和窑内传热传质方程,最终建立了回转窑传热综合数学模型。
     结合回转窑实际生产过程,开发了回转窑尾部烟气流量检测仪和窑中弧形滑环测温仪,实现了回转窑尾部烟气流量和窑中温度的在线检测,并针对回转窑窑内衬和窑皮形状复杂的特点,采用红外线测温仪进行筒体表面温度测量,结合数字滤波补偿技术实现了回转窑状态监测,有效地改善了回转窑的操作,提高了设备运转率。
     以“全息仿真”理论为基础,以现场在线检测参数为边界或初始条件,通过综合运用炉窑热工及反应动力学原理,首次开发了回转窑在线仿真优化模型及软件。该系统能实时计算回转窑各带长度及窑内温度分布,并由计算机在线显示,记录运行历史曲线,为现场的考核和管理提供依据。在此基础上,结合回转窑工艺的特点与工程技术人员、熟练操作工人的经验,建立了回转窑状态预报系统,实现了回转窑的数据输入、自动报警和故障显示等功能,为生产运行和操作提供了在线指导。
     基于图像的连通性和相关性原理,结合邻域平均法提出了一种改进的梯度倒数加权平滑算法,更好的实现了图像的预处理,并深入比较和研究了C均值、模糊C均值和快速模糊C均值聚类方法在回转窑火焰图像分割中的应用。在预处理滤波的基础上,首次利用快速模糊C均值聚类方法对回转窑图像进行了准确的分割,实时提取了物料高度、火焰温度和物料温度等特征值,以量化的形式较全面反映了窑内的热工信息,为回转窑的操作优化和自动控制提供了可靠的依据。
     通过完善相关硬件和通讯等基础设施,首次将回转窑在线仿真、状态预报、图像处理与优化控制结合起来,开发了氧化铝回转窑模糊控制系统。该系统以回转窑火焰温度、物料高度和窑尾温度作为控制的输入量,以燃煤量和排烟机风门开度作为控制的输出量,首次实现了回转窑下煤量和进风量的统一调节,创造了良好的经济效益。
     氧化铝回转窑热工分析与智能控制系统投运一年多以来,较好地实现了工艺参数的优化以及自动控制,大大减轻了工人的劳动强度,提高了设备运转率,降低了生产成本。根据现场生产数据统计,实现回转窑自动控制后,每吨熟料煤粉单耗节约1.5kg以上,每小时熟料产能提高2t以上,达到了增产降耗的目的。
The calcination of stuff in rotary kiln is a key process of aluminaproduction by sintering, which may directly influence the yield andquality of alumina. Along with raised production in our country in recentyears, higher demands are required on alumina quality. For improving thealumina yield and quality, reducing the intensity of labor, decreasingenergy consumption as well as promoting the technical progress ofalumina industry, it is important both in theories and practices to deeplyunderstand influence factors in stuff calcination and to realize automaticcontrol of the rotary kiln production.
     The process in rotary kiln is characterized with large inertia, longtime delay, nonlinearity, time-dependent and multi-disturbance and thekiln body keeps rotating during the production. It is very difficult toperform temperature on-line measurement, and parameters monitoring isseverely delayed. Furthermore, the distributed control system applied incurrent rotary kiln production of alumina can only fulfill regularmonitoring and some simple control, and the information are not fullyused. All these problems severely harm the process optimization andintelligent control of rotary kiln. But some advanced process controltechnologies such as on-line simulation, image processing, fuzzy control,soft-sensing technique can be used with unique superiority in solving theabove problems.
     Based on analyzing the heat balance and heat transfer process ofrotary kiln, through studying the transient heat transfer of cylindrical wall,material flow and heat transfer process, this paper proves that the heattransfer process of cylindrical wall can be assumpted as steady state in aenergy storage or energy releasing period, and the temperature of materialon a certain cross section can be treated as the same. It provides thetheory basis for developing an one-dimensional mathematical model forheat transfer of rotary kiln.
     This research puts forward calculation formula of material naturalangle in rotary kiln, and builds physical-mathematical model of heat conduction between material and covered furnace wall, and gets the heatconduction overall coefficient. It deduces calculation formula of radiationheat transfer and temperature expression of multilayer cylindrical wallwhich possesses temperature dependent thermal conductivity. Combinedwith pulverized coal combustion, material pyrogenation, cooling offurnace wall finally, and heat transfer and mass transfer, this paper buildscombined heat transfer mathematical model of rotary kiln.
     Combined with the real production process of the rotary kiln, a flowrate meter measuring end gas and an arc cirque temperature measuringinstrument have been developed for realizing the on-line monitoring ofend gas flow rate and temperature in the kiln. According to thecharacteristics of the shape of inner liner and kiln crust, an infrared raytemperature measuring instrument was adopted to collect the temperatureon the surface. A kiln condition monitoring system was developed byintegrating digital filter compensating method. The system improves theoperation of kiln effectively and enhances the efficient of facilities.
     The on-line simulation and optimization model and software weredeveloped by applying synthetically the principles of kiln thermalengineering and reaction kinetics. This system can realize real-timecalculation of the section lengths and temperature distribution in the kiln,which can be displayed real-time on the computer and recorded ashistorical curves. It offers a tool for in-site examination and management.This information combined with technical characteristics of rotary kilnand experiences of engineer and specialized worker, a rotary kilndiagnosis system was developed for realizing the function of data input,auto alarm and malfunction display etc. This system offers on-lineguidelines for the operation of the rotary kiln.
     Based on the theory of connectivity and relativity of image,combined with the neighborhood averaging method, this paper presentsan improved gradient inverse weight smoothing algorithm which makesimage pretreatment better. The application of C means, fuzzy C meansand approximate fuzzy C means clustering methods in rotary kiln flameimage dividing was compared and researched throughly. Based on filtering pretreatment, the characteristic values such as the height ofmaterial, the temperature of flame and material can be obtained bydividing rotary kiln image with approximate fuzzy C means clusteringmethod. These values can reflect the thermal condition in the kilnquantitatively and provide reliable data for the operation optimization andautomatic control.
     By improving basic devices of related hardware and communication,and combining on-line simulation, condition forecasting, imageprocessing and optimization control of rotary kiln, the fuzzy controlsystem of alumina rotary kiln was developed. With the flame temperature,material height, and tail temperature of rotary kiln as input parameters,and the pulverized coal feed and door opening size of smoke exhauster asoutput parameters, the system firstly realized the united adjustment ofpulverized coal quantity and air volume which achieved good economicbenefit.
     Thermal analysis and intelligent control system for aluminaproduction in rotary kiln has been applied successfully for more than ayear, which realizes technical parameters optimization and automaticcontrol, reduces the intensity of labor, enhances the efficient of facilitiesand achieves the goals of the production increasing and energyconsumption decreasing. According to the in-site statistic data, theconsumption of pulverized coal can save above 1.5 kg per ton stuff andthe production of stuff can improve above 2t per hour after realizing autocontrol of the rotary kiln. The aim to increase production and decreasecost has been achieved.
引文
[1] 徐军,陈学森.我国铝工业现状及今后发展建议.轻金属,2001,(10):3~6
    [2] 元炯亮.循环经济与铝业生态系统.有色金属,2003,55(S1):27~31
    [3] 沈贤春,李旺兴.世界铝工业可持续发展分析.轻金属,2004,(1):3~7
    [4] 曹异生,唐健.氧化铝工业现状及市场前景分析.世界有色金属,2003,(12):10~14
    [5] 周国宝.略论发展我国氧化铝工业战略取向.世界有色金属,2004,(1):25~27
    [6] 杨兵.铝工业与铝土矿资源的协调发展.有色金属工业,2004,(1):33~34
    [7] 毕诗文,杨毅宏,谢雁丽.21世纪初中国氧化铝工业的发展,矿业研究与开发,2003,(8):33~35
    [8] 钮因健.对我国铝土矿资源和氧化铝工业发展的认识.轻金属,2003,(3):3~8
    [9] 罗天骄,魏昶.世界铝工业的现状与发展.云南冶金,2004,33(1):42~46
    [10] 杨重愚.氧化铝生产工艺学.北京:冶金工业出版社,1993
    [11] 谢雁丽,吕子剑.铝酸钠溶液晶种分解.北京:冶金工业出版社,2003
    [12] 《联合法生产氧化铝》编写组.联合法生产氧化铝—熟料烧结.北京:冶金工业出版社,1975
    [13] 叶列明等.氧化铝生产过程与设备,王延明,阎鼎欧,杨重愚等译.北京:冶金工业出版社,1987
    [14] 宋培凯.回转窑及单筒冷却机修理.北京:中国建材工业出版社,1994
    [15] 梅炽,王前普等.有色冶金炉窑的仿真与优化.中国有色金属学报,1996,6(4):19~23
    [16] 梅炽,殷志云等.现代炉窑的全息仿真.中南工业大学学报,1999,30(6):592~596
    [17] 梅炽.有色冶金炉窑仿真与优化.北京:冶金工业出版社,2001
    [18] 朱苗勇,肖泽强.钢的精炼过程数学物理模拟.北京:冶金工业出版社,1998
    [19] J.Szekely.提取冶金数学模型的进展.闪速炼铜,1991,(3):36~43
    [20] 冶金部《筑炉工手册》编写组.筑炉工手册.北京:中国工业出版社,1970
    [21] 日本耐火材料技术协会编.《新型窑炉及其耐火材料》,鞍山焦化耐火材 料设计研究院技术情报科译.北京:冶金工业出版社,1979
    [22] 杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社,1998
    [23] 梅炽.冶金传递过程原理.湖南:中南工业大学出版社,1987
    [24] M.C.Richard. A New Approach for comparing the impact on magnetic fields from pot design alteration. Light Metals, 1976, 28(1): 109
    [25] E.D.Tarapore. The effect of operating variables on flow in aluminum reduction cells. Light Metals, 1982, 34(2): 541
    [26] 周孑民,邓胜祥.金属熔点热物性测试及计算机在线检测.中南工业大学学报,1998,29(6):549~551
    [27] Mei Chi, Peng Xiao Qi, Zhou Jie Min. Fuzzy adaptive control model for process in nickel matte smelting furnace. Transactions of Nonferrous Metals Society of China, 1995, 4(3): 9~11
    [28] 邓胜祥,周孑民等.石灰炉炉况诊断与多模型智能控制系统的研究.计算机自动测量与控制,2002,10(1):29~41
    [29] 毕学工.高炉过程数学模型及计算机控制.北京:冶金工业出版社,1996
    [30] 梅炽,周孑民等.有色冶金炉设计手册.北京:冶金工业出版社,2001
    [31] 梅炽,游旺.铝电解槽槽膛内形在线显示仿真软件的研究与开发.中南工业大学学报,1997,28(2):138~141
    [32] 周孑民.镍冶炼矿热电炉及自焙电极的电、热解析模型与计算机仿真:[博士学位论文].长沙:中南工业大学,1990
    [33] 游旺.大型预焙铝电解槽槽膛内形在线动态仿真研究:[博士学位论文].长沙:中南工业大学,1997
    [34] 姚俊峰.热工智能与混沌理论在铜锍吹炼炉实时仿真与优化决策中的应用研究:[博士学位论文].长沙:中南大学,2001
    [35] 胡军.铜锍吹炼仿真和操作优化研究:[博士学位论文].长沙:中南大学,2000
    [36] 周乃君,易正明等.石灰炉炉内过程数值仿真.中南工业大学学报,2000,31(5):422~424
    [37] 李欣峰.炼铜闪速炉熔炼过程的数值分析与优化:[博士学位论文].长沙:中南大学,2001
    [38] 陈卓.铜闪速炉系统数值模型及反应塔炉膛内形在线仿真监测研究:[博士学位论文].长沙:中南大学,2002
    [39] 周萍.铝电解槽内电磁流动模型及铝液流动数值仿真的研究:[博士学位论文].长沙:中南大学,2002
    [40] 周乃君.基于风粉监测的煤粉锅炉燃烧工况动态仿真与操作优化专家系统研究:[博士学位论文].长沙:中南大学,2003
    [41] 任鸿九.有色金属熔池熔炼.北京:冶金工业出版社,2001
    [42] J.K.Brimacombe, A.P.Watkinson. Heat transfer in a direct-fired rotary kiln: Ⅰ. Pilot plant and experimentation. Metallurgical Transactions B, 1978, (9B): 201~208
    [43] A.EWatkinson, J.K.Brimacombe. Heat transfer in a direct-fired rotary kiln:Ⅱ. Heat flow results and their interpretation. Metallurgical Transactions B, 1978, (9B): 209~219
    [44] J.P.Gorog, T.N.Adams, J.K.Brimacombe. Regenerative heat transfer in rotary kilns. Metallurgical Transactions B, 1982, (13B): 153~163
    [45] J.P.Gorog, T.N.Adams, J.K.Brimacombe. Heat transfer from flames in rotary kilns. Metallurgical Transactions B, 1983, (14B): 411~424
    [46] S.H.Tscheng, A.P.Watkinson. Convective heat transfer in a rotary kiln. The Canadian Journal of Chemical Engineering, 1979, (57): 433~443.
    [47] H.Henein, J.K.Brimacombe, A.P.Watkinson. Experimental study of transverse bed motion in rotary kilns. Metallurgical Transactions B, 1983, (14B): 191~205
    [48] H.Henein, J.K.Brimacombe, A.EWatkinson. The modeling of transverse solids motion in rotary kilns. Metallurgical Transaction B, 1983, (14B): 207~220
    [49] P. V.Barr, J.K.Brimacombe, A.P.Watkinson. A heat-transfer model for the rotary kiln: Part Ⅰ. Pilot kiln trails. Metallurgical Transactions B, 1989, (20B): 391~402
    [50] P.V.Barr, J.K.Brimacombe, A.P.Watkinson. A heat-transfer model for the rotary kiln: Part Ⅱ. Development of the cross-section model. Metallurgical Transactions B, 1989, (20B): 403~419
    [51] Andrea Paula Ottoboni, Itamar De Souza. Efficiency of destruction of waste used in the co-incineration in the rotary kilns. Energy Convers, 1998, 39(16-18): 1899~1909
    [52] R.J.Spurling, J.F.Davidson, D.M.Scott. The no-flow problem for granular material in rotating kilns and dish granulators. Chemical Engineering Science, 2000, (55): 2303~2313
    [53] Geoffrey D.silcox, David W.Pershing. The effects of rotary kiln operating conditions and design on burden heating rates as determined by a mathematical mode of rotary kiln heat transfer. Air Waste Manage, 1990, (40): 337~344
    [54] A.A.Boateng, P.V.Barr. A thermal model for the rotary kiln including heat transfer within the bed. Heat Mass Transfer, 1996, 39(10): 2131~2147
    [55] A.A.Boateng, P.V.Barr. Modeling of particle mixing and segregation in the transverse plane of a rotary kiln. Chemical Engineering Science, 1996, 51(17): 4167~4181
    [56] A.A.Boateng, P.V.Barr. Boundary Layer Modeling of Granular Flow in the transverse plane of a partially filled Rotating cylinder. Multiphase Flow, 1998, 24(3): 499~521
    [57] F.Marias. A model of a rotary kiln incinerator including processes occurring within the solid and the gaseous phases. Computers and Chemical Engineering, 2003, (27): 813~825
    [58] F.Madas, H.Roustan, A.pichat. Modelling of a rotary kiln for the pyrolysis of aluminium waste. Chemical Engineering Science, 2005, (60): 4609~4622
    [59] Marcio A.Martins,-Leandro S.Oliveira. Modeling and simulation of petroleum coke calcinations in rotary kilns. Fuel, 2001, (80): 1611~1622
    [60] E.Mastorakos, A.Massias. CFD predictions for cement kilns including flame modelling, heat transfer and clinker chemistry. Applied Mathematical Modelling, 1999, (23): 55~76
    [61] J.J.del Coz Diaz. Design and finite clement analysis of a wet cycle cement rotary kiln. Finite Elements in Analysis and Design, 2002, (39): 17~42
    [62] 肖兴国,曹同友,肖泽强.生产石灰粉剂用回转窑操作过程的数学模型及其应用.辽宁冶金,1990,(4):30~37
    [63] 徐德龙.水泥悬浮预热预分解技术(理论与实践).北京:科学技术文献出版社,2002
    [64] 邱夏陶,韩小良.回转窑传热模型及其优化.钢铁,1994,29(6):66~70
    [65] 张志霄,池勇,李水清,严建华,岑可法.回转窑传热模型与数值模拟.化学工程,2003,31(4):27~31
    [66] 马爱纯,周孑民,孙志强,李旺兴.氧化铝熟料窑内一维传热模型.冶金能源,2004,23(1):23~26
    [67] 马爱纯,周孑民,李旺兴.混联法氧化铝生产中熟料窑节能降耗的研究.冶金能源,2003,22(2):7~10
    [68] 周孑民,马爱纯,李旺兴.氧化铝熟料窑窑皮厚度的数值研究.中南工业 大学学报,2003,34(6):633~636
    [69] 马爱纯,周孑民,李旺兴.氧化铝熟料窑喷射干燥段参数的仿真优化.中国有色金属学报,2004,14(1):138~141
    [70] 赵松生.工厂回转窑窑膛温度测量.中国仪器仪表,1995,(3):22~23
    [71] 王勇,张卫红.预热带窑中滑环测温系统应用.水泥,2002,(11):53~54
    [72] 沃国经.红外通讯在回转窑温度测量中的应用.矿冶,2002,9(4):87~90
    [73] 凌永发,李世厚,王杰.一种新型回转窑温度检测方法.云南民族大学学报,2004,13(4):31~33
    [74] 沃尔特.H.杜达.国际水泥资料集.北京:中国建筑工业出版社,1986
    [75] 车念曾.辐射度学和光度学.北京:北京理工大学出版社,1990
    [76] 孙晓燕.比色光纤传感器及其测温系统.仪表技术与传感器,1996,(3):22~24
    [77] 章兢,刘小燕.基于图像序列处理的回转窑煅烧区温度测量.电子测量与仪器学报,1999,13(4):67~71
    [78] Young, Gerald L. NOx formation in rotary kilns producing cement clinker applicable NOx control techniques and cost effectiveness of these control techniques. IEEE Cement Industry Technical Conference, 2002, 239~254
    [79] Hu Jian, Zhang Jing, Zhang Xianming. Automated visual detection of the rotary kiln temperature. Advances in Modeling & Analysis, 1994, 30(1): 1~8
    [80] 欧阳峻,何青,刘小燕,章兢.图像处理在氧化铝回转窑温度测量中的应用.计算技术与自动化,1999,18(2):53~55
    [81] 梁丰,袁南儿,周德泽.水泥回转窑窑头自动看火系统原理与应用.仪表技术与传感器,1997,(3):24~26
    [82] 梁丰,袁南儿.多媒体高温炉窑温度分析系统.仪器仪表学报,1998,19(3):230~233
    [83] 袁南儿,周德泽,梁丰等.现代智能自动化技术在在水泥回转窑生产中的应用.硅酸盐学报,1999,27(2):127~132
    [84] Ribeire B.M, Correis A.D. Dynamic modelling and simulation of a pulp ma lime kiln. Proceedings of the IASTED International Symposium on Modelling Identification and Control, 1991, 330~335
    [85] Smith D.B, Edwards L.L. Dynamic mathematical model of a rotary lime kiln. Proceedings of the 1991 Engineering Conference, 1991, 447~455
    [86] Brusilovski R, Raspopov B, Seluqin A. Rotary cement kiln control combined algorithm. 4th IFAC/IFIP Conference on Digital Computer Applications to Process Control, 1974, 381~390
    [87] Dekkiche E.A, En-Naamani A, Prevot P. Experimental analysis and modelling of a rotary cement kiln. Proceedings of the 6th IFAC/IFIP Conference, 1980, 175~182
    [88] Uronen P, Aurasmaa H. Modeling and simulation of causticization plant and lime kiln. Pulp and Paper Canada, 1979, 80(5): 162~165
    [89] Sutinen R. Causticizing plant and lime kiln computer control. Pulp and Paper Canada, 1981, 82(8): 90~95
    [90] Holmblad L.P. The FLS application of fuzzy logic. Fuzzy Sets and Systems. 1995, 70(2): 135~146
    [91] King R.E. Expert supervision and control of a large-scale plant. Journal of Intelligent and Robotic Systems: Theory and Applications, 1992, 2(12): 167~176
    [92] Nakamiri Y, Suzuki K, Yamanaka T. Anew design of a fuzzy model predictive control system for nonlinear processes. Fuzzy Engineering Toward Human Friendly Systems, 1992, 6(23): 788~1799
    [93] Ryoke M, Nakamori Y, Suzuki K. Adaptive fuzzy clustering and fuzzy prediction models. Proceedings of the 1995 IEEE International Conference on Fuzzy Systems. 1995(4), 20~24
    [94] Ribeiro B, Dourado A, Costa E. Neural network based control of a simulated industrial lime kiln. Proceedings of the International Joint Conference on Neural Networks, 1993(2), 2037~2040
    [95] Aizawa T, Yokoshita T. Applications of neural network technology to the operation and control of cement plants. ZKG International, 1995, 10(48): 532~538
    [96] Wang YaoNan. A hybrid intelligent control for industrial rotary kiln plant. Control Theory and Applications, 1996, 13(6): 770~777
    [97] 邹健,诸静.模糊预测函数控制在水泥回转窑分解炉温控系统中的应用研究.硅酸盐学报,2001,29(4):318~321
    [98] W.C.Chen, Ni-Bin Chang, Jeng-Chung Chen. GA-based fuzzy neural controller design for municipal incinerators. Fuzzy sets and systems, 2002, 129(3): 343~369
    [99] 彭思众,马晓茜,赵绪新.回转窑内物料流动模型研究.工业炉,2002, 24(4):6~9
    [100] K.E.帕雷,J.J.瓦得尔.水泥回转窑的操作,华新水泥厂编译组译.北京:中国建筑工业出版社,1977
    [101] N.Descoins, J.-L.Dirion, T.Howes. Solid transport in a pyrolysis pilot-scale rotary kiln: preliminary results—stationary and dynamic results. Chemical Engineering andProcessing, 2005, (44): 315~321
    [102] 《回转窑》编写组.回转窑:设计、使用与维修.北京:冶金工业出版社,1980
    [103] E.Lebas, F.Hanrot, D.Ablitzer. Experimental study of residence time, particle movement and bed depth profile in rotary kilns. The Canadian Journal of Chemical Engineering, 1995, (73): 173~180
    [104] Perron J, Bui R.T Rotary cylinders: Solid transport prediction by dimensional and rheological analysis. The Canadian Journal of Chemical Engineering, 1990, (68): 61~68
    [105] 冶金炉教研室编.有色冶金炉设计及计算.长沙:中南矿冶学院出版社,1973
    [106] 董保生,陈代正.回转窑物料停留时间实测方法探索.有色冶炼,2000,29(1):38~40
    [107] 杨长付,武福运,刘少洛.提高氧化铝含量及其A/S新工艺的研究.轻金属,2000,(12):21~24
    [108] 张学英,罗梅,刘彩政.混联法生产氧化铝熟料烧结问题探讨.河南冶金,1999,35(6):14~17
    [109] 项阳,袁艺.熟料烧结炉料配方浅析.贵州工业大学学报,1999,28(4):51~55
    [110] 赵镁翼.粉煤灰粉对烧结生料配方影响的分析.河南冶金,2001,45(4):13~16
    [111] 栾素芳,崔素萍.粉磨方法对生料特性及生料易烧性的影响.水泥,2004,(1):19~21
    [112] 廖学品.回转窑中固体颗粒平均停留时间的计算.化工设计,1995,(6):40~43
    [113] 李爱民,李水清,严建华等.固体废弃物在回转窑内停留时间的试验研究.化学反应工程与工艺,2002,18(2):152~157
    [114] 韩昭沧.燃料及燃烧.北京:冶金工业出版社,1994
    [115] 钱立,庞凤荣等.冲天炉检测与炉况控制.天津:天津科学技术出版社, 1985
    [116] (苏)CAMAPRHOBA著.氧化铝生产工艺计算,刘玉彩等译.郑州铝厂,1985
    [117] 刘人达.冶金炉热工基础.北京:冶金工业出版社,1980
    [118] Fabrice Patisson. Coal pyrolysis in a rotary kiln: Part Ⅱ. Overall model of the furnace. Metallurgical and Materials transactions B, 2000, (31B): 391~402
    [119] 陶文铨.数值传热学.西安:西安交通大学出版社,1988
    [120] (美)F.P.因克罗普拉,D.P.德威特著.传热基础,陆大有等译.宇航出版社,1985
    [121] 周力行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社,1991
    [122] Spicka P, Dias M M, Lopes J C B. Gas-liquid flow in a 2D column: Comparison between experimental data and CFD modelling. Chemical Engineering Seience, 2001, 56:6367~6383
    [123] 谭欣星.复杂区域气液两相湍流流动的数值模拟研究:[博士学位论文].西安:西安交通大学,2002
    [124] Spalding D B. The calculation of free-convection phenomena in gas-liquid mixtures. ICHMT Seminar. Dubrovnik: 1976
    [125] Launder B E, Spalding D B. The numerical computation of turbulent flows. Comput Meth inAppl Mech Eng, 1974, 3:269~289
    [126] Cliff R, Grace J R, Weber M E. Bubbles, drops and particles. London: Academic Press, 1978
    [127] Crowe C, Sommerfeld M, Tsuji Y. Multiphase flows with droplets and particles. Boca Raton: CRC Press, 1998
    [128] Levich V G.. Physicochemical hydrodynamics. New York: Prentice Hall, 1962
    [129] Gidaspow D. Multiphase flow and fluidisation. London: Academic Press, 1994
    [130] 岑可法,樊建人.工程气固多相流动的理论及计算.杭州:浙江大学出版社,1989
    [131] Drew D A, Lahey R T. The virtual mass and lift force on a sphere in rotating and straining insviscid flow. Int J Multiphase Flow, 1987, 13: 113~121
    [132] Lopez de Bertodano M. Two fluid model for two-phase turbulent jet. Nucl Eng Des, 1998, 179:65~74
    [133] Massoudi M, Rajagopal K R, Ekmann J M et al. Remarks on the modelling of fluidized systems. AIChE J, 1992, 38(3): 471~472
    [134] Thornton C, Yin K K. Impact of elastic spheres with and without adhesion. Powder Technology, 1991, 65:153~166
    [135] 赵坚行.燃烧的数值模拟.北京:科学出版社,2002
    [136] Schlunder E U. Particle heat transfer model. Chem Eng Tech, 1981, 5: 53~59
    [137] 蒋家羚,贺华波,夏俊毅.用颗粒热传递模型计算旋转圆盘干燥机的传热系数.高校化学工程学报,2000,14(4):324~327
    [138] Martin H. Theories of heat transfer coefficient between heating wall and Particle. DryingTech, 1982, 15(2): 179~183
    [139] Basu P, Nag P K. Heat transfer to walls of a circulating fluidized-bed furnace. Chemical Engineering Science, 1996, 51(1): 1~26
    [140] 等.回转窑的热量及长度计算,吕公仆译.轻金属,1985,(8):18~27
    [141] 中国冶金百科全书·炼焦化工.北京:冶金工业出版社,1998
    [142] 童景山.流体热物性数据手册.北京:清华大学出版社,1984
    [143] 许晓海,冯改山.耐火材料技术手册.北京:冶金工业出版社,2000
    [144] 刘元扬.自动检测和过程控制.北京:冶金工业出版社,2005
    [145] 崔艳霞,张利.毕托管测试技术.大同职业技术学院学报,2000,14,(4):60~61
    [146] 建筑材料科学研究院水泥研究所.水泥窑热工测量.北京:中国建筑工业出版社,1979
    [147] 周孑民,唐松涛,沈洪远,易正明.圆形挡块差压的试验研究.工业计量,2004,14(1):21~23
    [148] 葛绍岩,那鸿悦.热辐射性质及其测量.北京:科学出版社,1989
    [149] 苑玮琦,陈沈来,张宏勋.回转窑表面温度红外检测法综述.沈阳建筑工程学院学报,1995,11(2):181~184
    [150] 王琳灵,潘邵来,吕子剑.红外线扫描在氧化铝熟料窑监控中的应用.抚顺石油学院学报,2003,23(4):35~37
    [151] 孙德辉,张永忠,李正熙等.基于欧氏距离和相平面图的窑炉状态预测算法研究.仪器仪表学报,2004,25(5):663~664
    [152] 李庆扬,王能超等.数值分析.武汉:华中理工大学出版社,1982
    [153] 吴继庚.实用数值计算方法与程序.北京:冶金工业出版社,1991
    [154] 王涛,沈谦,朱明星等.遗传与C-均值混合算法用于聚类分析.模式识 别与人工智能,1999,12(1):98~103
    [155] 阮秋琦.数字图像处理.北京:电子工业出版社,2001
    [156] 蔡文贵,李永远.CCD技术及应用.北京:电子工业出版社,1992
    [157] 景晓军,周贤伟,付娅丽.图像处理技术及其应用.北京:国防工业出版社,2005
    [158] 李兰友.Visual Basic 6.0图像处理开发与实例.北京:电子工业出版社,2000
    [159] D.H.巴拉德,C.M.布朗.计算机视觉,王东泉译.北京:科学出版社,1987
    [160] 章毓晋.图像理解与计算机视觉.北京:清华大学出版社,2000
    [161] 程路.光学原理及发展.北京:科学出版社,1990
    [162] 王耀南,李树涛,毛建旭.计算机图像处理与识别技术.北京:高等教育出版社,2001
    [163] 许业仁.氧化铝厂能耗计算和分析.轻金属,1996,(10):16~19
    [164] 席砺莼,闫宏伟.彩色图像分割技术.微机发展,2003,4(13):46~48
    [165] Li Ning, Mao Sixin, Liu Youfu. Effective feature analysis for color image segmentation. Transactions of Nanjing University of Aeronautics & Astronautics, 2001, 2(18): 206~212
    [166] 边肇祺,张学工.模式识别.北京:清华大学出版社,2001
    [167] 郭桂蓉.模糊模式识别.长沙:国防科技大学出版社,1992
    [168] 张爱华,谭劲.边缘信息指导下的半模糊聚类图像分割方法.华中科技大学学报,2005,33(6):8~11
    [169] 高新波.模糊聚类分析及其应用.西安:西安电子科技大学出版社,2004
    [170] 诸静.模糊控制原理与应用.北京:机械工业出版社,1995
    [171] Dubes R.C, Jain A.K. Clustering techniques: the user's dilemma. PRL, 1976, 8(3): 247~260
    [172] Delgado M, Gomez-Skarmeta A F, Martin F. A fuzzy clustering-based rapid prototyping for fuzzy rule-based modeling. IEEE Tins. FS, 1997, 5(2): 223~233
    [173] Gao Xinbo, Xie Weixin. Advances in theory and applications of fuzzy clustering. Chinese Science Bulletin, 2000, 45(11): 961~970
    [174] 李青,郑南宁,游屈波.计算机图形分离算法研究及实现.计算机辅助设计与图形学学报,2004,8(16):1040~1044
    [175] 李在铭.数字图像处理、压缩与识别技术.成都:电子科技大学出版社, 2000
    [176] 冯淑芬,郭福云.电视技术与应用.北京:机械工业出版社,1992
    [177] 周怀春.炉内火焰可视化检测原理与技术.北京:科学出版社,2005
    [178] G.F.Melo, P.T.Lacava, J.A.Carvalho Jr. A case study of air enrichment in rotary kiln incineration. Heat Mass Transfer, 1998, 25(5): 681~4592
    [179] Charlese, Baukal, Benjamin Gebhart. A thermal model for the rotary kiln including heat transfer. Heat Mass Transfer, 1996, 39(14): 2989~3002
    [180] M.Rovaglio, D.Manca, G.Biardi. Dynamic modeling of waste incineration plants with rotary kilns Comparisons between experimental and simulation data. Chemical Engineering Science, 1998, 53(15): 2727~2742
    [181] 李正军.计算机控制系统.北京:机械工业出版社,2005
    [182] 王骥程,祝和云.化工过程控制工程.北京:化学工业出版社,1991
    [183] 李士勇.模糊控制、神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,1996
    [184] 汤兵勇,路林吉,王文杰.模糊控制理论与应用技术.北京:清华大学出版社,2002
    [185] 张小刚,陈华,章兢.基于多传感器数据融合的回转窑烧结温度检测和控制方法.控制与决策,2002,17(6):867~870
    [186] 吴泉源,刘江宁.人工智能与专家系统.长沙:国防科技大学出版社,1995
    [187] 张吉锋.专家系统与知识工程引论.北京:清华大学出版社,1988
    [188] 杨志强.模糊控制在水泥回转窑生产过程中的应用.石油化工自动化,2004,(4):27~28
    [189] Cai Zixing, Wang Yaonang, Cai Jingfeng. A real-time expert control system. Artificial Intelligence in Engineering, 1996, (10): 317~322
    [190] 翟光群,张玉凤.烧碱浓度Fuzzy检测中隶属函数的确定.郑州工业大学学报,2001,22(4):56~58
    [191] 郭雪娥,曾立平.水泥回转窑托轮轴疲劳强度的模糊可靠度预测.机械研究与应用,2004,17(1):65~66