液体粘性传动调速起动及其控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体粘性传动(简称液粘传动)调速起动装置利用摩擦片间油膜的剪切作用来传递动力,从而实现机械设备的可控起动过程。在降低机械设备的制造及运行成本、延长使用寿命等方面具有明显的作用。本文以带式输送机为应用对象,对液粘传动调速起动及其控制技术开展研究工作。
     在对液粘传动调速起动的工程背景、调速起动的意义、基本原理及其优越性进行论述的基础上,对国内外研究现状及液粘传动调速起动方面存在的问题进行了综合分析,提出了本文的主要研究内容。
     对液粘传动调速起动机理进行了较深入的研究,由于调速起动过程是一个瞬态过程,起动过程中油膜厚度始终在动态地变化,存在油膜挤压效应。本文综合考虑了油膜挤压效应以及摩擦片表面粗糙度和油膜离心力的影响,建立了修正瞬态雷诺方程,同时建立了热能量方程和工作油粘温方程。通过有限元模型的数值计算,对调速起动过程中油膜厚度的变化、油膜传递扭矩、油膜承载力及油膜压力场和温度场进行了分析研究,得出了油膜挤压效应、摩擦片表面沟槽截面尺寸和布置方式、摩擦片表面粗糙度和工作油通过摩擦片后的温升对油膜承载力和传递扭矩的影响规律。
     在对摩擦片组进行受力分析的基础上,建立了摩擦片组的动态平衡方程,同时建立了系统的流量平衡方程和负载的动态平衡方程,并对本文实验所采用的比例溢流阀的动态特性进行了实验研究,确立了其传递函数。根据调速起动的特点,分别推导出比例压力控制系统和比例流量控制系统的传递函数,并对其动态响应特性进行了分析比较,结果表明比例压力控制系统较适合于带式输送机的调速起动。
     对PID控制及PID优化控制的调速起动特性进行了较深入的研究,对Harrision起动速度曲线进行了计算机仿真,结果表明两者均不能满足带式输送机调速起动的需求,输出速度相对于给定速度有一定的滞后,并且存在振荡现象。在此基础上提出了模糊PID串级控制,分析了其动态响应特性并对Harrision起动速度曲线进行了计算机仿真,结果表明输出速度能较好地跟踪给定速度且无振荡现象,是带式输送机调速起动较理想的控制方法。
     为验证理论分析的正确性及控制策略的有效性,设计制作了液粘传动调速起动实验台,并分别采用PLC和单片机搭建实验平台,对PID优化控制和模糊PID串级控制进行了相应的实验研究。结果表明采用模糊PID串级控制不仅输出速度能较好地跟踪给定速度,且无明显的速度波动,证明了理论分析的正确性。同时通过实验研究讨论了工作油温度、负载大小及起动时间对调速起动的影响规律。
A hydro-viscous drive speed regulating start equipment transfers power by shearing force of oil film between friction discs, so as to realize the controllable startup process of mechanical equipment. It has great significance both in reducing manufacturing & operating cost and in prolonging servicing life of mechanical equipment. With belt conveyor as application object, the research work on hydro-viscous drive speed regulating start and control technology has been carried out.
     This paper discusses the engineering background, significance, basic principle and superiority of hydro-viscous drive speed regulating start, analyzes domestic and abroad research status, points out current problems of hydro-viscous drive speed regulating start, and presents research contents of this thesis.
     The mechanism of hydro-viscous drive speed regulating start is deeply studied. Since speed regulating start is a transient process and the oil film thins out gradually during the whole startup process, the effect of oil film squeezing cannot be neglected. With a comprehensive consideration of oil film squeezing effect, the effect of friction disc surface roughness and centrifugal force of the oil film, the modified transient Reynolds equation has been established. At the same time, the thermal energy equation and the temperature-viscosity equation have also been set up. The numerical calculation finite element model has been built to simulate the variation of oil film thickness, transmission torque, load capacity, pressure field and temperature field of the oil film. From the simulation results, the effect rules of the oil film squeezing, cross-section sizes and distribution of friction disc surface grooves, friction disc surface roughness and working oil temperature rising caused by the friction pair on transmission torque and load capacity are obtained.
     The dynamic balance equation of the friction discs are established on the basis of force analysis. Flow balance equation of the hydraulic control system and dynamic balance equation of load are also built. Dynamic characteristics of the proportional relief valve used in the testing system are studied experimentally and its transfer function is set up. According to the characteristics of the speed regulating start, transfer functions of the proportional pressure control system and the proportional flow control system are established respectively. The dynamic response characteristics of the two systems are analyzed and compared. The results show that the proportional pressure control system is more suitable for speed regulating start of belt conveyor.
     Speed regulating start characteristics of the PID control and the PID optimal control are deeply studied with the Harrision starting speed curve. The results show that the both cannot meet the demands of speed regulating start of belt conveyor. The output speed lags behind the given speed and there are fluctuations in output speed. On this basis, the fuzzy PID cascade control is presented and its dynamic response characteristics are analyzed. The Harrision starting speed curve is also simulated. The results show that the output speed can track the given speed more accurately and there are no fluctuations in output speed. It indicates the fuzzy PID cascade control is suitable for speed regulating start of belt conveyor.
     To verify correctness of theoretical analysis and effectiveness of control strategy, the experimental equipment of hydro-viscous drive speed regulating start has been built. By using a PLC, the experiments have been carried out to verify the PID and the PID optimal control effect. The fuzzy PID cascade control effect is verified by using a singlechip. The experimental results show that the fuzzy PID cascade control can meet the demands of speed regulating start of belt conveyor. Not only the output speed can track the given speed more accurately, but also there are no fluctuations in the output speed. It also proves the correctness of the theoretical analysis. The effects of working oil temperature, load and starting time on speed regulating start have also been studied experimentally.
引文
[1]侯友夫,黄民,张永忠.带式输送机动态特性及控制技术[M].北京:煤炭工业出版社,2004(5): P53~66.
    [2]姚鸿. CST在煤矿胶带输送机上的应用[J].煤,2006(4): P21~22, 63.
    [3]洪琢,王军.液体粘性离合器的研究与应用[J].机床与液压,2006(8): P224~225
    [4]洪琢,杨承三.液体粘性调速离合器在风机和水泵中的应用[J].机械设计与制造,2006(1):P109~110.
    [5]南玲玲,郑志强.液粘传动与风机节能[J].机床与液压,2002(5):P55~57.
    [6]徐晓丹.液粘调速装置在泵类负载上的应用研究[D].山东科技大学学位论文,2005,5.
    [7]吴少爽,张宏文,蒋晓刚.液体粘性调速离合器节能效果预测方法[J].计量与测试技术, 2007(12):P14~16.
    [8]魏宸官,赵家象.液体粘性传动技术[M].北京:国防工业出版社, 1996.
    [9]宋伟刚,战欣,王元元.大型带式输送机驱动装置的比较研究[J].工程设计学报,2004(12): P302~311.
    [10]陶永芹,李兵.带式输送机软起动装置的比较分析[J].机械工程师, 2005(8): P128~129.
    [11] Shinichi Natsumeda, Tatsuro Miyoshi. Numerical simulation of engagement of paper based wet clutch facing[J]. ASME Journal of Tribology, 1994, 116: P232~237.
    [12] Edward James Berger. An Investigation of Friction-Induced Vibration in Automatic Transmission Wet Clutches [D]. A thesis submitted to the faculty of Purdue University, December 1996.
    [13] Berger E J, Sadeghi F, Krousgrill C M. Torque transmission characteristics of automatic transmission wet clutches: experimental results and numerical comparison [J]. STLE Tribology Transaction, 1997, 40:P539~548.
    [14] Razzaque, M. Mahbubur; Kato, Takahisa. Effects of groove orientation on hydrodynamic behavior of wet clutch coolant films [J]. ASME Journal of Tribology, 1999, 121: P56~61.
    [15] Razzaque, M. Mahbubur; Kato, Takahisa. Effects of a groove on the behavior of a squeeze film between a grooved and a plain rotating annular disk [J]. ASME Journal of Tribology, 1999, 121:P808~815.
    [16] Razzaque, M. Mahbubur; Kato, Takahisa. Squeezing of a porous faced rotating annular disk over a grooved annular disk [J]. STLE Tribology Transactions, 2001, 44: P97~103.
    [17] Jang, J.Y.; Khonsari, M.M.. Thermal characteristics of a wet clutch [J]. ASME Journal of Tribolngy, 1999, 121:P610~617.
    [18] Jang, J.Y.; Khonsari, M.M.. Thermoelastic Instability With Consideration of Surface Roughness and Hydrodynamic Lubrication [J]. ASME Journal of Tribology, 2000,122: P725~732
    [19] Holgerson, Mikael. Optimizing the smoothness and temperatures of a wet clutch engagement through control of the normal force and drive torque [J]. ASME Journal of Tribology, 2000, 122:P119~123.
    [20] Gao, Hong; Barber, Gary C. Engagement of a rough, lubricated and grooved disk clutch with a porous deformable paper-based friction material [J]. Tribology Transactions, 2002, 45: P464~470.
    [21] Gao, H.; Barber, G.C.; Shillor, M. Numerical simulation of engagement of a wet clutch with skewed surface roughness [J]. ASME Journal of Tribology, 2002,124: P305~312.
    [22] Watts, Raymond F.; Castle, Rebecca C. et al. Formulating fluids with improved friction durability for wet start clutches [J]. VDI Berichte, 2004, Issue n1827: P381~392.
    [23] Yoshitsugu Kimura, Chikashi Otani. Contact and wear of paper-based friction materials for oil-immersed clutches-wear model for composite materials [J]. Tribology International,2005 (38) :P943~950.
    [24] Aphale, Chinar R.; Cho, Jinhyun.et al. Modeling and parametric study of torque in open clutch plates [J]. ASME Journal of Tribology, 2006,128: P422~430.
    [25] P?r Nyman, Rikard M?ki a, Richard Olsson. Influence of surface topography on friction characteristics in wet clutch applications [J]. Wear 2006 (261): P46–52.
    [26] P?r Marklund, Rikard M? kia, Roland Larssona et al. Thermal influence on torque transfer of wet clutches in limited slip differential applications [J]. Tribology International 2007 (40) : P876~884.
    [27] Tien-Chen Jen, Daniel James Nemecek. Thermal analysis of a wet-disk clutch subjected to a constant energy engagement [J]. Heat Mass Transfer (2007), doi:10.1016/ j.ij heat mass transfer . 2007. 07.009.
    [28]彭骧,刘保宽,黄清林,王震华.液压滑差离合器减速机在安太堡矿的应用和国产化[J].冶金矿山与冶金设备,1995(2):P25~28.
    [29]魏宸官.一种新型的可控无级调速传动装置[J].北京工业学院学报, 1985(3) : P44~54.
    [30]王步康,杨勤,苏阜明.矿用油膜离合器的特性分析[J].山西矿业学院学报, 1997(12): P350~353.
    [31]张以都.新型液体粘性软启动传动装置的研究[D].北京航空航天大学学位论文, 1995, 7.
    [32]李本海.表面形貌对纸基湿式摩擦离合器摩擦特性的影响及机理分析[D].机械科学研究院学位论文, 2006,7.
    [33]董勋,周益言.调速离合器传动机理研究[J].上海交通大学学报, 1991, Vol.25(1): P19~28.
    [34] Cai Dujing, Wei Chenguan. A Study on the Dynamic performance of Hydroviscous Drives [J]. Journal of Beijing Institute of Technology, 1992(1):P111~121.
    [35]陈宁.液体粘性传动(HVD)技术的研究[D].浙江大学学位论文, 2003,9.
    [36]洪跃.液体粘性调速离合器工作机理研究与模糊控制器试制[D].上海大学学位论文,2004,6.
    [37] Zhou Manshan, Zhang Yuan. Theoretical research on hydroviscous speed-adjusting clutch in soft-start of belt conveyor [J]. JOURNAL OF COAL SCIENCE&ENGINEERING, 2005(11): P79~82.
    [38]付业伟,李贺军,李克智.控制润滑状态下纸基摩擦材料的摩擦特性研究[J].润滑与密封, 2005(5): P40~43.
    [39]孙忠池,彭锡文.调速离合器控制系统分析[J].唐山工程技术学院学报, 1992 (3): P52~56.
    [40]张淑娥,杨再旺.调速型液体粘性离合器控制器的设计[J].电力情报, 1995, No.4:57~59.
    [41]黄晓光.大功率风机、水泵用液体粘性调速离合器控制系统的研究[D].北京理工大学学位论文, 2000,12.
    [42]姜雪,包继华,于岩.多点驱动的上运带式输送机起动控制策略[J].起重运输机械, 2007(11):P46~48.
    [43]郑林庆.摩擦学原理[M].北京:高等教育出版社, 1994, 11.
    [44]陈燕生.摩擦学基础[M].北京:北京航空航天大学出版社, 1991, 6.
    [45] O.平克斯, B.斯德因李希特.流体动力润滑理论[M].北京:机械工业出版社, 1980, 10.
    [46]宋伟刚,邓永胜.大型带式输送机合理可控起动曲线的研究[J].起重运输机械, 2002(8):P20~23.
    [47]王光炳.带式输送机可控软起动装置的研究[J].煤炭学报, 2003(6):P316~321.
    [48]张鹏顺,陆思聪.弹性流体动力润滑及其应用[M].北京:高等教育出版社,1995:P191~225.
    [49]章本照.流体力学中的有限元方法[M].北京:机械工业出版社,1969(11): P486~575.
    [50]周桂如,马骥,全永昕.流体润滑理论[M].杭州:浙江大学出版社,1990: P283~285.
    [51]徐灏.机械设计手册第5卷[M].北京:机械工业出版社,2001,1:P43-645~647.
    [52] Allaire P. E., Nicholas J. C., Gunter E. J. Systems of Finite Elements for Finite Bearings [J], Trans. ASME, Series F, Vol.99, No.2, 1977: P187~197.
    [53] Reddi,M.M. Finite Element solution of the Incompressible Lubrication Problem[J]. Trans. ASME, Series F, Vol.91, No.3, 1969: P524~533.
    [54]许尚贤.机械设计中的有限元法[M].北京:高等教育出版社, 1992,7:P266~301.
    [55]盛敬超.液压流体力学[M].北京:机械工业出版社,1980,3.
    [56]郑勇建.液体粘性调速离合器的研制及实验与仿真研究[D].浙江大学学位论文, 2003, 1.
    [57]邹伯敏.自动控制理论[M].北京:机械工业出版社,2001,5.
    [58]郭楚文.工程流体力学[M].徐州:中国矿业大学出版社,2002,3.
    [59] E. A. "Bud" Viren. A Comparison of Drive Starting Mechanisms for Aggregate Belt Conveyors[J], Principal Mechanical Engineer, February 24, 2003.
    [60]路甬祥,胡大纮.电液比例控制技术[M].机械工业出版社,1988.
    [61]沈月忠,姜澄宇,王仲奇.一种比例阀压力控制系统数学模型的建立[J].现代制造工程, 2006(11):P94~96.
    [62] Bora Eryilmaza, Bruce H. Wilson. Unified modeling and analysis of a proportional valve[J]. Journal of the Franklin Institute 343 (2006):P 48~68.
    [63]吴根茂,邱敏秀,王庆丰等.实用电液比例技术[M].杭州:浙江大学出版社, 1993.
    [64]徐轶.比例压力控制系统的辨识[J].机床与液压, 2006(14): P135~136.
    [65]厉玉鸣,翁维勤.非线性控制系统[M].北京:化学工业出版社, 1985, 10.
    [66]胡跃明.非线性控制系统理论与应用[M].北京:国防工业出版社, 2002,1.
    [67]蔡笃景,魏宸官.滑差离合器摩擦片间油膜厚度的稳定性研究[J].兵工学报, 1999(2):P59~64.
    [68]冯靖,彭光正.先导式比例流量阀控制系统的建模和仿真[J].机床与液压, 2007(1): P136~138.
    [69]徐线懂,李书文,袁航.比例流量阀稳态控制特性测试的数据处理[J].机床与液压, 2007(2): P176~178.
    [70]苏国秀.乳化液自动配比及控制系统的研究[D].山东科技大学学位论文,2005,5.
    [71]李晶.液压电梯速度控制研究[D].同济大学学位论文, 2006,3.
    [72] R. Amirante, P.G. Moscatelli , L.A. Catalano. Evaluation of the flow forces on a direct (single stage) proportional valve by means of a computational fluid dynamic analysis [J]. Energy Conversion and Management 48 (2007):P 942~953.
    [73] Ke Li, M.A. Mannan, Mingqian Xu et al. Electro-hydraulic proportional control of twin-cylinder hydraulic elevators [J]. Control Engineering Practice 9 (2001) :P367~373.
    [74]章军,贾春玉. CST驱动装置选用探讨[J].煤炭工程,2005(12):P8~11.
    [75]陶永华、尹怡新等.新型PID控制及其应用[M].北京:机械工业出版社,1998.
    [76]刘金琨.先进PID控制及其Matlab仿真[M].北京:电子工业出版社,2003,1.
    [77]刘镇,姜学智,李东海. PID控制器参数整定方法综述[J].电力系统自动化,1997(8):P79~83.
    [78]魏克新,王云亮,陈志敏. Matlab语言与自动控制系统设计[M].北京:机械工业出版社,1997,8.
    [79]翁思义.自动控制系统计算机仿真与辅助设计[M].西安:西安交通大学出版社,1987.
    [80]徐峰,李东海,薛亚丽.基于ITAE指标的PID参数整定方法比较研究[J].中国电机工程学报, 2003(8): P
    [81]符曦.系统最优化及控制[M].北京:机械工业出版社,1995,11.
    [82]诸静.模糊控制原理与应用[M].北京:机械工业出版社, 1995,7.
    [83]章为国,杨向忠.模糊控制理论与应用[M].西安:西北工业大学出版社,2000,1.
    [84]廉小亲.模糊控制技术[M].北京:中国电力出版社, 2003,8.
    [85]周美兰,谢先平,王旭东.汽车湿式离合器模糊控制策略研究及仿真[J].电机与控制学报, 2005(9): P414~418.
    [86]王沣浩,俞炳丰.模糊控制比例因子与空调系统稳定性关系的研究[J].电子技术应用,
    [87]赵元黎,刘越,杨松林.专家调整量化因子的模糊控制器[J].电子技术应用,
    [88] A.M.F. Filetia, A.J.B. Antunesa, F.V. Silva et al. Experimental investigations on fuzzy logic for process control [J]. Control Engineering Practice 15 (2007) :P1149~1160.
    [89] DoWan Kima, Jin Bae Parka, Young Hoon Joob. Effective digital implementation of fuzzy control systems based on approximate discrete-time models [J]. Automatica 43 (2007):P 1671~1683.
    [90]姜文佳,姜永健,姜广田.模糊PID控制算法改进及在温控系统中的应用[J].控制工程,2006,7:P338~340.
    [91]郭军平,吴勇,李自荣.基于模糊PID的随动系统优化设计与仿真[J].计算机仿真, 2005,11:P157~160.
    [92] Yau-Tarng Juang, Yun-Tien Chang, Chih-Peng Huang. Design of fuzzy PID controllers using modified triangular membership functions [J]. Information Sciences 178 (2008):P1325~1333.
    [93] S. E. Mansour, G. C. Kember, R. Dubay et al. Online optimization of fuzzy-PID control of a thermal process [J]. ISA Transactions 44 (2005): P305~314.
    [94]金以慧.过程控制[M].北京:清华大学出版社, 2006,2: P103~122.
    [95]王爱广.过程控制技术[M].北京:化学工业出版社, 2005, 8:P105~118.
    [96]刘良勇.液体粘性传动控制系统的研究[D].中国矿业大学学位论文, 2008,5.