葡萄细胞培养及其次生代谢产物白藜芦醇的代谢调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白藜芦醇(Resveratrol)是植物体内一种天然的二苯烯类多酚物质,是在外来病菌侵入、紫外线照射等不利因素影响下,由植物产生的一种植物抗毒素。具有明显抗菌、抗炎、抗癌、抗高血压脂症、抗脂质过氧化等多方面的活性。利用现代植物组培技术直接获得次生代谢产物用于药物生产,具有保护植物资源、生产周期短、不受地区和季节限制、个体差异小、便于工业化生产等优点。然而,大多数有用的次生代谢物质在植物细胞中含量极低,为此,在工业化生产中首先需对植物细胞进行选育和改良,以提高植物细胞中次生物质含量。利用称重法称量,采用有机溶剂法提取,HPLC法分析测定,从而考察了外源添加物、不同碳源、光照条件、紫外处理及不同收获时间对葡萄愈伤组织生长及其中白藜芦醇生成量的影响。结果表明,苯丙氨酸、肉桂酸、水杨酸、β-环糊精、秋水仙素、硝酸银的添加均可有效提高该细胞内白藜芦醇的含量,而且有明显的剂量效应,在所试范围内,其适宜浓度分别为30、30、40、40、5、30 mg·L-1;除秋水仙素外,其他几种添加物对愈伤组织的增殖无显著的促进作用,肉桂酸、硝酸银和水杨酸还有一定的抑制作用。就几种不同碳源来说,增殖效果是蔗糖的优于其他两种糖,而这两种糖对白藜芦醇的累积作用又优于蔗糖的,但是随着渗透压的增加,仅蔗糖对愈伤组织生长和白藜芦醇积累有促进作用,而葡萄糖和麦芽糖却有一定的抑制作用;几种光质对该愈伤组织的增殖效果由高到低依次为黄光、绿光、红光、蓝光、白光,对白藜芦醇的累积作用由强到弱依次为白光、黄光、红光、蓝光,绿光下生长的愈伤组织中未检测到白藜芦醇。经紫外处理的愈伤组织中白藜芦醇含量随处理时间的延长先增加后减少,处理10 min的(104μg·g~(-1))远高于处理时间大于15 min的,然而随着处理强度的增强呈现上升趋势,4.0 W·m~(-2)强度下处理过的愈伤组织中其含量比未处理的高出约4.2倍,比在0.05 W·m~(-2)下处理的高出3.3倍。在接种后的第9 d,白藜芦醇的生成量最大,达64.5μg·g~(-1),之后开始逐渐下降,45 d后只检测到3.7μg·g~(-1)。
Resveratrol, a known antioxidant compound naturally produced in plants as a self-defense agent in response to exogenous stimuli such as pathogen attack, ozone treatment, pre-harvest and post-harvest UV-C irradiation, etc, belongs to the phenolic phytoalexins group and stilbenes. Resveratrol has many biological activities, i.e. estrogenic activity, cardiovascular protective effect, neuroprotective capacity, and cancer chemopreventive activity. The treatment of plant cells with biotic and abiotic elicitors has been one of the most effective means to improve the yields of secondary metabolites in plant cell cultures. In our study, weighing method for growth, organic solvent method for extraction and HPLC method for determination were used to study the influences of supplementary materials (phenylalanine, cinnamic acid, salicylic acid,β-cyclodextrin, colchicines and silver nitrate), carbon sources (sucrose, glucose and maltose), light quality (red, yellow, blue, green and white light), UV-C treatment and harvest time on the growth of the callus from Pinot Noir and its resveratrol accumulation. The results showed that 30, 30, 40, 40, 5, 30 mg·L-1 are the optimal concentrations in turn for resveratrol-forming; except colchicines, the other additions did not show any stimulative effect on the multiplication, and cinnamic acid, salicylic acid and silver nitrate inhabited its growth. Sucrose was superior to the other two for the multiplication but inferior to those for resveratrol accumulation, however, as the osmotic pressure increased, only sucrose can enhance the callus growth and resveratrol-forming which was suppressed by glucose and maltose. The order of multiplication effects from the high to low was yellow, green, red, blue, white light, and that of resveratrol accumulation was white, yellow, red, blue, green, but resveratrol was not detected in the callus growing under green light. With the treatment of UV-C, longer periods of irradiation considerably weakened the capacity of the calli to synthesis resveratrol, and with exposure time of 10min, maximal induction took place (104μg·g~(-1)); as the intensity of the light increased, the content of resveratrol was enhanced obviously, 0.4 W·m~(-2) made the content of resveratrol increase to 170μg·g~(-1), 4.2 and 3.3 times more than the control and 0.05 W·m~(-2) did respectively. 9 days after the inoculation of the callus, 64.5μg·g~(-1) resveratrol formed, which was the highest content in the whole growth period, and only 3.7μg·g~(-1) was detected on the 45th day.
引文
[1]李宝健,曾庆平.植物生物技术原理与方法[M].长沙:湖南科学技术出版社,1990:1-2.
    [2] White P R. Potentially unlimited growth of excised tomato root tips in a liquid medium[J].Plant physiology.1934,9:585-600.
    [3] Skoog F, Miller C O. Chemical regulation of growth organ formation in plant tissue cultured in vitro[J]. Symposia of the Society for Experimental Biology, 1957, 11: 118-131.
    [4]于亚军,代汉萍,李宝江.植物激素和生长调节剂在果树组织培养中的应用[J].北方园艺,2002(6): 68-70.
    [5] Steward F C, Mapes M O,Mears K.Growth and organized development of cultured cells. Organization in cultures from freely suspended cells[J]. American journal of botany, 1958,45: 705-708.
    [6] Vasil V, Hilderbrandt A C. Differentiation of tobacco plant from single isolated cells in micro culture[J]. Science, 1965, 150:889-892.
    [7] Larkin P J, Sconcro W P. Sornaclonal variation-a novel source of variability from cell culture for plant improvement[J].Theoretical and applied genetics,1981,60:197-214.
    [8]许智宏.植物生物技术[M].上海:上海科学技术出版社,1998: 12.
    [9]李胜,李唯.植物组织培养原理与技术[M].北京:化学工业出版社,2007,10.
    [10]顾方舟,卢圣栋.生物技术的现状与未来[M].北京:北京医科大学中国协和医科大学联合出版社,1990:147.
    [11]谢启昆.药用植物组织培养[M].上海:上海科学技术出版社.1986
    [12]常钰,刘涤,胡之壁.植物细胞和器官大规模培养研究的进展[J].生物技术通报,2001(1):31-36.
    [13]朱西儒,雷光富.药用植物细胞培养代谢全能性及产物检测技术的研究进展[J].广西科学院学报,1998,14(2):1-6.
    [14]周俊清,林亲录,邓靖.白藜芦醇的研究进展[J].中国食物与营养, 2005,8:20-22.
    [15]冀春菇,王浴铭,刘延泽,等.中花化学实验技术与实验[M].郑州:河南科学技术出版社,1986:283-287.
    [16] Brent C,Trela,Andrew L,Waterhouse.Resveratrol Isomeric Molar Absorptivities stability[J].Agric Food Chem,1996,44(5):1253-1257.
    [17]白杨,潘隽丽,苏薇薇.白藜芦醇与白藜芦醇苷的研究进展[J].中药材, 2004,27(1):55-59.
    [18] Jing M, Cai L, Udeani G O, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes [J]. Science, 1997, 275(5297): 218-220.
    [19]Ali MA, Kondo H, Tsudn Y. Synthesis and nematocidal activity of hydroxystilbene[J]. Chem Pharm BUⅡ,1992,40(5):1130-1136.
    [20]Iangcake P., Pryce R. The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation[J]. Phytochemistry,1977,16:1193-1196.
    [21]Adrian M, Daire X, Jeandet P, et al. Comparison of stilbene synthase activity (resveratrol amouts and stilbene synthase mRNAs levels) in grapevine leaves treated with biotic and abiotic phytoalexin inducers [J]. Am.J.Enol.Vitic,1997,48(3):394-399.
    [22]向敏,匡小东,杨勇,等.白藜芦醇及其药理保健功能的研究[J].中国食品添加剂, 2004(5):16-20.
    [23]Solladie G, Pasturel-Jacope Y, Maignan J. A re-investigation of resveratrol synthesis by Pekins reaction. Application to the synthesis of aryl cinnamic acids [J]. Tetrahedron, 2003,59(18):3315-3321.
    [24]冯永红,许实波.白藜芦醇药理作用研究进展.国外医药.植物药分册,1996,2(4):155-157.
    [25]Schroder G, Schroder J. A Single change of histidine to glutamine alters the substrate preference of a stilbene synthase[J]. Biol Chem,1992, 267:20558-20560.
    [26]Chang Sukbok, Na Younigim, Shin Hyun Jung, et al. A short and efficient synthetic approach to hydroxyl(E)-stilbeniods via solid-phase cross metathesis [J]. Tetrahedron Lett.,2002, 43(41):7445-7448.
    [27]Iangcake P., Pryce R. The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation[J]. Phytochemistry,1977,16:1193-1196.
    [28]Adrian M, Daire X, Jeandet P, et al. Comparison of stilbene synthase activity (resveratrol amouts and stilbene synthase mRNAs levels) in grapevine leaves treated with biotic and abiotic phytoalexin inducers [J]. Am.J.Enol.Vitic,1997,48(3):394-399.
    [29]Tropf Susanne, Karcher barbell, Schrodre Gudrun, et al. Reaction mechanism ofhomodimeric plant polyketide synthases (stilbene and chalcone synthase)[J]. Biol Chem, 1995,270(14):7922-7928.
    [30]Schoppner A, Kindl H. Purification and properties of a stilbene synthase from induced cell suspension cultures of peanut [J]. Biol Chem, 1984, 259(11):6806-6811.
    [31]Schroder G, Schroder J. A Single change of histidine to glutamine alters the substrate preference of a stilbene synthase[J]. Biol Chem,1992, 267:20558-20560.
    [32]Lanz T, Tropf S ,Marner F J, et al. The role of cysteines in polyketides synthases, site-directed mutagenesis of resveratrol and chalcone synthase, two key enzymes in different plant specific pathways[J]. Biol Chem, 1991,266:9971-9976.
    [33]王征,罗泽民,邓林伟.白藜芦醇的药理作用机理和合成途径[J].天然产物研究与开发. 2003,15(2):178-181.
    [34]姚宝书,齐崴.从葡萄皮渣中提取白藜芦醇的研究[J].天津轻工业学院学报,1999(4):8-15.
    [35]张敏,曹庸,于华忠,等.虎杖白藜芦醇提取工艺的初步研究[J].林产化工通讯,2004,38(3):6-9.
    [36]Timothy H, Sanders.J.Agric Food Chem, 2000,48:1234-1236.
    [37]苏文强,杨磊,李艳杰,等.碱提取法从虎杖中分离白藜芦醇的研究[J].林产化工通讯,2004,38(1):17-20.
    [38]曹庸,于华忠,杜亚填,等.虎杖白藜芦醇超临界CO2萃取研究[J].湖南农业大学学报,2003,29(4):353-355.
    [39]陈雷.虎杖中白藜芦醇和白藜芦醇苷高速逆流色谱分离提纯及分析[J].分析测试学报,2000,19(4):59.
    [40] Yu C, Shin Y G, Kosmeder J W, et al. Liquid chromatography / tandem mass spectrometric determination of inhibition of human cytochrome P450 isozymes by resveratrol and resveratrol- 3- sulfate [J]. Rapid Commun Mass Spectrom,2003, 17 (4): 307-313.
    [41] Sgambato A, Ardito R, Faraglia B, et al. Resveratrol, a naturalphenolic compound, inhibits cell proliferation and prevents oxidative DNA damage [J]. Mutat Res, 2001, 496 (12): 171-180.
    [42] Revel A, Raanani H, Younglai E, et al. Resveratrol, a natural arylhydrocarbon receptorantagonist, protects sperm from DNA damageand apoptosis caused by benzo (a) pyrene [J]. Reprod Toxicol, 2001, 15 (5): 479-486.
    [43] Potter GA, Patterson LH, Wanogho E, et al. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYPl Bl [J]. Br J Cancer, 2002, 86 (5): 774 -778.
    [44] Kensler T W. Chemoprevention by inducers of carcinogen detoxication enzymes [J]. Environ Health Perspect, 1997,105 (4): 965-969.
    [45] Bhat K P, Pezzuto J M. Cancer chemopreventive activity of resvera-trol [J]. Ann N Y Acad Sci, 2002, 957: 210-229.
    [46] Banerjee S, Bueso Ramos C, Aggarwal BB. Suppression of 7, 12- dimethylbenz (a) anthracene- induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor kappaB, cyclooxygenase 2, and matrix metalloprotease 9 [J] .Cancer Res, 2002, 62 (17): 4 945-4 954.
    [47] Fabbro D, Parkinson D, Matter A. Protein tyrosine kinase inhibitors: new treatment modalities [J]. Curr Opin Pharmacol, 2002, 2 (4): 374-381.
    [48] Atten M J, Attar B M, Milson T et al. Resveratrol- induced inactivation of human gastric adeno- carcinoma cells through a protein kinase C mediated mechanism [J]. Biochem Pharmacol, 2001, 62 (10): 1 423-1 432.
    [49] Serrero G, Lu R. Effect of resveratrol on the expression of autocrine growth modulators in human breast cancer cells [J]. Antioxid Redox Signal, 2001, 3 (6): 969-979.
    [50] Asou H, Koshizuka K, Kyo T, et al. Resveratrol, a natural product derived from grapes, is a new inducer of differentiation in human myeloid leukemias [J]. Int J Hematol, 2002, 75 (5): 528-533.
    [51] Park J W, Choi Y J, Jang M A, et al. Chemopreventive agent resveratrol, a natural product derived from grapes, reversibly inhibits progression through S and G2 phases of the cell cycle in U937 cells [J]. Cancer Lett, 2001, 163 (1): 43-49.
    [52] Lin H Y, Shih A, Davis F B et al. Resveratrol induced serine phosphorylation of P53 causes apoptosis in a mutant p53 prostate cancer cell line [J]. J Urol, 2002, 168 (2): 748-755.
    [53] Narayanan B A, Narayanan N K, Re G G, et al. Differential expression of genesinduced by resveratrol in LNCaP cells:P53- mediated molecular targets [J]. Int J Cancer, 2003, 104 (2): 204-212.
    [54] Shih A, Davis F B, Lin H Y et al. Resveratrol induces apoptosis in thyroid cancer cell lines via a MAPK and p53-dependent mechanism [J]. J Clin Endocrinol Metab, 2002, 87 (3): 1 223-1 232.
    [55]Hattori R, Otani H, Maulik N, et al. Pharmacological preconditioning with resveratrol: role of nitric oxide [J] . Am J Physiol Heart Circ Physiol, 2002, 282: 1988-1995.
    [56]Hung LM, Chen J K, Huang SS, et al. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes [J]. Cardiovasc Res, 2000, 47: 549-555.
    [57]Mowafy A M. Resveratrol activates membrane boundguanylyl cyclase in coronary arterial smooth muscle: Anovel signaling in support of coronary protection [J]. Biochem Biophysio Res Commu, 2002, 291: 1218-1224.
    [58] Li H F, Chen S A, Wu S N. Evidence for the stimulatory effect of resveratrol on Ca2+- activated K+ current in vascular endothelial cells [J]. Cardiovasc Res, 2000, 45: 1035-1 045.
    [59]Chan M. M. Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin [J].2002, 63 (2): 99-104.
    [60]吕秋军,温利青,张敏,等.白藜芦醇的辐射防护及其分子机理的研究[J].中华放射医学与防护杂志, 2004, 24(1) : 21-22.
    [61]郝海燕,于震宇,陈杭君,等.白藜芦醇功能和作用机理研究进展[J].中国食品学报,2006,6(1):411-416.
    [62]高文远,贾伟.药用植物大规模组织培养[M].北京:化学工业出版社,2005:8-14.
    [63]孙敬三,桂耀林.植物细胞工程试验技术[M].北京:科学出版社,1995:49.
    [64]吕东平,赵德修,黄艳,等.前体对水母雪莲悬浮培养细胞黄酮合成的影响[J].云南植物研究,2001,23(4):497-503.
    [65]曲均革,虞星炬,张卫,等.前体饲喂、诱导子和光照联合使用对葡萄细胞培养合成花青素的影响[J].生物工程学报,2006,22(2):299-305.
    [66]欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及调控[J].植物生理学通讯,1988,24(3): 9-16.
    [67]曹孟德,李家儒,王君健.诱导物及前体物对香荚兰细胞悬浮培养产生香兰素的影响[J].木本植物研究,2000,20(3):266-269.
    [68] Robins R J,Parr A J,Bent E G,et al.Studies on the biosythesis of tropane alkaloids in Datura stramonium L transformed root cultures[J].Planta,1991,183:185 -195.
    [69] Memelink J. The use of genetics to dissect plant secondary pathways[J]. Curr Opin Plant Biol,2005,8:230-235.
    [70]赵淑娟,刘涤,胡之璧.植物次生代谢基因工程[J].中国生物工程杂志,2003,23(7):52-56.
    [71]Jin Hoon Kim, Jeonghwan Yun Yngsoon Hwang, etal. Production of taxoland taxanesin. Taxusbrevifolia cell cultures:effect of sugar [J]. Biotechnology, 1995,17 (1):101-106.
    [72] Smith M A L, Madhavi D L, Fang Y, et al. Continuous cell culture and product recovery from wild Vacciniumpahalae [J].Plant Physiol, 1997, 150: 462.
    [73]陈晓亚.植物此生代谢研究[J].世界科技研究与发展,2006(5):125-131.
    [74]徐刚,王彩莲.培养基和培养时间对水稻成熟和胚培养力的影响[J].种子,1990(4):21-23.
    [75] Satok, Nakayama, Shigeta J. Culturing conditions affecting the production of anthocyani in suspended cell cultures of strawberry[J].Plant Sci.,1996,113:91-98.
    [76] Zhong J J, Yoshida T.High-density cultivation of Perilla frutescenes cell suspensions for anthocyanin production: effects of sucrose concentration and inoculum size[J].Enzyme Microb Technol, 1995,17:1073-1079.
    [77] Sinha S, Gupta A K. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants[J]. Chemosphere,2001, 61:1204-1214.
    [78]张志杰,吕秋芳,方芳.汞对小麦幼苗生长发育和生理功能的影响[J].环境科学,1989,10(4):10-13.
    [79]艾辛,祝莉莉,舒理慧,等.硝酸银对雌性黄瓜植株三种氧化酶同工酶的影响[J].植物学通报,2000,17(3):242-245.
    [80]杨居荣,贺建群,张国祥,等.不同耐性作物种几种酶活性对Cd胁迫的反应[J].中国环境科学,1996,16(2):113-117.
    [81] Sinha S, Gupta AK. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants[J]. Chemosphere, 61:1204 -1214.
    [82]李大辉,丁小余,施国新,等.Cd2+,Hg2+对菱幼苗生长及超氧化物歧化酶、过氧化氢酶活性的影响[J].武汉植物学研究,1999,17(3):206-210.
    [83]何长征,艾辛,熊先军,等.硝酸银对黄瓜植株茎尖保护酶活性的影响[J].湖南农业大学学报,2003, 29(3):243-245.
    [84]曹利仙,赵鹏,唐宇力,等.硝酸银对黄瓜离体子叶培养芽再生的促进效应[J].甘肃农业大学学报,2001,36(2):168-171.
    [85]沈同,王镜岩,赵邦悌.生物化学(上册)[M].北京:高等教育出版社,1987,246-248.
    [86]区炳庆,何丽烂.香蕉组培苗POD、PPO及SOD活性对银胁迫的反应[J].广西植物,2003,23(1):93-95.
    [87]周倩耘,周建民,刘峻,等.诱导子对人参毛状根中皂苷含量的影响[J].南京军医学院学报,2003,25(2):76-78.
    [88] Khosroushahi A Y, Valizadeh M, Ghasempour A, et al.Improved Taxol production by combination of inducing factors in suspension cell culture of Taxus baccata[J]. Cell Biol Int, 2006,30(3):262-269.
    [89]徐亮胜,薛晓锋,付春祥,等.茉莉算甲酯与水杨酸对肉苁蓉悬浮细胞中苯乙醇苷合成的影响[J].生物工程学报,2005,21(3):402-406.
    [90] Komaraiah P, Kavi Kishor P B, Carlsson M, et al. Enhancement of anthraquinone accumulation in Morinda citrifolia suspension cultures[J]. Plant Sci, 2005,168:1337-1344.
    [91] PastírváA, Repcák M, Elia?oáA. Salicylic acid induces changes of coumarin metabolites in Matricaria chamomilla L[J]. Plant Sci, 167:819-824.
    [92]Wen P F, Chen J Y, Kong W F, et al. Salicylic acid induced the expression of phenylalanine ammonia-lyase gene in grape berry[J]. Plant Sci, 2005,169:928-934.
    [93]Thulke O, Conrath U. Salicylic acid has a dual role in the activation of defence-related genes in parsley[J]. Plant J,1998,14(1):35-42.
    [94]杨小青.关于秋水仙素作用机理的初步探讨[J].中学生物教学,2004,6:52.
    [95] Seibert M, Wetherbee P J, Job D D. The effects of limist intensity and spectral quality on growth and shoot initiationin tobacco callus[J]. Plant Physiol, 1975, 56: 130-139.
    [96] De Capite L. Action of light and temperature on growth of plant tissue culture in vitro[J]. Am J Bot, 1955,42: 869-873.
    [97]崔堂兵,郭勇,林炜铁.提高植物细胞培养法生产次级代谢物产量的方法[J].植物生理学通讯, 2001,37 (5): 479-482.
    [98]冯敏,毛学文,陈荃.不同光质和培养基对毛地黄叶组织中强心苷累积的效应研究[J].韶关大学学报(自然科学版), 1994,15 (4): 70-73.
    [99]张泽岑,王能斌.光质对茶树花青素含量的影响[J].四川农业大学学报, 2002,20 (4): 37-38.
    [100] Zhao D X, Li M Y, Xing J M, et al. Effects of light on cell growth and flavonoids in callus cultures of Saussurea medusa Maxim[J].Acta Phytophysiol Sin,1999,25(2):127-132.
    [101] Kurata H,Mochizuki A,Okuda n, et al. Intermittent light irradiation with second-or hour-scale periods controls anthocyanin production by strawberry cells[J].Enzyme Microb Technol,2000,26:621-629.
    [102] Seibert M, Kadade PG (1980). Enviromental factor: a light. In: Staba EJ (ed). Plant Tissue Culture as A Source of Biochemicals. Florida: CRC Press, 123-141.
    [103]Langcake P, Pryce R J. The production of resveratrol and theviniferins by grapevines in response to ultraviolet irradiation[J].Phytochemistry,1977,16: 1193-1196.
    [104] Melchior F, Kindl H. Coordinate - and elicitor - dependent expression of stilbene synthase and phenylalanine ammonia– lyase genes in Vitis cv.Optima[J]. Archives of Biochemistry and Biophysics, 1991, 288 (2): 552-557.
    [105] Fritzemeier KH, Kindl H. Coordinate induction by UV light of stilbene synthase, phenylalanine ammonia- lyase and cinnamate 4-hydroxylase in leaves of Vitaceae [J]. Planta, 1981, 151: 48-52.
    [106]Rong R F, Feng S Q, Dai Y Q. Effect of UV- C irradiation on infection and resveratrol of postharvest grape[J]. Storage and Process, 2005, 28(3): 8- 9.
    [107]Li J M, Ma L Y, Liu Y N. Inducementof UV on the resveratrol in harvested grape[J]. Sino-Overse as Grapevineand Wine, 2004, 4 : 16- 19.
    [108] Eline A, Breuil D, Jeandet P. Changes in the phytoalexincontent of various Vitis spp. In response to ultraviolet C elicitation[J]. Journal of Agricultural Food Chemistry, 1999, 47:4456-4461.
    [109]李晓东,郑先波,闫树堂,等.水杨酸和紫外线对诱导采后葡萄果皮内白藜芦醇合成作用研究[J].果树学报,2007, 24( 1) : 30-33.
    [110] Cantos E., Espin J.C, Tomas-Barberan F.A. Postharvest induction modeling method using UV irradiation pulses for obtaining resveratrol-enriched table grapes: a new“functional fruit”? [J]. Agric Food Chem. 2001, 49(10):5052-5058.