两株海绵来源真菌活性次级代谢产物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海绵的体表及体内积聚了大量的微生物,这些微生物的次级代谢产物化学结构新颖、种类繁多,是新药先导化合物的重要来源。为了寻找新的活性先导化合物,本论文采用了活性筛选和现代化学筛选相结合的方法,选取了2株海绵来源具有抗肿瘤和抗炎活性真菌的次级代谢产物进行系统研究。
     从海南琼海及三亚附近海域的27个海绵样品中分离得到了208株微生物。采用SRB法,以小鼠白血病P388肿瘤细胞为筛选模型进行体外抗肿瘤活性的一级、二级筛选,并结合HPLC指纹图谱及薄层色谱进行化学筛选,得到具有较强细胞毒活性的菌株15株。对15株活性菌株同时进行抗炎活性筛选,其中2株具有强抗炎活性的海绵真菌,经ITS序列进行测序比对后,鉴定为附球菌属Epicoccum sp. JJY-40和链格孢属Alternaria sp. JJY-32,因此本文选择这2株活性菌株作为研究目标。
     在考察了2株目标菌株的培养条件后,对目标活性菌进行了大量发酵。对发酵产物运用萃取,薄层色谱,正相、反相硅胶柱色谱,LH-20凝胶柱色谱,反相高压液相等化学的分离纯化手段,从附球菌属Epicoccum sp. JJY-40的次级代谢产物中分离得到18个单体化合物(1-15,29,30,31);从链格孢属Alternaria sp. JJY-32的次级代谢产物中分离得到16个单体化合物(16-28,32,33,34),共34个化合物。
     继而,利用理化性质和波谱学方法(IR,UV,MS,NMR,X-ray)结合化学反应的方法(乙酰化反应等)阐述了其中28个化合物(1-28)的化学结构(化合物结构及名称参见Table 1),其中新化合物12个。新化合物结构类型包括:萜类衍生物(18-25,27,28),Aucubinine B的羟基化衍生物(8)以及吡喃衍生物(15)。其中,新化合物18-25为系列具有新颖侧链的萜类衍生物,此类结构以前未曾报道,新化合物28为一罕见的杂螺环萜类衍生物。其它已知化合物分别为4个苯的衍生物(1-4)、4个二酮哌嗪(6,9-11)、1个糖苷(12)、1个核苷(13)、3个生物碱(5,7,14)、1个甾醇类化合物(16)以及2个Tricycloalternarene类萜类衍生物(17,26)。
     先天性免疫是机体抗感染的第一防线,而巨噬细胞在其中发挥了关键性的作用,RAW264.7细胞可以很好的模拟体内的巨噬细胞系统,LPS可以通过刺激细胞因子的分泌而激活巨噬细胞,从而诱导炎症反应,因此实验利用LPS刺激下的RAW264.7细胞作为细胞模型,采用ELISA,RT-PCR,Western Blot和免疫荧光染色的筛选方法,对部分单体化合物的体外免疫调节活性进行了初步评价,发现化合物15和17可以明显的抑制LPS诱导的TNF-α和NO的分泌以及mRNA基因的表达,同时这些化合物亦可以明显的抑制LPS诱导的iNOS以及COX-2的表达,说明化合物15和17具有很强的免疫炎症抑制作用。此为化合物15和17抗炎活性的首次报道。剩余新化合物的构型和抗炎、抗肿瘤活性正在评价过程中。
     综上,本文从海绵样品中共分离筛选出15株细胞毒活性菌株, 2株强抗炎活性菌株;阐明2株真菌中28个次级代谢产物的结构,其中12个新化合物,发现1个罕见的杂螺环萜类衍生物;首次发现化合物15和17具有显著的抗炎活性。上述研究为天然产物化学提供了新的结构类型,为抗炎药物的研究提供了活性模板化合物,并为从海绵来源真菌中活性次级代谢产物的研究提供了基础资料。
Sponge-associated microorganism is a rich source of secondary metabolites with diverse structures and biological activities. A study is carried out to investigate the bioactive lead compounds derived from sponge-associated microorganism. This thesis describes the study of the secondary metabolites produced by two selected sponge-associated fungi with anti-tumor and anti-inflammatory activities.
     Two hundred and eight fungal strains were isolated from twenty seven sponge samples which were collected from the seashore of Qiong hai and Sanya in Hainan Province. Fifteen active strains were picked out based on the cytotoxic assay using the P388 cell line by the SRB method and on the HPLC and TLC chemical screening. Among them, two strains which were identified as Epicoccum sp. JJY-40 and Alternaria sp. JJY-32 by ITS sequencing also exhibited high anti-inflammatory activities. So they were selected for further study of their secondary metabolites.
     Large-scale fermentations of the two bioactive strains were performed to obtain the active extracts. By means of chromatography over silica gel column, Sephadex LH20, preparative TLC and semi-preparative HPLC, eighteen (1-15,29,30,31) and sixteen compounds (16-28,32,33,34) were isolated from the sponge-associated fungi JJY-40 and JJY-32, respectively.
     Basing on their physico-chemical properties and spectral data (IR, UV, MS, NMR, etc.), twenty eight structures were elucidated as 5-methylbenzene-1,3-diol(1), 1,3-Dihydroxy-4,5-dimethylbenzene (2), 2,4-dihydroxyl-5,6-dimethyl- benzoic acid (3), 2,4-dihydroxyl-6-methyl-benzoic acid (4), 3-indolylacetic acid methyl ester (5), cyclo-(Tyr-Pro)(6),N-acetyltyramine(7),3-hydroxy-7-methyl-6,7-dihydrocyclop-enta [c]pyridine-5-one (8), cyclo-(Pro-Leu) (9), cyclo-(Pro-Ile) (10),cyclo-(Val-Pro)(11), isomaltol-glucoside(12), Inosine(13), flazin(14), D8646-2-6’(15), Ergosterol (16), ACTG-toxins H (17), Dicycloalternarene 1b(18), Dicycloalternarene 2b(19), Dicycloalternarene 3a(20), Dicycloalternarene 3b(21), Dicycloalternarene 4b(22), Dicycloalternarene 4a(23), Phencycloalternarene 1(24), Phencycloalternarene 2(25), Tricycloalternarene 6a(26) , Tricycloalternarene 12a(27) and Tricycloalternarene 13a(28). Among the twelve new compounds, there were ten terpenoid derivatives (18-25,27,28), a hydroxy derivative of Aucubinine B (8) and a pyran derivative (15). New compounds 18-25 are a series of terpenoid derivatives with novel side-chain which have not been reported previously. New compound 28 is a rare spiro-oxindole terpenoid derivative. The known compounds were identified as four benzol derivatives (1-4), four cyclic dipeptides (6,9-11), a glucoside (12), a nucleoside (13), three alkaloids (5 , 7 , 14), a sterol (16) and two tricycloalternarene-type terpenoid derivatives (17,26), respectively.
     Macrophages play a crucial role in innate immunity which is the body's first line of defense against infection and LPS can activate macrophages to induce inflammatory response by stimulating the secretion of cytokines. So we used LPS- stimulated RAW264.7 cells which can simulate macrophage system in vivo perfectly as cell model to evaluate immunomodulatory activity of some compounds in vitro by ELISA, RT-PCR, Western Blot and Immunofluorescent staining screening methods. The results indicated that compounds 15 and 17 could inhibit secretion and mRNA expression of LPS-induced TNF-αand NO. They also inhibited LPS-induced iNOS and COX-2 expression obviously. The high anti-inflammatory activities of such compounds have not been reported yet. The anti-inflammatory and anti-tumor activities of the rest new compounds are being evaluated.
     In a word, fifteen active sponge–associated fungal strains with cytotoxic activities were obtained by combinatorial screening. Among them two strains also exhibited high anti-inflammatory activities. Twenty eight compounds were obtained from the two aimed fungi. Among them twelve compounds were new including a rare spiro-oxindole terpenoid derivative. Compounds 15 and 17 were first found to show high anti-inflammatory activities. This study provides novel structure types for natural product chemistry and bioactive template compounds for exploring new anti-inflammatory drugs. It also proves that the method we used is effective in looking for new bioactive secondary metabolites from sponge-associated fungi.
引文
[1] Zhang XY,Zhao QY,Xue S,et a1.Bioactive compounds from marine sponges and cell culture of marine sponges [J].Chin J Biotechnol,2002,18:10.
    [2] Newman DJ,Gragg GM.Marine natural products and related compounds in clinical and advanced preclinical trials[J].J Nat Prod,2004.67(8):1216-1238
    [3] Simmons TL,Andrianasolo E,McPhail K,et a1.Marine natural products as anticancer drugs[M].Mol Cancer Ther,2005.4(2):333-342
    [4] Cui C.B., Yan S.Y., Cai B., Yao X.S. Carbazole alkaloids as new cell cycle inhibitors and apoptosis inducers from Clausena Dunniana Levl[J]. J.Asian Nat. Prod.Res., 2002, 4(4): 233-241.
    [5] Cui C.B., Zhao Q.C., Cai B., Yao X.S., Osadsa H. Two new and four known polyphenolics obtained as new cell-cycle inhibitors from Rubus aleaefolius poir[J]. J.Asian Nat. Prod. Res., 2002, 4(4): 243-252.
    [6]朱天骄,崔承彬,顾谦群,等.海洋微生物的分离培养及抗肿瘤活性初筛[J].青岛海洋大学学报,2002, 32 (123): 123-126.
    [7] Baghdikian, B.; Ollivier, E.; Faure, R.; Debrauwer, L.; Rathelot, P.; Balansard, G. Two New Pyridine Monoterpene Alkaloids by Chemical Conversion of a Commercial Extract of Harpagophytum procumbens. Journal of Natural Products, 1999, 62(2), 211-213.
    [8] Kimura, Junko; Furui, Megumi; Kanda, Mina; Sugiyama, Masato. Telomerase inhibitor manufacture with Epicoccum. Jpn. Kokai Tokkyo Koho 2002
    [9] Robert S M. An Improved Synthesis of 5-Alkylresorcinols. J Org Chem ,1972 ,18 :2901.
    [10] Robertson, Alexander; Whalley, W. B. Derivatives of 4,5-dimethylresorcinol. Journal of the Chemical Society. 1949, 3038-3041.
    [11] S Huneck , C D Jerassi. Flechteninhaltsstoffe. Tetrahedron , 1968 , 24 :2707.
    [12] Geoffrey E Evans, James Staunton. An Investigation Biosynthesis of Citromycetin in Penicillium Frequentans Using 13C and 14C Labelled Precursors. J Chem Soc Perkin Trans I, 1988 , 755.
    [13] Suarez-Castillo, Oscar R.; Sanchez-Zavala, Maricruz; Melendez-Rodriguez, Myriam, et al. Preparation of 3-hydroxyoxindoles with dimethyldioxirane and their use for the synthesis of natural products. Tetrahedron 2006, 62 (13):3040-3051.
    [14]熊江,周俊,戴好富.多蕊商陆的化学成分.云南植物研究, 2002, 24: 401-403
    [15]胡海峰,朱宝泉,龚炳.微生物来源的胆固醇生物合成醇抑制剂研究:抗生素SIPI-8926-111的研究.中国医药工业杂志, 1995, 26 (11):484-486.
    [16] G. S. Jayatilake, M. P. Thornton, A. C. Leonard, et al. Metabolites from an antarctic sponge-associated bacterium, pseudomonas aeruginosa, J. Nat. Prod. , 1996, 59: 293-296
    [17] Faouzi Fdhila, Victorizno Vázquez. DD-Diketopipetazines: Antibiotics Active against Vibrio anguillarum Isolated from Cultures of Pecten maximus. J. Nat. Pro. 2003, 66: 1299-1301
    [18]于德泉.杨峻山等.分析化学手册(第二版).北京:化学工业出版社. 1999
    [19] Masafumi O.; Masanori K.; Hirokazu K. Characterization of a New Maillard Type Reaction Product Generated by Heating 1-Deoxymaltulosyl -glycine in the Presence of Cysteine. J. Agric. Food Chem, 2006, 54: 5127-5131
    [20] Yoshio Saito, Thomas A. Zevaco and Luigi A. Chemical synthesis of 13C labeled anti-HIV nucleosides as mass-internal standards. J Tetrahedron, 2002, (58), 9593-9603.
    [21] Christine D. Jardetzky and Oleg Jardetzky. Investigation of the structure of purines, pyrimidines, ribose Nucleosides and Nucleotides by proton magnetic Resonance. 1960, (22), 238-245.
    [22] Nakatsuka, S.; Feng, B.; Goto, T.; Kihara, K.. Structures of flazin and YS, highly fluorescent compounds isolated from Japanese soy sauce. Tetrahedron Lett., 1986, 27 (29): 3399-3402
    [23] Ralph-Peter N., Wolfgang G., Stephan H., Bernd L. New tricycloalternarenes produced by the phytopathogenic fungus Alternaria alternate. Phytochemistry, 1999, 52:593-599.
    [24] Takaishi, Y., Uda, M., Ohashi, T., et al. Glycosides of ergosterol derivatives from Hericum erinacens. Phytochemstry, 1991, 30 (12): 4117-4120
    [25] Li-Rui Qiao, Lin Yuan, et al. Tricycloalternarene derivatives produced by an endophyte Alternaria alternata isolated from Maytenus hookeri. Journal of Basic Microbiology, 2007, 47:340–343.
    [26] Zhang XY, Zhao QY, Xue S, et al. Bioactive compounds from marine sponges and cell culture of marine sponges [J], Chin J Biotechnol, 2002, 18: 10
    [27] Shigemori H, Bae M A. Alteramide A. A new tetracyclic alkaloid from a bacterium Alteromonas sp. associated with the marine sponge Halichondria okadai [J]. J Org Chem. 1992, 57: 4317-4320
    [28] Kobayashi J, Ishibashi M. Bioactive metabolites of symbiotic marine microorganisms [J]. Chem Rev. 1993, 93; 1753-1769
    [29] Unson M D, Holland M D, Faulkner D J. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue [J]. Mar Biol , 1994, 199: 1-11
    [30] Jadulco R ,Brauers G. New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. J Nat Prod ,2002 ,65 :7302733
    [31] Mitova M, Tommonaro G, De Rosa S. A novel cyclopeptide from a bacterium associated with the marine sponge Ircinia muscarum [J]. J Biosciences, 2003, 58 (9/10): 740-745.
    [32] Mitova M, Popov S, De Rosa S. Cyclic Peptides from a Ruegeria Strain of Bacteria Associated with the Sponge Suberites domuncula [J]. J Nat Prod, 2004, 67: 1178-1181.
    [33] Ru AngelieEdrada ra, Markus Heubes, Gernot Brauers, et al. Online analysis of xestodecalactones A-C, novel bioactive metabolites from the fungus Penicillium cf. montanense and their subsequent isolation from the sponge Xestospongia exigua [J], J Nat Prod, 2002, 65:1598.
    [34] Wenhan Lin, Gernot Brarers, Rainer Ebel, et al. Novel Chromene Derivatives from the Funfus Aspergillus versicolor Isolated from the Marine Sponge Xestospongia exigua[J], J Nat Prod, 2003, 66:57.
    [35] Raquel Jadulco, Peter Proksch, Victor Wray, et al. New Macrolides and Furan Carboxylic Acid Derivative from the Sponge-Derived Fungus Cladosporium herbrum[J], J Nat Prod, 2001, 64:527.
    [36] Okada Y, Matsunaga S, et al. Nagahamide A, an antibacterial depsipeptide from the marine sponge Theonella swinhoei [J], Organic Letters 2002, 4(18): 3039-3042.
    [37] Qureshi A, Colin P L, Faulkner D J. Microsclerodermins F - I , antitumor and antifungal cyclic peptides from the lithistid sponge Microscleroderma sp. [J], Tetrahedron 2000, 56(23): 3679-3685.
    [38] Woong S J, Kyu N K, Young S L, et al. Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium [J]. FEBS Lett, 2002, 521: 8
    [39] Y.Usami, T.Ikura,T. Amagata, and A. Numata. First Total Syntheses and Configurational Assignments of Cytotoxic Trichodenones AC [J], Tetrahedron: Asymmetry, 2000, 11: 3711.
    [40] Gerhard Bringmann, Gerhard Lang, Stefan Steffens, et al. Habropetaline A, an antimalarial naphthylisoquinoline alkaloid from Triphyophyllum peltatum[J], Phytochemistry, 2003,62:345.
    [41] Joan Malmstrom, Carsten Christophersen, Alejandro F. Barrero, et al. Bioactive metabolites from a marine-derived strain of the fungus Emericella variecolor[J], J Nat Prod,2002, 65:364.
    [42] Raquel Jadulco, Ru Angelie Edrada, Rainer Ebel, et al. New communesin derivatives from the fungus Penicillium sp. derived from the Mediterranean sponge Axinella verrucosa [J], J Nat Prod, 2004, 67:78.
    [43] Tim S. Bugni, Valerie S. Bernan, Michael Greenstein, et al. Brocaenols A-C: novel polyketides from a marine derived Penicillium brocae [J], J Org Chem, 2003, 68:2014.
    [44] Hernández L. M. C, Blanco J. A. F, Pérez Baz J, et al. 4'-N-methyl-5'-hydroxystaurosporine and 5'-hydroxystaurosporine, new indolocarbazole alkaloids from a marine Micromonospora sp. Strain [J]. J Antibiot, 2000, 53: 895-902.
    [45] Hiort J, Maksimenta K, Reichert M, New natural products from the sponge-derived fungus Aspergillus niger [J]. J Nat Prod, 2004, 67: 1532-1543.
    [46] Bringmann G, Lang G, Steffens S, et al. Novel marine natural products. Part 5 -Evariquinone, isoemericellin, and stromemycin from a sponge derived strain of the fungus Emericella variecolor [J]. Phytochemistry, 2003, 63: 437-443.
    [47] Adele C, Giuseppe B, Ines B, et al. Dragmacidin F: a new antiviral bromoindole alkaloid from the Mediterranean sponge Halicortex sp [J]. Tetra, 2000, 56: 3743.
    [48] Maurer E R, Kluijver M J, Feio S, et al. Localization and ecological significance of oroidin and sceptrin in the Caribbean sponge Agelas conifera [J]. Biochemical Systematics and Ecology, 2003, 31(10): 1073.
    [49]韩莉妲,崔建国,黄初升.海洋生物中具有生物活性的多羟基甾醇及皂苷[J].有机化学, 2003, 23(3): 305.
    [50] Lee H S, Shin H J, Jang K H, et al. Cyclic Peptides of the Nocardamine Class from a Marine-Derived Bacterium of the Genus Streptomyces [J]. J Nat Prod, 2005, 68: 623-625.
    [51] Goldberg DR, Butz T, et al. Optimization of 2-phenylaminoimidazo [4,5-h] isoquinolin-9- ones: orally active inhibitors of lck kinase[J].J Med Chem. 2003, 46(8):1337-49.
    [52] Brauers G, Edrada R A, Ebel R, et al. Anthraquinones and Betaenone Derivatives from the Sponge-Associated Fungus Microsphaeropsis Species: Novel Inhibitors of Protein Kinases [J].J Nat Prod, 2000 ,63; 739-745.
    [53] Wang Chang-Yun, Wang Bin-Gui, Gernot Brauers, et al. Microsphaerones A and B, two novel gamma-pyrone derivatives from the sponge-derived fungus Microsphaeropsis sp[J], J Nat Prod, 2002, 65:772.
    [54] Jadulco R, Brauers G, Edrada R A, et al. Sponge -derived fungi Curvularia lunata and Cladosporium herbarum [J]. J Nat Prod, 2002, 65: 730-733.