基于辐射图像的高炉回旋区温度场重构关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回旋区是风口燃烧带上部焦炭做循环运动的空腔。回旋区温度场分布,影响高炉上部炉料的均衡下降、熔融渣铁的滴落和炉缸的煤气分布,对保证高炉整个冶炼过程连续、稳定地顺利进行起着至关重要的作用。随着高炉的大型化和大喷煤工艺和技术地不断提高,如何实现回旋区温度场实时监测与重构,对强化高炉冶炼、保证铁水产质量具有重要的理论和工业应用意义。
     基于辐射图像的高炉回旋区温度场重构的关键技术包括回旋区传热传质过程数值模拟、回旋区内弥散介质辐射特性、直吹管窥视孔方向CCD探测器成像过程、回旋区辐射图像与温度场计算关联模型与实验、回旋区光束辐射能传输过程及三维温度场重构算法。本文就此过程中的系列关键技术展开研究,研究主要内容和创新成果有:
     ①回旋区传热传质过程数值模拟。回旋区内传热传质过程是研究基于辐射图像的回旋区温度场重构的主要内容之一,研究回旋区传热传质过程,为研究回旋区空间弥散介质辐射特性、窥视孔CCD成像过程、窥视辐射图像与回旋区温度关联模型、回旋区辐射能传输过程及鼓风温度对回旋区传热传质过程影响的工业应用研究打下基础。通过回旋区运行动力学分析,给出了回旋区几何尺寸计算方法,建立了k ?ε方程、煤粉热解挥发率方程、能量守恒方程及简化的化学反应混合分子数方程,数值模拟了回旋区的温度场、组分种类及组分浓度场分布,并建立了流场数据库。
     ②回旋区弥散介质辐射特征研究。通过直吹管窥视孔方向CCD辐射图像,重构回旋区内温度场分布,其关键技术之一就是要知道回旋区内弥散介质的物质种类、辐射特性,以计算光束在回旋区内的辐射传递过程。通过合并谱带模型计算了回旋区内CO2、H2O蒸汽及NOx等气态燃烧产物的发射率随温度的变化关系及采用Lorentz-Mie电磁理论计算煤粉粒子、焦炭粒子及炭黑等弥散介质的平均衰减系数、平均散射系数及平均吸收系数随温度的变化,以及回旋区内气与固混合物的辐射特性。
     ③研究了直吹管窥视孔方向CCD探测器成像过程。建立了回旋区成像系统光学模型,研究了回旋区三维空间对二维CCD靶面的成像机理,提出了回旋区辐射成像假设,解决了高炉风口直吹管窥视孔CCD成像的像源问题。同时针对CCD传感器在高温测试过程中由于辐射强度过大易出现输出过饱和电流导致“图像发白”问题,提出了CCD快门控制模型,以提高CCD测温动态范围。
     ④研究灰体假设条件下回旋区辐射图像与温度场计算模型。研究CCD辐射图像与回旋区温度场重构方法,在回旋区几何光学成像假设条件下,通过单波长及双波长辐射成像光学计算与推导,建立基于单波长及双波长的辐射测温模型。对回旋区灰体假设条件下窥视辐射图像与回旋区温度关联模型及高温条件下CCD快门控制模型进行系列实验研究。
     ⑤回旋区光束辐射能传输过程和三维温度场重构算法。提出了煤粉及焦炭燃烧火焰光束在回旋区内部的传输过程以及沿直吹管窥视孔方向CCD靶面接受热流的辐射传热方程(RTE)的蒙特卡洛(Monte Carlo)求解方法,研究了影响三维温度场重建的辐射能量分布份额α和β的影响因素,分析了辐射能量分布份额α和β对系数矩阵A的影响。在此基础上,研究和探讨了回旋区不同焦炭粒子浓度下窥视孔方向CCD靶面接受辐射能分布及回旋区的三维温度场重构问题。
     ⑥工业应用研究。在回旋区灰体假设条件下和非灰体实际条件下的窥视孔CCD辐射图像与高炉回旋区温度场重构模型的基础上,展开了回旋区断面不同测点温度分布的实时监测与回旋区温度场三维重构的工业应用研究。应用表明:风口窥视孔辐射图像,直接反映了风口辐射强度的大小,反映了回旋区内煤气与固、液相进行热交换、回旋区的渣铁流及焦炭燃烧等工况。重构温度场几何形态分布与回旋区几何形态分布基本一致,同时,重构的温度场分布与流场计算的温度场分布基本吻合。同时,通过辐射图像,实现了高炉回旋区温度场、回旋区的活跃程度、渣皮和冷料滑落等工况的在线可视化监控,为操作人员提供了高炉风口区域的实时炉况信息,为指导高炉操作提供了科学的依据。
     本课题得到了国家自然科学基金和上海宝钢联合基金项目“高炉喷煤工况监控及炉缸分布模式研究(5037485)”的资助,以Planck辐射定律、回旋区内弥散介质辐射特性及回旋区辐射传递方程求解为基础,研究了基于辐射图像的回旋区温度场重构算法和实现方法,并进行了系列实验和现场验证,提出的关键技术具有理论和实用价值。
The raceway is a cavum which coke is circularly moved at the upper of combustion strip. The temperature field distribution of raceway play an important role in continuous and steadily production through evenly descend of the upper charging of the blast furnace, the drippage of melted slag and iron, the gas distribution. With the improvement of the injected pulverized coal technology and aggrandizement of blast furnace cubage, it is an important role in strengthened smelt of the blast furnace and ensure the quality and output of the blast furnace.
     The reconstruction key technology of the raceway temperature field, which is based on CCD radiation imge, include the quality and heat transmission simulation of the raceway in the blast furnace, the dispersion medium radiation characteristics of the raceway, the CCD sensor imaging process at the direction of the blowtorch peephole, the computation model and experiment of radiation image and temperature field distribution of the raceway, the radiation energy transmission process and the three dimensional temperature field reconstruction arithmetic. According to this, this paper developed series theory and experiment studies, in which main results and innovation exists as follows:
     ①Energy and quality transmission process simulation of the raceway. One of the main contents which are studied on the quality and energy transmission is carried out the temperature field reconstruction based on radiation image. It is a basic of developing a series of studies on the radiation characteristics of the dispersion medium in the raceway, the imaging process at the direction of the peephole, the relation model of the radiation image and the temperature field distribution, the radiation energy transferring process in the raceway and the industrial application at different blast temperature. The dynamics characteristic of the raceway is studied and the computation method of the raceway gemotery size and influence causes is provided, and the temperature field distribution, component and chroma distribution through k ?εequation, pulverized coal power volatilization and decompose model, simple chemical reaction eqation mix molecule equation. The flow field database is provided for computing the radiation characteristics of the dispersion medium.
     ②The dispersion medium radiation characteristic computation of the raceway. The raceway temperature field reconstruction is carried out by radiation image at the direction of the blowtorch radiation image. One of the key technology is studied the radiation characteristics of the dispersion medium and the component kinds to compute the optical energy transmission process in the raceway. The spectrum of gas output ,such as CO2 and H2O steam, is computed through combined spectrum model, and the relation of the spectrum of the particles and mix combustion output between temperature in the raceway is get through Lorentz-Mie theory.
     ③Study on the CCD imaging process at the direction of blowtorch peephole . The raceway imaging model and mechanism is studied. The imaging hypothesis is provided, and the computation results show it is almostly identical with CCD target imaging and virtual plane imaging. And because the problem of CCD super-saturation current output in the process of CCD untouched raceway high temperature measurement, so the CCD shutter control model is also provided to prevent from the super-saturation current output and exceed the CCD noise signal.
     ④Study on the relation model about radiation image versus temperature field distribution at the suppose of gay ranceway. The 3-D temperature field reconstruction method is studied based on CCD radiation image. The single wavelength and dual-wavelength radiation measurement model is established through geometry imaging hypothesis condition. A seris of experiments were carried out for vertifying CCD shutter control model and relational model about radiation image versus temperature at the suppose of gay ranceway.
     ⑤Three dimensional temperature reconstruction arithmetic and radiation energy transmission process study. The radiation energy transmission process along raceway and the computation of radiation transmission equation (RTE) is provided. The factor of radiation share parameters (αandβ), which is influenced coefficient matrix A are studied. The 3-D temperature field distribution and CCD target radiation energy distribution is analyzed in this paper.
     ⑥Study on industry application. The industry application in raceway temperature field monitoring and 3-D reconstruction is studied at the basis of the raceway gray suppose and non-gray dispersion medium. The application results show that the radiation image of raceway directly reflect the radiant intensity, heat transmission of raceway. The reconstruction temperature geometry form distribution is almostly identify with the form distribution of the raceway. At the same time, the method can visually monitor the working states of of the raceway ,such as the temperature field distribtution, activity states, slide states of slag and cold stock and heat and quality transmission process. It is effective of instructing blast furnace operation through in-time information.
     The paper was Sponsored by National Natural Science Foundation of China and Shanghai Bao steel Group Co United Research Foundation (50374085) named by“The working state monitoring of the injected pulverized blast furnace”. A series of experiment and theory studies were carried out for monitoring and reconstructing 3-D temperature field based on radiation image at the base of RTE. It studied the series key technologies which had tested and have practical and popularized values. .
引文
[1] 邹祖桥,孙学信,丘纪华,等.高炉风口内煤粉颗粒轨迹的数学模拟[J]. 钢铁, 2000, 35(3): 9~11,67.
    [2] 余琨,段培宁.高炉炉温监测与预报的新探索[J].东北大学学报,1997,18(3): 247-251.
    [3] 郁庆瑶. 未燃煤粉在高炉内积存量影响的模拟试验[J].宝钢技术,1999(5): 27~30.
    [4] C.Wen, I. Mudawar, Emissivity characteristics of roughened aluminum alloy surfaces and assessment of multi-spectral radiation thermometry (MRT), emissivity models, International Journal of Heat and Mass Transfer 47(2005): 3591-3605.
    [5] G. Zauner, D. Heim, L. Niel, et al. CCD Cameras as thermal imaging devices in heat treatment process, in: J.R. Price, F. Meriaudeau (ed.), Machine Vision Applications in industrial Inspection XII, SPIE, vol.5303, 2004, pp. 81-89.
    [6] J.Chen, P. Osborn, A. Paton, et al. CCD near infrared temperature imaging in the steel industry[C] , Instrumentation and Measurement Technology Conference, 1993. IMTC/93. Conference Record., IEEE Publication Date: 18-20 May 1993 On page(s): 299-303.
    [7] Kurihara et al., A combustion diagnosis method for pulverized coal boilers using flame recognition technology, IEEE Trans. On Energy Conversion. 1986.1(2):99-103.
    [8] TOSHIKIH. The Application of TV to the Flam Detector with the Quantitative Diagnosis of Tv picture [J]. Boiler Research (in Japanese ),1991,246:8.
    [9] 中岛龙一. 利用人工智能的高炉操作管理专家系统的开发和应用[J]. 杜继恩译. 国外钢铁, 1988, (12):19.
    [10] E. Renier, P. Suzeau, F. Truchetet, P. Geveaux, Spatial and thermal measurements using Thermo-graphy CCD during HF soldering of metallic tubes[C]. Proc. of IECON'98, IEEE, pp. 1699-1705, 1998.
    [11] H C B heemul, G Lu and Y Yan, Three-dimensional visualization and quantitative characterization of gaseous flames [J], Measurement Science and Technology, 13, 1643-1650, 2002.
    [12] G Lu, Y Yan and D D Ward, Advanced monitoring, characterization and evaluation of gas-fired flames in a utility boiler [J], Journal of the Institute of Energy, 73, 43-49, 2000.
    [13] Phillip M.Brisley, Gang Lu, Yong Yan, et al. Three-Dimensional Temperature Measurement of Combustion Flames Using a Single Monochromatic CCD Camera[J]. IEEE TRANSACTION AND MEASUREMENT, 2005, 54(4), 1417-1420.
    [14] 卫成业,严建华,岑可法,等.利用面阵CCD进行火焰温度分布测量(II)-三维截面温度场的测量[J]. 热能动力工程,2003, 17(2): 161-164.
    [15] 王飞,马增益,卫成业,等.根据火焰图像测量煤粉炉截面温度场的研究[J]. 中国电机工程学报,2000 No.7
    [16] 卫成业,李晓东,马增益,等.高温辐射图像处理比色测温法的数值方法研究[J].燃烧科学与技术,1998,No.3 1.
    [17] 卫成业,严建华,商敏儿,等. 利用面阵 CCD 进行火焰温度分布测量(I)一二维投影温度场的测量[J].热能动力工程,2002, 17(1): 57-61.
    [18] 薛飞,李晓东,严建华,等.基于面阵 CCD 的火焰温度场测量方法研究[J].中国电机工程学报,1999, 1 (19).
    [19] 王飞, 严建华,卫成业, 等. 基于图像处理的燃烧诊断和温度场测量系统在 300MW 电站锅炉上的应用[J].热力发电, 2001, 11(3): 26-30.
    [20] 严建华,增益,王飞,等.运用代数迭代技术由火焰图像重建三维温度场[J].燃烧科学与技术,2000, No.3
    [21] 黄群星, 马增益, 严建华, 等. 应用插值滤波反投影快速重建 300MW 电站锅炉准三维温度场[J].中国电机工程学报, 2005, 25(6): 134-137.
    [22] ZHOU H.-C.,Han S.-D., Sheng F., et al., Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images: numerical studies[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 72: 361-383, 2002.
    [23] 周怀春,韩曙东,盛锋,等. 炉膛燃烧温度场三维可视化监测方法模拟研究[J]. 动力工程, 2003,23(1):2154-2159.
    [24] ZHOU Huai-chun, Feng Sheng, Han Shu-dong et al. Reconstruction of Temperature distribution in a 2-D Absorbing-Emitting System from Radiant Energy Images [J]. JSME International Journal, Series B, 2000,43(1):104-109.
    [25] ZHOU HC, Sheng F, Han SD, Zheng CG. A fast algorithm for calculation of radiative energy distributions received. by pinhole image-formation process from 2D rectangular enclosures. Numer Heat Transfer A 2000; 38: 757–73.
    [26] ZHOU Huai-chun. An Equation Relating 2-D Monochromatic Radiation Image and 3-D temperature distribution in Pulverized coal fired Furnaces for combustion Visualization[C]. Proc. Of First ASPACC, Osaka, Japan, 1997, May (12-15): 77-80.
    [27] ZHOU H C,Han SD,Sheng F,et al. Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiation energy images: numerical studies [J]. Journal of Quantitative Spectroscopy and Radiation Transfer,2002,7(2): 361-383.
    [28] 韩署东,周怀春. 基于具有明显测量误差的辐射图像的二维炉膛温度分布重建和快速特征识别研究[J].中国电机工程学报,20 (9): 67-72, 2000.
    [29] 徐雁, 吴占松. 非对称火焰三维温度分布测量的重构算法[J].清华大学学报(自然科学版),36(10): 30-34, 1996.
    [30] 徐伟勇,余岳峰.数字图像处理技术在火焰监测上的应用[J].中国电力,1994,(10): 41-44.
    [31] 徐伟勇,余岳峰.采用传像光纤和数字图像处理技术检测燃烧火焰[J].动力工程,1999,19(1): 45-48.
    [32] 徐伟勇 余岳峰. 数字图像处理技术在火焰检测上的应用[J].中国电力,10: 41-44, 1994.
    [33] 王式民,赵延军,汪风林.光学分层热成像法重建火焰三维温度场分布的研究[J].工程热物理学报,23(增刊):233-236,2002.
    [34] 王式. 图像处理技术在全炉膛检测中的应用[J].动力工程,16 (6): 68-72, 1996.
    [35] Wen Liang-ying, Ouyang Qi, Bai Chen-guang et al. Flame radiant image numeralization for pulverized coal combustion in BF raceway [J], Journal of Chongqing University, 2005,4(4):195-198.
    [36] 王久志,吴炽.高炉风口区燃烧状态监测技术研究[J].鞍钢技术,1997,(5): 6-9.
    [37] 柿内一元, ほか.高炉风口内温度分布观测系统的开发[J].CAMP-ISIJ,1991,4: 1043-1045.
    [38] B.Rummer, F.Lasinger, G.Brunnbauer, et al. VAIRON BLAST FURNACE OPTIMIZATION ——ENTER THE EXPERT [J].Steel and Iron,2000,35 (8):l3-l7.
    [39] 刘祥官,刘芳,刘元和,等. 莱钢 1 号 750m3 高炉智能控制专家系统[J].钢铁,2002,37(8): 18-22.
    [40] 杜鹤桂.国外高炉炼铁技术的进步[J].炼铁,1999,18(1): 1-5.
    [41] 余琨,杜鹤桂,沈丰满.高炉喷煤[M].沈阳:东北大学出版社,1995.114-126.
    [42] 余琨.喷煤高炉风口回旋区温度分布与工作状态监控的研究[J].钢铁,1996,31(5): 7-11.
    [43] 葛玉荣,宋爱卿.风口区燃烧温度及铁水温度连续测试[J].炼铁,1987,6(5): 7-10.
    [44] 王久志,吴炽.高炉风口回旋区测温技术研究[J].炼铁,1995,14(4): 13-16.
    [45] 郭术义,陈举华.高炉回旋区数学模型研究[M].北京机械工业学院学报,2003,18(3): 6-8.
    [46] 秦民生,杨天钧.炼铁过程的解析与模拟[M].北京:冶金工业出版社,1991.199-200.
    [47] 徐万仁,姜伟忠,张龙来,等.高炉风口取样技术及其在宝钢的应用[J].炼铁,2004,23(1):13-17.
    [48] 鄂加强,时章明,梅炽,等. 高炉风口内多股流喷吹粉煤磨损数值模拟[J]. 中南工业大学学报,2002,33(3): 325~329.
    [49] G. Zauner, D. Heim, G. Hendorfer, et al. Temperature mapping in heat processes with a standard color-video camera by means of image processing[C], Machine Vision Applications in Industrial Inspection XI, Conference 5011,Conv. Ctr. Room 206,Thursday 23-Friday 24 January 2003,Proceedings Vol. #5011. pp. 283-296.
    [50] Βeгмн Еф,илр Доменное Дстиво Слравочнмк, в Двух Τомах Металлургиа, 1989, 1: 332-334.
    [51] 张生富, 温良英, 白晨光,等. 高炉风口煤粉及回旋区焦炭燃烧过程数学模型[J]. 重庆大学学报(自然科学版),2005, 28(8): 42-45.
    [52] 丁立刚,李保卫,徐楚韶. 高炉煤粉喷吹过程的数学模型[J].包头钢铁学院学报,1999,18(3):178~182.
    [53] J. Sun et al., Application of digital image processing in the detection of flame[C]. Symposium. On International Conference on Power Engineering, 956-960, 1995.
    [54] J. L. Garnder. Computer Modeling of a Muti-wavelength Pyrometer for Measuring True Surface Temperature[J]. High Temp.HighPress.1980, 12: 699~705.
    [55] J.Chen, P. Osborn, A. Paton, et al. CCD near infrared temperature imaging in the steel industry[C]. Instrumentation and Measurement Technology Conference, 1993. IMTC/93. Conference Record . IEEE Publication Date: 18-20 May 1993 On page(s): 299-303.
    [56] 邹祖桥,孙学信,丘纪华,等.富氧喷煤燃烧过程的三维数值模拟[J]. 华中理工大学学报,1999,27(5):97~99.
    [57] 俞宏晔, 洪新, 郑少波, 等.高炉风口回旋区简化模型的探讨[J]. 上海大学学报(自然科学版), 2003, 10(1):9-12.
    [58] Βeгмн Еф,илр Доменное Дстиво Слравочнмк, в Двух Τомах Металлургиа[J],1989,1:332
    [59] Parthasarathy G, LEE H S ,Chai J C. et al. Monte Carlo Solutions for Radiative Transfer in Participating of the ASME, 1998,120(3): 547-560.
    [60] Gang Lu, Yong Yan, Gerry Riley et al., Concurrent Measurement of Temperature and Soot Concentration of Pulverized Coal Flames [J]. IEEE Trans on Instrumentation and Measurement, 51(5), 990-995, 2002.
    [61] S S Mondal, S K Som, S K Dash. Numerical predictions on the influences of the air blast velocity, initial bed porosity and bed height on the shape and size of raceway zone in a blast furnace[J], Journal of Physic D: Applied Physics.2005, 38(24):1301-1307.
    [62] 野泽健太 张万益. 高炉焦炭回旋区的空间分布状况[J]. WISCO TECHNOLOGY, 1996, 34(8): 25-31.
    [63] 丘纪华, 张志国, 孙学信, 等. 高炉采用氧煤燃烧器后回旋区煤粉燃烧过程的数值模拟[J].《钢铁研究学报》,1995,8(1):1-5 .
    [64] 钟北京,洪泽凯.甲烷微尺度催化燃烧的数值模拟[J].工程热物理学报, 2003,24(1): 173-176.
    [65] 郭印诚,王希麟. 张会强等.高炉氧煤燃烧器中煤粉燃烧过程的数值模拟[J]. 燃烧科学与技术,1997,3(3):297~302 .
    [66] Shimoda M. Prediction Method of Un-burnt Carbon for Coal Fired Utility Boiler Using ImageProcessing Technology of Combustion Flame [J]. IEEE Trans. on Energy Conversion, 1990,15(4):640-645.
    [67] 王应时, 范维澄, 周力行,等. 燃烧过程数值计算[M].北京:科学出版社,198-199.
    [68] ZHOU Z Y,ZOU Z S,WANGW Z. Numerical Simulation of Gas-solid Flow in Blow Pipe of Blast Furnace with Pulverized Coal Injection[A].Asia Steel International Conference 2000 (Volume B: Ironing )[C].Beijing, China, 2000.57-63.
    [69] 鄂加强,时章明,梅炽,等.高炉风口内多股流喷吹粉煤磨损数值模拟[J].中南工业大学学报,2002,33(3): 32-329.
    [70] Hatano M,Fukuda M,Takeuchi M. An experimental study of the formation of raceway using a cold model[J].JISI,1976,62(1): 25-32.
    [71] 郭术义,陈举华.高炉回旋区数学模型研究[J].北京机械工业学院学报,2003,18(3): 6-8.
    [72] 张生富, 温良英, 白晨光,等. 高炉风口煤粉及回旋区焦炭燃烧过程数学模型[J].重庆大学学报(自然科学版),2005, 28(8):42-45.
    [73] 邹 祖 桥 , 孙 学 信 , 丘 纪 华 , 等 . 高 炉 风 口 内 煤 粉 颗 粒 轨 迹 的 数 学 模 拟 [J]. 钢铁,2000,35(3):9-11,67.
    [74] 余其铮, 谈和平, 阮立明. 煤在燃烧过程中各种产物辐射特性的研究[J]. 动力工程, 1993,13(3): 18-22.
    [75] 柳朝晖, 邢华伟, 周英彪, 等. 煤粉炉内弥散介质辐射传热的综合模拟[J].工程热物理学报,1999,3 : 383-387.
    [76] 刘林华, 余其铮, 阮立明,等. 煤粉燃烧产物的辐射特征[J]. 动力工程, 1996, 16(6): 14-21.
    [77] 阮立明, 余其铮, 刘林华,等. 快状及粒子煤灰复折射率的研究[J]. 工程热物理学报, 1997, 18(5): 620-623 .
    [78] K.M.IM, R.K. Ahluwalia. Radiation properties of coal Combustion products[J]. Journal of heat and mass transfer, 1993,36 (2).
    [79] Brewster, M.Q. Radiative transfer in packed fluidized bed: dependent versus independent scattering, ASME Journal of heat transfer Vol.104 573-579.
    [80] 余其铮.燃煤锅炉中有关煤辐射特性的实验研究.技术总结报告,哈尔滨工业大学, 1991.
    [81] Wei Ming Li. A combined narrow and wide band model for computing the spectral absorption coefficient of CO2, CO, H2O, CH4, C2H2, and NO,J. Quant. Spectral. Radiant. Transfer, Vol. 54 No. 6 2004.
    [82] Solomon, P.R., P.L. Chien, R.M. Carangelo, et al. The spectral emittance of pulverized coal and char on combustion [J], Proceedings of the Combustion Institute, 1986, 21(1):437-446.
    [83] 阮立明. 煤灰粒子辐射特性的研究,哈尔滨工业大学博士学位论文,1996.11
    [84] 刘林华, 余其铮. 煤、灰粒子的辐射特性[J]. 燃烧科学与技术,Vol.No.2: 127-133.
    [85] 欧阳奇, 温良英, 白晨光, 等.基于机器视觉的风口回旋区温度检测算法[J],钢铁研究学报, 2007, 12(1): 5-8.
    [86] G. Zauner, D. Heim, G. Hendorfer, et al. Temperature mapping in heat processes with a standard color-video camera by means of image processing, in: J.R. Price, Martin Hunt (ed.), Machine Vision Applications In industrial Inspection XI, SPIE, vol.5011, 2003, pp. 283-296.
    [87] Zhang, Sheng-fu; Wen, Liang-ying; Bai, Chen-guang, et al. The temperature field digitization of radiation images in blast furnace raceway [J]: ISIJ International, v 46, n 10, 2006, p 1410-1415.
    [88] 欧阳奇, 谢志江,温良英, 等.突扩燃烧室燃烧火焰深度二维温度场测量[J].中国机械工程, 2007,20(7):824-828
    [89] Lu Yong-gang, Wang Shi-min. 3-Dimensional Irradiance Reconstruction with a simple Camera System [J]. Journal of Southeast University, 1998,14(2):38-42.
    [90] 朱德忠,顾毓沁,晋宏师,等. 电子器件真实温度和发射率分布的红外测量[J]. 红外技术, 2000,22(1): 45-48.
    [91] PICARD M, USINOR I. Pulverized Coal Combustion in the Blast Furnace Raceway Using a 3D Numerical Simulation [C]. 2001 Iron-making Conference Proceedings. Gyeongju: Korea Science and Technology Center, 2001.229-239.
    [92] 赵友权, 范世福, 李 昀. 常低温辐射温度测量的理论研究[J]. 光电工程, 2001, 28(5): 46-48.
    [93] 欧阳奇,温良英,白晨光.高速摄像技术在煤粉燃烧工作状态监控中的应用研究[J].仪器仪表学报. 2007, Vol. 28 No.9: 1-6.
    [94] WEN Liang-ying , BAI Chen-guang, CHEN Deng-fu, et al. correlativity between pulverized coal combustion in BF raceway and radiant image[J].Journal of Chongqing University(Natural Science and Edition), 2003,26(9):93-96.
    [95] Βeгмн Е ф,илр Доменное Дстиво Слравочнмк, в Двух Τомах Металлургиа,1989,1:332
    [96] 张生富, 温良英, 白晨光,等. 基于数字图像处理的高炉风口回旋区的监测[J]. 钢铁研究学报,2006, 18(3):56~59.
    [97] 丁立刚,李保卫,徐楚韶.高炉煤粉喷吹过程的数学模型[J].包头钢铁学院学报,1999,18(3): 178-182.
    [98] 郭印诚,王希麟,张会强,等.高炉氧煤燃烧器中煤粉燃烧过程的数值模拟[J].燃烧科学与技术,1997,3(3): 297-302.
    [99] 欧阳奇,温良英, 谢志江,等. 忽扩燃烧室回旋区截面二维温度场数值化研究[J].中国机械工程, 2007,18(7): 824-828.
    [100] ZHAO You-quan, FAN Shi-fu, LI Yun. Theoretical Study on Radiation Temperature Measurement in Normal and Low Temperature Field [J]. Optical Electronic Engineering, 2001, 28(5): 46-48.
    [101] 欧阳奇,张兴兰,温良英, 等. 高炉风口回旋区断面温度场数值化研究与应用[J].重庆大学学报(自然科学版),2005,No.10, 45-47.
    [102] G. Zauner, D. Heim, L. Niel, et al. CCD Cameras as thermal imaging devices in heat treatment process, in: J.R. Price, F. Meriaudeau (ed.), Machine Vision Applications In industrial Inspection XII, SPIE, vol.5303, 2004, pp. 81-89.
    [103] WU Bei, YIN Xiaojing, ZHANG Xinxin. Investigation of inverse problem for surface temperature radiometric measurement of continuous casting blank [J]. Acta metallurgical sinica, 2000,Vol.30,No.4, 395-398.
    [104] Losif G. Tovarovskiy,,Yakov M. Gordon,Vitality P. Lialuk. Optimization of Tuyere Parameters for Natural Gas Injection and Control of Heterogeneity of Blast Furnace Operation[C].ISS Tech 2003 Conference Proceedings,Indianapolis,Indiana,2003: 805-816.
    [105] J.Chen, P. Osborn, A. Paton, et al. CCD near infrared temperature imaging in the steel industry[C] , Instrumentation and Measurement Technology Conference, 1993. IMTC/93. Conference Record. IEEE Publication Date: 18-20 May 1993 On page(s): 299-303.
    [106] 卫成业,李晓东,马增益, 等. 高温火焰图像处理比色测温法的数值方法研究[J]. 燃烧科 学与技术, 1998,4(3): 307-311.
    [107] 温良英,白晨光,陈登福,等.回旋区煤粉燃烧过程与辐射图像的关联性[J].重庆大学学报(自然科学版),2003,26(9): 93-95.
    [108] J.Chen, P. Osborn, A. Paton, et al. CCD near infrared temperature imaging in the steel industry[C] , Instrumentation and Measurement Technology Conference, 1993. IMTC/93. Conference Record., IEEE Publication Date: 18-20 May 1993 On page(s): 299-303..
    [109] 王飞, 马增益. 根据火焰图像测量煤粉炉截面温度场的研究[J], 中国电机工程学报, 2000,20(7): 40-43.
    [110] 万雄. 多光谱辐射层析重建三维温度场[J].光学学报, 2003,23(9): 1099-1104.
    [111] 周怀春,娄新生.基于辐射图像处理的炉膛燃烧三维温度分布检测原理及分析[J].中国电机工程学报,1997,17(1): 1-4.
    [112] Phillip M. Brisley, Gang Lu, Yong Yan, et al. Three-Dimensional Temperature Measurement of Combustion Flames Using a Single Monochromatic CCD Camera [J], IEEE TRANSACTION AND MEASUREMENT, 2005,54 (4), 1417-1420.
    [113] 黄群星, 马增益, 严建华, 等. 应用插值滤波反投影快速重建 300MW 电站锅炉准三维温度场[J].中国电机工程学报,2005,25(6): 134-137.
    [114] 赵敬德, 煤粉火焰三维温度分布重建及其在燃烧诊断技术中应用的研究,浙江大学博士论文,2004 年。
    [115] ZHOU H C, CHENG Q. The DRESOR Method for the Solution of the Radiative Transfer Equation in Gray Plane-Parallel Media Proceedings of the 4th International Symposium on Radiative transfer [C], Istanbul, Turkey, 2004, 181-190.
    [116] 严建华,马增益,王 飞,等. 运用代数迭代技术由火焰图像重建三维温度场[J]. 燃烧科学与技术, 2000,6(3): 257-260.
    [117] RUAN L M, TAN H P ,YAN Y Y. A Monte Carlo Method Applied to the Medium with Non-gray Absorbing-Emitting Anisotropic Scattering Particles and Gray Approximation [J], Numerical Heat Transfer, Part A-Application, 2002,42(3):253-268.
    [118] Ruan L M, Tan H P. Solutions of Radiative Heat Transfer in Three-Dimensional Inhomogeneous Scattering Media J. of Heat Transfer, 2002, 124(5): 985-988.
    [119] Hsu P F, Farmer J T. Benchmark Solution of Radiative Heat Transfer Within Nonhomogeneous Participating Media Using the Monte Carlo and YIX Method . ASME Journal of Heat Transfer, 1997, 119(1): 185-188.
    [120] RUAN L M, TAN H P ,YAN Y Y. A Monte Carlo Method Applied to the Medium with Non-gray Absorbing-Emitting Anisotropic Scattering Particles and Gray Approximation [J], Numerical Heat Transfer, Part A-Application, 2002,42 (3):253-268.
    [121] WAUB EN W M , MUGNAI L. Single Scattering from Non-spherical Chebyshev Particles: a Compendium of Correlations[M], Washington: NASA Reference Publication, 1986.
    [122] SHAH N G. New Method of Computation of Radiation Heat Transfer in Combustion Chambers[D].London: University of London, Imperial College, Mech. Eng. Dept. , 1979.
    [123] Cumber P S. Improvements to the Discrete Transfer Method of Calculating Radiative Heat Transfer. Int. J. Heat Mass Transfer, 1995, 38(12): 2251-2258.
    [124] 夏新林,谈和平,唐明,等.空间光学系统中杂散辐射计算的蒙特卡罗方法验证.哈尔滨工业大学学报,1996, 28(1):77-22.
    [125] Chui E H, Raithby G D. Computation of radiant heat transfer on a non-orthogonal mesh using the finite-volume method [J].Numerical Heat Transfer, Part B, 1993, 23: 269-288.
    [126] Razzaque M M, Howell J R. Finite Element Solution of Radiative Heat Transfer in Two-Dimensional Rectangular Enclosure with Gray Participating Media[J]. J. of Heat Transfer, 1983, 105(4): 933-934
    [127] Tan H P, Shuai Y, Dong S K. Analysis of rocket plume base heating by using backward Monte-Carlo method [J].Journal of Thermophysics and Heat Transfer, 2005, 19(1):125-127.
    [128] 娄春, 韩曙东, 刘浩. 一种煤粉燃烧火焰辐射成像新模型[J], 工程热物理学报, Vo1.23,Supply. Jun., 2002:93-96.
    [129] 范维澄,万跃鹏. 流动及燃烧的模型与计算[M].合肥:中国科技大学出版社,1992.
    [130] 詹翔,陈善年. 四角切向燃烧煤粉锅炉炉内气固两相流动的数值模拟[J],锅炉技术,1997 12( 6 ): 1-5.
    [131] Zhou Z Y, Zou Z S, Wang W Z. Numerical simulation of gas-solid flow in blow pipe of blast furnace with pulverized coal injection [A]. Asia Steel International Conference 2000(Volume B:Ironing) [C]. Beijing, China, 2000: 57-63.
    [132] 傅世敏, 刘子久, 安云沛, 等.高炉过程气体动力学[M], 冶金工业出版社,1990.
    [133] 周怀春, 程浩斌, 娄新生. 煤粉炉内辐射图像处理和燃烧过程数值模拟相结合初探[J], 工程热物理学报, 1998,19(1),125-128.