无网格局部径向点插值法及其在中厚板问题中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无网格方法是继有限元法和边界元法等传统数值方法之后兴起的一种很有发展前途的数值方法。与传统的数值分析方法相比,无网格方法具有许多突出的优点,最主要的优点在于克服了对网格的依赖性,彻底或部分消除了网格的划分,因此无网格方法在处理大变形、裂纹扩展和高速冲击等非线性问题时具有明显的优势。近年来,国内外学者在无网格方法的研究方面已经取得了许多开创性的重要成果。无网格局部径向点插值法(LRPIM)是近几年发展起来的一种无网格方法,它不需要借助于任何单元或网格进行积分或插值,是一种真正的无网格方法。而且,其形函数具有Kronecker delta函数性质,可以直接施加本质边界条件。本文将无网格LRPIM应用于求解中厚板的弯曲、动力学以及弹塑性等问题。
     本文首先介绍了无网格方法的发展历史和国内外研究现状,按照不同离散方式对各种主要的无网格方法进行了回顾和评价,总结了无网格方法的特点、优越性以及目前无网格方法的难点和存在的问题。概述了无网格方法在板壳问题当中的应用情况。本文的无网格LRPIM采用径向基函数耦合多项式构造形函数,消除了系统矩阵的奇异性,形函数及其导数比较简单,计算效率和精度都比较高。
     尽管无网格方法在板壳问题的研究中已经有了一系列的成果,但无网格LRPIM在中厚板问题中的研究却很少有报道。本文的主要工作与创新点是,首次将无网格LRPIM应用于求解中厚板的弯曲问题、动力学问题以及弹塑性问题等。在中厚板的静力平衡方程和动力学方程等基础上,采用局部加权残值法推导出了各种情况下的离散系统方程。在中厚板的弯曲问题中,计算了各种边界条件下和各种外加载荷作用下的中厚板的弯曲变形、内力和应力;讨论了径向基函数的形状参数对计算结果的影响;分析了附加不同阶数多项式的计算效率问题;考虑了积分域和影响域大小对计算结果的影响问题;对剪切自锁所产生的原因以及避免剪切自锁的措施进行了分析,发现无网格方法相对于有限元法等传统数值方法能更好地避免剪切锁死现象;利用无网格LRPIM分析了非均质中厚板的静力弯曲问题。在弹性地基厚板的弯曲问题中,推导了局部径向点插值离散方程,分析了弹性地基上四边简支厚板、四边固支厚板以及建筑筏板基础的挠度和弯矩,计算了挠度和弯矩的相对误差和收敛率。对于中厚板的动力学问题,推导了自由振动和强迫振动的离散系统方程,采用子空间迭代方法求解特征方程,动力学方程则采用Newmark方法进行时域离散,介绍了数值实施方法和主要计算步骤;给出了各种不同边界条件和不同形状中厚板的自由振动和强迫振动数值算例;利用无网格LRPIM分析了非均质中厚板的动力弯曲问题。最后用无网格LRPIM法分析了中厚板的弹塑性弯曲问题。分析了中厚板弹塑性应力应变关系;采用增量Newton-Raphson迭代法来求解中厚板非线性增量形式的离散系统方程。
     无论在中厚板的弯曲问题,弹性地基厚板的弯曲问题中,还是在中厚板的动力学问题和弹塑性问题中,所有数值算例结果都表明,本文方法对于中厚板的问题的求解是可行的和有效的,并且所得到的结果具有较好的精度和收敛性。
The meshless method is a new numerical method with a great prospect developed after traditional numerical methods such as Finite Element Method, Boundary Element Method et al. The meshless method possesses many advantages, among these the most outstanding advantage is independent of meshes, and thoroughly or partly eliminates meshing. By using this method, it becomes easy to solve large deformation problems, crack propagation problems and high velocity impact problems et al. A lot of the important pioneering effort has been done on the meshless methods by scholars in a recent decade. The meshless local radial point interpolation method (LRPIM) is a new numerical technique presented in recent years. It doesn’t need any element or mesh for the energy integral or the purpose of interpolation. Therefore it is a truly meshless method. The shape functions have the Kronecker delta function property, and the essential boundary conditions can be easily imposed. Applications of the meshless LRPIM to bending and dynamic problems as well as elasto-plastic problems of moderately thick plates are presented in this dissertation.
     At the beginning of the dissertation, recent developments of the meshless method are overviewed. Several typical meshless methods are reviewed and appraised in term of their discretization schemes. Characteristics, advantages and disadvantages of all kinds of meshless methods are pointed out. Applications of the meshless methods to the plate and shell problems are introduced. The shape function of the meshless LRPIM is all constructed by using the radial basis functions with polynomial basis functions, the singularity of the system matrix is overcome. The shape functions and their derivatives are simple, consequently, lower computational cost. The efficient and accurate results can be obtained.
     Although a lot of achievements are obtained about meshless methods for the plate and shell problems, the solution of moderately thick plate problem is rarely reported in the use of the meshless LRPIM. In this dissertation, the meshless LRPIM is used to investigate bending and dynamic problems as well as elasto-plastic problems of moderately thick plates. Based on the equilibrium equations and dynamic equations of a moderately thick plate, the various discretized system equations for moderately thick plates are derived using locally weighted residual method. In the analysis of the bending problems for moderately thick plates with various boundary conditions and under various loads, deformations and bending (torsional) moments as well as stresses are calculated. Effects of the shape parameters of the radial basis function on the numerical results are investigated. Computing efficiency is studied when polynomials of the low and high order are used. Effects of sizes of the quadrature sub-domain and the influence domain on the numerical results are investigated. The reason of the shear locking and the measure of avoiding the shear locking are analyzed. It is found that the shear locking is easier avoided in the meshless method than in FEM. The static bending problems of a nonhomogeneous moderately thick plate are analyzed using the meshless LRPIM, too. The discretized system equation for moderately thick plates on the elastic foundation with two parameters is derived using a locally weighted residual method. Bending problems for the raft and moderately thick plates on the elastic foundation with simply supported and clamped boundary conditions are analyzed by the meshless LRPIM. The relative error and convergence rate for deflections and bending moments are studied. For the dynamic analysis of moderately thick plates, the discretized system equations of the free vibration and forced vibration for the moderately thick plate are presented. The subspace iterative method is adopted to solve the eigenvalue equation of the free vibration problem, and the Newmark method is used to discrete the time domain. The approaches of numerical implement are presented, and several numerical examples are presented for the free vibration and forced vibration of moderately thick plates with various boundary conditions. The dynamic bending problems of a nonhomogeneous moderately thick plate are analyzed using the meshless LRPIM, too. In the end, the elasto-plastic bending problems of moderately thick plates are analyzed by the meshless LRPIM. The elasto-plastic stress-strain relation of the moderately thick plate is studied, and an incremental Newton-Raphson iterative algorithm is employed to solve the nonlinear incremental discretized system equation of the moderately thick plate.
     Numerical results show that the present method possesses not only feasibility and validity, but also high accuracy and good performance of convergence for moderately thick plate problems including bending and dynamic problems as well as the elasto-plastic problem.
引文
[1] Thomas JW. Numeral partial differential equations finite difference methods. Springer-Verlag New York Inc, 1995
    [2]王勖成,邵敏.有限单元法基本原理和数值方法(第2版).清华大学出版社,1997,329~364
    [3] Zienkiewicz OC, Taylor KL. The finite element method, Fifth Edition. Butterworth Heinemann, 2000
    [4]布瑞比亚,泰勒斯,诺贝尔.边界单元法的理论和工程应用.龙述尧,刘腾喜,蔡松柏译.北京:国防工业出版社,1998
    [5]龙述尧.边界单元法概论.北京:中国科学文化出版社,2002,214~221
    [6] Fries TP, Matthies HG. Classification and overiew of meshfree methods. Report of Technische University at Braunschweig. 2003
    [7] Lucy LB. A numerical approach to the testing of the fission hypothesis. The Astron J, 1977, 8(12): 1013~1024
    [8] Gingold RA, Moraghan JJ. Smoothed particle hydrodynamics: theory and applications to non-spherical stars. Mon Not Roy Astrou Soc, 1977, 18(2): 375~389
    [9] Belytschko T, Krongauz Y, Organ D, et al. Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 3~47
    [10]曹国金,姜泓道.无单元法研究和应用现状及动态.力学进展,2002,32(4): 526~534
    [11]张雄,宋康祖,陆明万.无网格法研究进展及其应用.计算力学学报,2003, 20(6):730~742
    [12] Monaghan JJ. Why particle methods work. Siam J Sci Sat Comput, 1982, 3(4): 423~433
    [13] Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods. Math Comput, 1981, 37(1): 141~158
    [14] Lancaster P, Salkauskas K. Curve and Surfaces Fitting, an introduction. London: Academic Press, 1986: 1~21
    [15] Babuska I, Melenk JM. The partition of unity method. Int J Numer Meth Eng, 1997, 40(4): 727~758
    [16] Liu GR, Gu YT. A point interpolation method for two dimensional solids. Int JNumer Meth Engng, 2001, 50: 937~951
    [17] Liu GR, Yan L, Wang JG, Gu YT. Point interpolation method based on local residual formulation using radial basis function. Structural Eng and Mech, 2002, 14(6): 713~732
    [18] Liu GR, Gu YT. An Introduction to Mfree Methods and Their Programming. Berlin: Springer Press, 2004, 60~96
    [19] Onate E, Idelsohn S, Zienkiewicz OC et al. A finite point method in computational mechanics: Applications to convective transport and fluid flow. Int. J. Numer. Methods Engr., 1996, 39(1): 3839~3866
    [20] Onate E, Idelsohn S, Zienkiewicz OC et al. A stabilized finite point method for analysis of fluid mechanics problems. Comput. Methods Appl. Mech. Engrg., 1996, 139(1): 315~346
    [21] Onate E, Idelsohn S. A mesh-free finite point method for advective-diffusive transport and fluid flow problems. Comput. Mech., 1998, 21(1): 283~292
    [22] Liszka TJ, Duarte CA, Tworzydlo WW. Hp-meshless cloud method. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 263~288
    [23]陆明万,张雄.基于紧支径向基函数的配点型无网格法求解椭圆型边值问题.力学与工程,北京:清华大学出版社,1999,174~179
    [24] Zhang X, Liu XH, Song KZ, et al. Least-square collocation meshless method. Int. J. Numer. Methods Engrg., 2001, 51(9): 1089~1100
    [25]张雄,胡炜,潘小飞等.加权最小二乘无网格法.力学学报,2003,35(4):425~431
    [26] Swegle JW, Hicks DL, Attaway SW. Smoothed particle hydrodynamics stability analysis. J. Comput. Phys., 1995, 116(2): 123~134
    [27] Chen JK, Beraun JE, Jih CJ. An improvement for tensile instability in smoothed particle hydrodynamics. Comput. Mech., 1999, 23(2): 279~287
    [28] Jonhson GR, Stryk RA, Beissel SR. SPH for high velocity impact computations. Comput. Methods Appl. Mech. Engng., 1996, 139(2): 347~373
    [29] Vignjevic R, Campbell J, Libersky L. Atreatment of Zero-energy medes in the smoothed particle hydrodynamics method. Comput. Methods Appl. Mech. Engng., 2000, 184(1): 67~85
    [30] Randles PW, Libersky LD. Smoothed particle hydrodynamics: some recent improvements and applications. Computer Methods in Applied Mechanics and Engineering, 1996, 139(3): 375~408
    [31] Liu MB, Liu GR, Zong Z, et al. Smoothed particle hydrodynamics for numericalsimulation of underwater explosions. Computational Mechanics, 2003, 30(2): 106~118.
    [32] Liu MB, Liu GR, Zong Z, et al. Computer simulation of the high explosive explosion using smoothed particle hydrodynamics methodology. Computers & Fluids, 2003, 32(3): 305~322
    [33] Liu MB, Liu GR, Zong Z, et al. Numerical simulation of underwater explosion by SPH. USA: Advances in Computational Engineering & Science, 2000, 1475~1480
    [34]张锁春.光滑质点流体动力学(SPH)方法(综述).计算物理,1996,13(4):385~397
    [35] Onate E, Perazzo F, Miquel J. A finite point method for elasticity problems. Computers & Structures, 2001, 79: 2151~2163
    [36]钱向东.一种基于紧支径向基函数的无网格法.强度与环境,2000,1(增刊): 42~45
    [37] Zhang X(张雄), Song KZ, Lu MW, et al. Meshless methods based on collocation with radial basis functions. Computational Mechanics, 2000, 26: 333~343
    [38] Wendland H. Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J. Approximation Theory, 1998, 93: 258~396
    [39] Wu Z. Compactly supported positive definite radial functions. Adv. Comput. Math., 1995, 4: 283~292
    [40]史宝军.无网格方法理论与应用研究及其可视化技术(北京大学博士学位论文).北京:北京大学,2003
    [41] Nayroles B, Touzot G, Villon P. Generalizing the finite element method: diffuse approximation and diffuse elements. Computational Mechanics, 1992, 10(5): 307~318
    [42] Belytschko T, Lu YY, Gu L. Element free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37: 229~256
    [43] Lu YY, Belytschko T, Gu L. A new implementation of the element free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 1994, 113: 397~414
    [44] Belytschko T, Gu L, Lu YY. Fracture and Crack growth by element-free Galerkin method. Modellingcand in Simulation Material Science and Engineering, 1994, 2: 519~534
    [45] Lu YY, Belytschko T, Tabbara M. Element-free Galerkin methods for wave propagation and dynamic fracture. Comput. Methods Appl. Mech. Engrg.,1995,126: 131~153
    [46] Ouatouati A EI, Johnson DA. New approach for numerical modal analysis using the element-free method. International Journal for Numerical Methods in Engineering, 1999, 46: 1~27
    [47]吴琛,周瑞忠.无单元法应用于欧拉梁的动力特性分析.福州大学学报(自然科学版),2008,36(4):566~571
    [48] Krysl P. Belytschko T. The Element Free Galerkin Method for Dynamic Propagation of Arbitrary 3-D Cracks. International Journal for Numerical Methods in Engineering, 1999, 44 (6): 767~800
    [49]陈建,吴林至,杜善义.采用无单元法计算含边裂纹功能梯度材料板的应力强度因子.工程力学,2000,17(5):139~144
    [50]李卧东,王元汉,谭国焕.无网格法在弹塑性问题中的应用.固体力学学报,2001,22(4):351~367
    [51]龙述尧,陈莘莘.弹塑性力学问题的无单元伽辽金法.工程力学,2003,20(2):66~70
    [52]卿启相,李光耀,刘潭玉.棒材拉拔问题的弹塑性无网格法分析.机械工程学报,2004,40(1):85~89
    [53] Belytschko T, Mish K. Computability in non-linear solid mechanics. International Journal for Numerical Methods in Engineering, 2001, 52: 3~21
    [54]熊渊博,龙述尧,胡德安.无单元伽辽金法求解Navier-Stokes方程.湖南大学学报,2004,31(2):93~96
    [55]曾清红,卢德唐,齐岩,等.无网格方法求解稳定渗流问题.计算力学学报, 2003,20(4):440~445
    [56]周维垣,寇晓东.无单元法及其工程应用.力学学报,1998,30(2):193~202
    [57] Schwer L, Gerlach C, Belytschko T. Element-Free Galerkin Simulations of Concrete Failure in Dynamic Uniaxial Tension Test. Journal of Engineering Mechanics. 2000,126 (5): 443~454
    [58]李光耀,钟志华,韩旭.固体力学问题数值解的一种验证方法.工程力学,2004,21(3):185~189
    [59] Li Guangyao, Belytschko T. Element-free Galerkin method for contact problems in metal forming analysis. Engineering Computations. 2001,18 (1-2): 62~78
    [60] Ohs R R, Aluru N R. Meshless analysis of piezoelectric devices. Comput. Mech., 2001, 27: 23~36
    [61] Liu WK, Jun S, Zhang YF. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluid, 1995, 20: 1081~1106
    [62] Liu WK, Chen Y. Wavelet and multiple scale reproducing kernel method. International Journal for Numerical Methods in Fluid, 1995, 21: 901~931
    [63] Li SF, Liu WK. Meshless and particle methods and their applications. Applied Mechanics Review, 2002, 55: 1~34
    [64]周进雄,李梅娥,张红艳,等.再生核质点法研究进展.力学进展,2002,42(4):535~544
    [65] Liu WK, Jun S, Li SF et al. Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Methods Engrg., 1995, 38: 1655~1679
    [66] Liu WK, Jun S, Sihling DT, et al. Multiresolution Reproducing Kernel Particle Method for Computational Fluid Dynamics, Int. J. Numer. Methods Fluids, 1997, 24: 1391~1415
    [67] Günther F, Liu WK, Diachin D, et al. Multi-scale meshfree parallel computations for viscous, compressible flows. Comput. Methods Appl. Mech. Engrg., 2000, 190: 279~303
    [68] Liu WK, Hao S, Belytschko T, et al. Multiple scale meshfree methods for damage fracture and localization. Comput. Mater. Sci., 1999, 16: 197~205
    [69] Jun S, Im S. Multiple-scale meshfree adaptivity for the simulation of adiabatic shear band formation. Comput. Mech., 2000, 25: 257~266
    [70] Chen JS, Pan C, Wu CT, et al. Reproducing kernel particle methods for large deformation analysis of non-linear structures, Comput. Methods Appl. Mech. Engrg., 1996, 139: 195~227
    [71] Chen JS, Pan C, Roque C, et al. A Lagrangian reproducing kernel particle method for metal forming analysis. Comput. Mech., 1998, 22: 289~307
    [72] Donning BM, Liu WK. Meshless methods for shear-deformable beams and plates. Comput. Methods Appl. Mech. Engrg., 1998, 152: 47~71
    [73] Duarte CA, Oden JT. Hp clouds: a meshless method to solve boundary-value problems. Technical Report 95-05. Texas Institute for Computational and Applied Mathematics. University of Texas at Austin. 1995
    [74] Oden JT, Duarte CA, Zienkiewicz OC. A new cloud-based hp finite element method. Int J Numer Methods Engrg. 1998, 50: 160~170
    [75] Mendonc?a PTR, Barcellos CS, Duarte A. Investigations on the hp-Cloud Method by solving Timoshenko beam problems. Comput. Mech., 2000, 25: 286~295
    [76] Garcia O, Fancello EA, Barcellos CS, et al. hp-clouds in Mindlin's thick plate model. Int. J. Numer. Methods Engrg., 2000, 47(8) : 1381~1400
    [77]刘欣,朱德懋,陆明万,等.平面裂纹问题的h,p,hp型自适应无网格方法的研究.力学学报,2000,32(3):308~318
    [78] Melenk JM, Babuska I, The partition of unity finite element methods: Basic theory and application. Comput. Methods Appl. Mech. Engrg., 1996, 139: 263~288
    [79] Babuska I, Melenk JM, The partition of unity methods. Int. J. Numer. Methods Engrg., 1997, 40: 727~758
    [80] Liu X, Zhang X, Lu MW. Numerical analysis of singular problems using the Partition of unity method. European conference on computational mechanics (ECCM’99), München, Germany, 1999
    [81] Wang JG, Liu GR. A point interpolation meshless method based on radial basis functions. International Journal for Numerical Methods in Engineering, 2002, 54: 1623~1648
    [82] Wang JG, Liu GR, Tan VBC, et al. A conforming point interpolation method for analyzing spatial thick shell structures. Advances in meshfree and X-FEM methods. In: Liu GR, ed. Proceeding of the 1st Asian Workshop in Meshfree Methods, Singapore, Dec, 2002, 96~016
    [83] Wang JG, Liu GR. Radial point interpolation method for no-yielding surface models. In: Bathe KJ, ed. Proceeding of the Computational Fluid and Solid Mechanics, United Kingdom: Elsevier Science Ltd, 2001, 538~540
    [84] Liu GR, Dai KY, Lim KM, et al. A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures. Computational Mechanics, 2002, 29(6): 510~519
    [85] Liu GR, Dai KY, Lim KM, et al. A radial point interpolation method for simulation of two-dimensional piezoelectric structures. Smart Materials and Structures, 2002, 12(2): 171~180
    [86] Wang JG, Liu GR, Wu YG. A point interpolation method for simulating dissipation process of consolidation. Comput. Methods Appl. Mech. Eng., 2001, 190: 5907~5922
    [87] Braun J, Sambridge M. A numerical method for solving partial differential equations on highly irregular evolving grids. Nature, 1995, 376: 655~660
    [88] Atluri SN, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech., 1998, 22: 117~127
    [89] Atluri SN, Zhu T. New concepts in meshless methods. International Journal for Numerical Methods in Engineering, 2000, 47: 537~556
    [90] Liu GR, Gu YT. A local radial point interpolation method (LR-PIM) for free vibration analyses of 2-D solids. J. of Sound and Vibration, 2001, 246(1): 29~46
    [91] Lin H, Atluri SN. The Meshless local Petrov- Galerkin (MLPG) Method for Solving Incompressible Navier-Stokes Equations. Computer Modeling in Engineering & Sciences (CMES), 2001, 2: 117~142
    [92] Tang Z, Shen S, Atluri SN. Analysis of materials with strain gradient effects: A Meshless local Petrov-Galerkin approach, with nodal displacements only. Computer Modeling in Engineering & Sciences (CMES). 2003, 4(1): 177~196
    [93] Ching HK, Betra RC. Determination of crack tip fields in linear elastostatics by the meshless local Petrov-Galerkin (MLPG) method. Computer Modeling in Engineering & Sciences (CMES), 2001, 2(2): 273~290
    [94] Gu YT, Liu GR. A meshless local Petrov-Galerkin (MLPG) formulation for static and free vibration analysis of thin plates. Computer Modeling in Engineering & Sciences (CMES), 2001, 2(4): 463~476
    [95] Atluri SN. The Meshless Method (MLPG) for Domain & BIE Discretizations. Encino USA: Tech Science Press, 2004
    [96] Atluri SN, Shen SP. The Meshless Local Petrov-Galerkin (MLPG) Method. USA: Tech Science Press, 2002
    [97] Atluri SN, Shen SP. The Basis of Meshless Domain Discretization: The Meshless Local Petrov Galerkin (MLPG) Method. UCI Report, February 9, 2003
    [98] Atluri SN, Shen SP. The mesh local Petrov-Galerkin (MLPG) method: a simple & less-costly alternative to the finite element and boundary element methods. CMES: Computer Modeling in Engineering and Sciences, 2002: 3: 11~51
    [99]龙述尧.弹性力学问题的局部Petrov-Galerkin方法.力学学报,2001,33(4): 508~518
    [100]龙述尧.用无网格局部Petrov-Galerkin法分析非线性地基梁.力学季刊, 2002,23(4):547~551
    [101]夏平,龙述尧,崔洪雪.用无网格局部径向点插值法分析中厚板的弯曲问题.应用力学学报,2009,26(2):383~388
    [102]熊渊博,龙述尧.用无网格局部Petrov-Galerkin方法分析Winkler弹性地基板.湖南大学学报,2004,31(4):101~104
    [103] Xia P, Long SY, Cui HX, et al. The static and free vibration analysis for the nonhomogeneous moderately thick plate by the meshless local radial pointinterpolation method, Engineering Analysis with Boundary Elements, 2009, 33 (6): 770~777
    [104] Xia P, Long SY, Cui HX. Elastic dynamic analysis of the moderately thick plate using the meshless LRPIM.固体力学学报(英文版), 2009, 22 (2): 116~124
    [105] Liu KY, Long SY, Li GY. A simple and less-costly meshless local Petrov-Galerkin (MLPG) method for the dynamic fracture problem. Engineering Analysis with Boundary Elements, 2006, 30: 72~76
    [106]龙述尧,刘凯远.动态断裂力学问题中的局部Petrov-Galerkin无网格方法.暨南大学学报,2005,26:57~59
    [107] Liu GR, Gu YT. A local point interpolation method for stress analysis of two-dimensional solids. Structural Engineering and Mechanics, 2001, 11(2): 221~236
    [108] Liu GR, Gu YT. Comparisons of two meshfree local point interpolation methods for structure analyses. Computational Mechanics, 2002, 29: 107~121
    [109] Gu YT, Liu GR. A local point interpolation method for static and dynamic analysis of thin beams. Comput Methods Appl Mech Engrg, 2001, 190: 5515~5528
    [110] Wu YL, Liu GR. Application of local radial point interpolation method (LRPIM) to impressible flow simulation. Computational Mechanics, 2003, 30(5-6): 355~365
    [111]蔡永昌,朱合华,王建华.基于Voronoi结构的无网格局部Petrov-Galerkin方法.力学学报,2003,35(2):187~193
    [112] Mukherjee YX, Mukherjee S. The boundary node method for potential problems. Int. J. Numer. Methods Engrg., 1997, 40(5): 797~815
    [113] Chati MK, Mukherjee S, Mukherjee YX. The boundary node method for three-dimensional linear elasticity. Int. J. Numer. Methods Engrg., 1999, 46: 1163~1147
    [114] Kothnur VS, Mukherjee S, Mukherjee YX. Two-dimensional linear elasticity by the boundary node theory. Int. J of Solid and Structure, 1999, 36: 1129~1147
    [115] Gu YT, Liu GR. A boundary point interpolation method (BPIM) using radial function basis. Structural Eng. and Mech., 2003, 15(5): 535~550
    [116] Gu YT, Liu GR. A boundary point interpolation method for stress analysis of solids. Computational Mechanics, 2002, 28(1): 47~54
    [117] Liu GR, Gu YT. Boundary meshfree methods based on the boundary point interpolation methods. Engineering Analysis with Boundary Elements, 2004,28(5): 475~487
    [118] Zhu T, Zhang J, Atluri SN. A local boundary integral equation (LBIE) method in computational mechanics and a meshless discretization approach, Comput. Mech., 1998, 21: 223~235
    [119] Zhu T, Zhang J, Atluri SN. A meshless local boundary integral equation (LBIE) method for solving nonlinear problems. Comput. Mech., 1998, 22: 174~186
    [120] Atluri SN, Kim HG, Cho JY. A critical assessment of truly Meshless Local Petrov-Galerkin(MLPG) and Local Boundary Integral Equation (LBIE) methods. Computational Mechanics, 1999, 24: 348~372
    [121] Atluri SN, Sladek J, Sladek V, et al. The Loacl boundary integral equation (LBIE) and it's meshless implementation for linear elasticity. Comput. Mech., 2000, 25: 180~198
    [122] Zhu T. A new meshless regular local boundary integral equation (MRLBIE) approach. Int J Numer Methods Engrg., 1999, 46: 1237~1252
    [123] Long SY(龙述尧), Xiong YB(熊渊博). A Meshless Method of a Thin Plate. Chinese Journal of Solid Mechanics (English Edition), 2002, 15(3): 244~258
    [124]龙述尧,熊渊博.关于薄板的无网格局部边界积分方程方法中的友解.应用数学和力学,2004,28(4):379~384
    [125]龙述尧,许敬晓.弹性力学问题的局部边界积分方程方法.力学学报,2000, 32(5):566~578
    [126] Long SY, Hu DA. A study on the weight function of the moving least square approximation in the local boundary integral equation method. Chinese Journal of Solid Mechanics, 2003, 16(3): 276~282
    [127]张见明,姚振汉.一种新型无网格法-杂交边界点法.袁明武,孙树立主编.工程与科学中的计算力学.北京:北京大学出版社,2001,339~343
    [128] Chen W. RBF-based meshless boundary knot method and boundary particle method, Proc. of China Congress on Comput. Mechanics, Guangzhou, China, 2001, 319~326
    [129]程玉民,陈美娟.弹性力学的一种边界无单元法.力学学报,2004,35(2): 181~186
    [130] Liu GR, Gu YT. A meshfree method: meshfree weak-strong (MWS) form method for 2-D solids. Computational Mechanics, 2003, 33(1): 2~14
    [131] Gu YT, Liu GR. A meshfree weak-strong (MWS) form method for time dependent problems. Computational Mechanics, 2005, 35: 134~145
    [132] Liu GR, Wu L, Ding H. Meshfree weak-strong method for fluid mechanics.vibration analysis of composite laminates of complicated shape. Composite Structures, 2003, 39: 279~289
    [147]李卧东,陈胜宏.结构振动分析中的无网格方法.计算力学学报,2003,20(6):756~763
    [148]秦亚菲,张伟星.无单元法分析薄板自由振动问题.力学与实践,2003,25(5):37~40
    [149]张建辉,邓安福.无单元法(EFM)在筏板基础计算中的应用.岩土工程学报,1999,21(6):691~695
    [150]张建辉,邓安福.基于正交基函数的薄板弯曲无单元法MLS导函数及其应用.计算力学学报,2003,20(3):355~360
    [151]张建辉,邓安福.桩筏基础的新型分析方法.土木工程学报,2002,35(4):103~108
    [152]范永利,丁成辉.无网格法计算中厚板弯曲问题.南昌工程学院学报,2005, 24(4):25~29
    [153]孙建东,张伟星,童乐为.无单元法求解任意边界条件下的中厚板弯曲问题.力学季刊,2006,27(2):348~353
    [154]孙建东,张伟星,童乐为.无单元法在中厚板模态分析中的应用.土木工程学报,2006,39(10):29~33
    [155]胡玮军,龙述尧,夏平.用无网格径向点插值法分析弹性地基厚板的弯曲问题.工程力学,2009,26(5):58~61
    [156] Yagawa G, Yamada T, Furukawa T. Parallel computing with free mesh method: a kind of meshless finite element method. Proceedings of IUTAM Symposium on Discretization Methods in Structural Mechanics II, Vienna, 1997, 10~17
    [157] Reissner E, On the theory of bending of elastic plate, JMF, 23(1944), p.184
    [158] Selvadurai APS. Elastic Analysis of Sail-foundation Interaction. Amsterdam: Elsevier, 1979
    [159] Micchelli C A. Interpolation of scattered data: distance matrices and condi-tionally positive definite functions. Constructive Approximation, 1986, 2: 11~22.
    [160] Schaback R, Wendland H. Characterzation and construction of radial basis functions . In: Dyn N, Leviatan D, Levin D, Pinkus, eds. Multivariate Approximation and Applications.Cambridge:Cambridge University Press,2000
    [161] Liu GR. Meshless Free Methods: Moving Beyond the Finite Element Method. USA: CR C Press, 2002, 1~312
    [162] Xiao JR, Batra RC, Gilhooley DF, et al. Analysis of thick plates by using avibration analysis of composite laminates of complicated shape. Composite Structures, 2003, 39: 279~289
    [147]李卧东,陈胜宏.结构振动分析中的无网格方法.计算力学学报,2003,20(6):756~763
    [148]秦亚菲,张伟星.无单元法分析薄板自由振动问题.力学与实践,2003,25(5):37~40
    [149]张建辉,邓安福.无单元法(EFM)在筏板基础计算中的应用.岩土工程学报,1999,21(6):691~695
    [150]张建辉,邓安福.基于正交基函数的薄板弯曲无单元法MLS导函数及其应用.计算力学学报,2003,20(3):355~360
    [151]张建辉,邓安福.桩筏基础的新型分析方法.土木工程学报,2002,35(4):103~108
    [152]范永利,丁成辉.无网格法计算中厚板弯曲问题.南昌工程学院学报,2005, 24(4):25~29
    [153]孙建东,张伟星,童乐为.无单元法求解任意边界条件下的中厚板弯曲问题.力学季刊,2006,27(2):348~353
    [154]孙建东,张伟星,童乐为.无单元法在中厚板模态分析中的应用.土木工程学报,2006,39(10):29~33
    [155]胡玮军,龙述尧,夏平.用无网格径向点插值法分析弹性地基厚板的弯曲问题.工程力学,2009,26(5):58~61
    [156] Yagawa G, Yamada T, Furukawa T. Parallel computing with free mesh method: a kind of meshless finite element method. Proceedings of IUTAM Symposium on Discretization Methods in Structural Mechanics II, Vienna, 1997, 10~17
    [157] Reissner E, On the theory of bending of elastic plate, JMF, 23(1944), p.184
    [158] Selvadurai APS. Elastic Analysis of Sail-foundation Interaction. Amsterdam: Elsevier, 1979
    [159] Micchelli C A. Interpolation of scattered data: distance matrices and condi-tionally positive definite functions. Constructive Approximation, 1986, 2: 11~22.
    [160] Schaback R, Wendland H. Characterzation and construction of radial basis functions . In: Dyn N, Leviatan D, Levin D, Pinkus, eds. Multivariate Approximation and Applications.Cambridge:Cambridge University Press,2000
    [161] Liu GR. Meshless Free Methods: Moving Beyond the Finite Element Method. USA: CR C Press, 2002, 1~312
    [162] Xiao JR, Batra RC, Gilhooley DF, et al. Analysis of thick plates by using ahigher-order shear and normal deformable plate theory and MLPG method with radial basis functions. Computer Methods in Applied Mechanics and Engineering, 2007, 196: 979~987
    [163]龙述尧,刘凯远,胡德安.移动最小二乘近似函数中样条权函数的研究.湖南大学学报(自然科学版),2003,30(6):10~13
    [164] Wang JG, Liu GR, On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Computer Methods in Applied Mechanics and Engineering, 2002, 191: 2611~2630
    [165] S.铁摩辛柯,S.沃诺斯基.板壳理论.北京:科学出版社,1977,115~206
    [166]曹志远,杨昇田.厚板动力学理论及其应用.北京:科学出版社,1983,303~340
    [167]王克林,黄义.弹性地基上四边形自由矩形板.计算结构力学及其应用,1985,2(2):47~58
    [168] Katsikadelis JT and Kallivokas LF. Plates on biparametric elastic foundation by BDIE method. Journal for Engineering Mechanics,1988, 114(5): 847~875
    [169] Jari Puttonen and Pentti Varpasuo. Boundary element analysis of a plate on elastic foundation. International Journal for Numerical Methods in Engineering, 1986, 23(2): 287~305
    [170]张星伟,庞辉.无单元法计算钢筋混凝土筏板.计算力学学报,2000,17(3): 326~331
    [171]何深谋,吴波.加权残值法分析双参数弹性地基上的中厚板.第一届全国解析与数值结合法会议论文集,长沙,1990:551~555
    [172]李永彪,张德澄.双参数弹性地基上中厚板弯曲问题的有限元线法分析.土木工程学报,2002,35(5):87~92
    [173]杜永峰,王晓琴.双参数弹性地基上自由矩形中厚板问题分析尝试.兰州理工大学学报,2005,31(4):104~107
    [174]熊渊博,龙述尧.用局部Petrov-Galerkin方法分析板的自由振动.力学季刊,2004,25(4):577~582
    [175] Gu YT, Liu GR. A meshless local Petrov–Galerkin(MLPG) method for free and forced vibration analyses for solids. Comput. Mech., 2001, 27: 188~198
    [176] Long SY, Liu KY, Hu DA. A new meshless method based on MLPG for elastic dynamic problems. Engineering Analysis with Boundary Elements, 2006, 30: 43~48
    [177] Jarak T, Soric J, Hoster J. Analysis of shell deformation responses by the meshless local Petrov-Galerkin (MLPG) approach. Computer Modeling inEngineering and Sciences, 2007, 18(3): 235~246
    [178]成祥生.应用板壳理论.济南:山东科学技术出版社,1989,212~234
    [179]王富耻,张朝晖. ANSYS10.0有限元分析理论与工程应用.北京:电子工业出版社,2006,138~151
    [180] Rao BN, Rahman S. An enriched meshless method for non-linear fracture mechanics. International Journal for Numerical Methods in Engineering, 2004, 59: 197~223
    [181] Owen DRJ, Hinton E. Finite Elements in Plasticity: Theory And Practice. Swansea, UK: Pineridge Press Limited, 1980, 319~327