西瓜枯萎病生防放线菌筛选及其防病促生作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西瓜枯萎病是导致西瓜连作障碍的最主要因素之一,严重制约着西瓜生产的发展。为得到西瓜枯萎病生物防治高效菌株,对西瓜枯萎病生防放线菌进行了筛选,然后探讨了生防放线菌对西瓜的防病促生作用。主要得出以下结果:
     1.利用柯赫氏法则对靶标病原菌进行了验证,确定X1、X2、X3均为尖孢镰刀菌西瓜专化型。经过致病性检验,确定X1致病性最强且发病潜伏期最短,可以作为后续实验的致病菌和生物活性测定的靶标菌。
     2.利用琼脂块法对本研究保藏的100余株拮抗性放线菌进行了皿内复筛,获得21株拮抗性较强的菌株,其中菌株Act1和28G336B对X1的抑菌圈直径分别达到24 mm和19 mm;采用生长速率法测定了其中14株放线菌无菌发酵滤液对供试靶标菌的相对抑菌率,结果表明:发酵液对靶标菌均有抑制作用,最高抑制率可达85.7 %。
     3.供试放线菌孢子悬液对西瓜幼苗有一定的防病作用。Act1、Act11和Act12对西瓜植株均无致病性,且Act1处理可以抑制X1对西瓜植株的侵染,Act11和Act12处理在一定程度上延缓了X1对西瓜植株的侵染。
     4.供试放线菌孢子悬液和活菌制剂对西瓜生长有一定的促进作用。用Act1、Act11和Act12孢子悬液接种时,西瓜株高和干重较对照的最大增幅分别为32.8 %和66.7 %;用活菌制剂接种时,西瓜根系鲜重和干重的最大增幅分别为59.3 %和59.8 %。
     5.接种放线菌活菌制剂对西瓜植株保护性酶PPO活性和可溶性蛋白质含量有显著影响。接种可使西瓜叶片和根系PPO活性分别提高2.0 %~81.8 %和0.6 %~13.6 %;用相对抑菌率﹥60 %的5株放线菌发酵液进行叶面喷施,可使西瓜叶片PPO活性提高8.7 %~30.6 %。PPO活性提高有利于提高西瓜的抗病性。接种活菌制剂导致西瓜叶片和根系可溶性蛋白质含量下降,降幅分别为9.2 %~52.5 %和36.7 %~83.3 %。
     6.连作西瓜土传病害的发生与根域微生物生态失调有关。连作罹病与新茬健康西瓜根域微生物数量及根域真菌区系组成差异明显。连作2年西瓜病株根域细菌、真菌及放线菌总量分别较健株增加128.0 %、55.1 %及90.8 %,根表真菌数量较健株增加126.0 %;病株根表和根区的镰刀菌数量约分别为健株的4倍和5倍。健康西瓜植株根域真菌种类呈多样性,而罹病西瓜植株根域真菌区系中镰刀菌占绝对优势,其他真菌数量大幅度减少,根域微生物区系已转化为病理组合,增大了西瓜根部土传病害发生的机率。
     7.接种生防放线菌对西瓜根域微生物区系有显著影响。Act1接入西瓜育苗基质,西瓜根域细菌数量较对照提高48.7 %~651.6 %,其中西瓜根表土壤中芽孢杆菌数量高达对照的8倍;放线菌数量提高17.8 %~478.4 %;真菌数量减少29.2 %~45.2 %,其中西瓜根区和根表土壤中镰刀菌密度较对照分别降低55 %和60 %。B/F较对照提高75.4 %~369.5 %。Act1具有较好的定殖稳定性,接种100 d后,在西瓜根域土壤中活菌数仍高达106·g-1以上。接种生防菌促使西瓜根域土壤由真菌型向细菌型转变,在西瓜根域形成含有大量拮抗性放线菌、可抗御西瓜枯萎菌等土传病害的生物屏障。
Watermelon fusarium wilt is one of the most important factors of the continuous cropping obstacle of watermelon, which is seriously restricting the development of watermelon production. In order to obtain some high efficient actinomyces strains against watermelon fusarium wilt, some biocontrol actinomyces were screened. Then their prophylaxis and growth promoting effect on watermelon was studied.The result showed as following:
     1. In this paper, target pathogens were verified according to Koch’s postulate. The results showed that both X1、X2、X3 were Fusarium oxysporum schlechlendahl f. sp. melons (Leach at currence) snyder et Hansen. Pathogenicity test showed that pathogenic intensity X1>X3>X2, the pathogenesis latent period of X1 was shortest, so it can be used as pathogens and target pathogens of biological activity assay for the further experiments.
     2. During the screening of more than 100 strains antagonistic actinomycetes by agar block method on culture dishes, 21 strains strongly antagonistic actinomycetes were obtained. The antibacterial circle diameter of Act1 and 28G336B respectively reached 24 mm、19 mm. The inhibition rate of fermentation broth against target pathogens of 14 actinomyces strains were determined by plate growth rate method. The results showed that all of fermentation broth had inhibition, the highest being 85.7 %.
     3. All of the inoculation with spore suspension of actinomyces had prophylaxis effect on watermelon seedling. Act1, Act11 and Act12 had no pathogenicity for watermelon. The infection of X1 could be inhibited by treatment of Act1 and delayed by treatment of Act11 and Act12.
     4. Both inoculation with spore suspension and live actinomyces preparation had promoting effect on watermelon.The plant height and dry weight significantly increased 32.8 % and 66.7 % in the treatment of inoculation with spore suspension of Act1、Act11 and Act12 compared with CK.The plant height and dry weight significantly increased 59.3 % and 59.8 % in the treatment of live actinomyces preparation compared with CK.
     5. Inoculation with live actinomyces preparation had significant effect on the PPO activity and the soluble protein content of watermelon.The PPO activity of leaf and root respectively increased 2.0 %~81.8 % and 0.6 %~13.6 % in treatment of live actinomyces preparation.The PPO activity of leaf increased 8.7 %~30.6 % in treatment of foliage spray by fermentation broth of 5 actinomyces strains.The promotion of PPO activity was beneficial to improving disease resistance of watermelon. Inoculation with live actinomyces preparation lead to the desease of the soluble protein content of watermelon. The soluble protein content of leaf and root respectively decreased 9.2 %~52.5 % and 36.7 %~83.3 % in treatment of live actinomyces preparation.
     6. The dysbiosis of watermelon rooting zone leaded to soil borne disease.There were significant differences of microbe quantity and fungi flora between alternate cropping healthy and continuous cropping diseased watermelon rooting zone. The results showed that, the quantity of bacteria、fungi and actinomyces of rooting zone of watermelon continuous cropping for 2 years were rifely higher than those in the alternate cropping healthy CK. The quantity of bacteria、fungi、fungi of root surface、actinomyces increased 128.0 %、、55.1 %、126.0 %、90.8 % respectively. The fusarium number of rhizosphere soil and root surface soil of continuous cropping diseased watermelon plant was about 5 and 4 times higher than that of alternate cropping healthy watermelon plant. The fungi species of healthy watermelon rooting zone showed more multiplicity. The physiological combination of rooting zone micro-community keeps normal. Fusarium was a dominant species in fungi flora of diseased watermelon rooting zone, while other fungus quantity reduced quickly. The rooting zone micro-community of diseased watermelon had transformed into pathological combination, which increase the rate of soil borne disease of watermelon root.
     7. Inoculating with bio-control actinomyces on microbial flora of watermelon rooting zone had significant effect. The results showed that inoculating with Act1 in nursery bed soil had raised bacteria and actinomyces number of rooting zone soil of watermelon, reduced fungi number of rooting zone soil of watermelon. The quantity of bacteria increased by 48.7 %~651.6 %, thereinto the quantity of gemma bacillus of watermelon root surface soil was 8 times more than CK, the quantity of actinomyces increased by 17.8 %~478.4 %, the quantity of fungi decreased by 29.2 %~45.2 %, thereinto the destiny of Fusarium in the watermelon rhizosphere soil and root surface soil decreased markedly by 55 %and60 %, respectively. B/F increased by 75.4 %~369.5 %. 100 days after inoculation, the number of Act1 was more than 106·g-1. These results demonstrate an expectant colonization stability of Act1. After inoculation with Act1, the microbial flora of watermelon rooting zone soil changed markedly, it changed from fungi type to bacteria type. In watermelon rooting zone soil, a biological barrier formed mostly by bio-control actinomyces against soil borne plant diseases such as watermelon Fusarium wilt.
引文
[1] 李敏.AM 真菌对西瓜抗枯萎病的效应及其机制[D].中国农业大学博士学位论文,2005.
    [2] 纪明山,王英姿.西瓜枯萎病拮抗菌株筛选及田间防效试验[J].中国生物防治,2002,18(2):71-74
    [3] 刘萍萍,闫艳春. 微生物农药研究进展[J].山东农业科学,2005,(2):78-80.
    [4] 邓洪渊,孙雪文,谭 红.生物农药的研究和应用进展[J].世界科技研究与发展,2005,(2):76-80.
    [5] 张华,姜成林,徐丽华,等.药用微生物资源[J].微生物学通报,2004,31(2):152.
    [6] 杨汝德,许喜林,罗立新,等.现代工业微生物[M].广州:华南理工大学出版社,2001:28.
    [7] 贺字典,高玉峰.生防菌在植物病害防治中的研究进展[J].河北职业技术师范学院学报,2003,17(2):56-59.
    [8] 王玉菊,祁红英,郭坚华.植物土传病害的微生物防治研究进展[J].世界农业,1995,1:37-39
    [9] Cook R J. Making greater use of introduced microorganisms for biological control of plant pathogens[J].Ann.Rev.Phytopathol,1993,31:53-80.
    [10] Handelsman J and Stabb E V. Bioconrtol of soilbonre plant pathogens[J].The plant cell,1996,8:1855-1869.
    [11] 鲁素芸.植物病害生物防治学[M].北京:北京农业大学出版社,1993.
    [12] Paulitz T C,Belanger R R.Biological control in greenhouse systems[J].Annu Rev Phytopathol,2001,39:103-133.
    [13] Rishbeth T. Stump protection against fomes annosus III inoculation with Peniophora gigantea[J]. Ann Appl Biol,1963,52:69 - 77.
    [14] Rattink H.Biological control of Fusarium wilt disease of carnation by a non-pathogenic isolate of Fusarium oxysporum[J]. Acta Hortic,1992,307:37-42.
    [15] Mcquilken M P,Whipps J M.Production,survival and evaluation of solidsubstrate inocula of Coniothyrium minitans against Sclerotinia sclerotiorum[J]. Eur J Plant pathol,1995,101:101-110.
    [16] 何迎春,高必达.立枯丝核菌的生物防治[J].中国生物防治,2000,16(1):31-34.
    [17] Lumsden R D,Ridout C J,Vendemia M E,et al.Characterization of major secondary metabolites produced in soilless mix by a formulated strain of the biocontrol fungus Gliocladium virens[J].Can J Plant Pathol,1992,38:1 274-1 280.
    [18] Lumsden RD,Locke J C.Biological control of damping-off caused by Pythiumultimum and Rhizoctonia solani with Gliocladium virens in soilless mix [J].Phytopathogy,1989,79:361-366.
    [19] McQuilken MP,Mohammadi O. Evaluation of a commercial formulation of Gliocladium catenulatum(J1446) for biocontrol of damping off in bedding plants[J]. Meded Rijksfac Landbouwwet,Univ Gent,1997,62:987-992.
    [20] Weinding R.Studies on a lethal princiole effective the paramitic action of Trichodermuc lignorum on Rhizoctonia soloni and other siol fung[J].Phytopathology,1932,22:837-845.
    [21] 徐同,钟镜萍,李德葆.木霉对土传病原真菌的拮抗作用[J].植物病理学报,1994,23:63-67.
    [22] Yedidia I,Shoresh M,Keerm Z,et al. Concomitant Induction of Systemic Resistance to Pseudomonas syringae pv.lachrymans in Cucumber by a Trichodermaa sperelhan( T-203) and Accumulation of Phytoalexins[J].2003,Appl Environ Microbiol,69(12):7343-7353.
    [23] Ahmad J S,Baker R. Rhizosphere Competence of Trichoderma harzianum[J].Phytopathology,1987,77:1 982-1 989.
    [24] Hadar Y,Harman G E,Taylor A G.Evaluation of Trichoderma Koningii and T.harzianumfrom New York soil for biological control of seed rot caused by Pythium spp.[J]. Phytopathology,1984,74:106-110.
    [25] Statz T E,Harman G E,Weeden N F.Protoplasts preparation and fusion in two biocontrol strains of Trichoderma harzianum[J].Mycologia,1988,80:141-150.
    [26] Harman G E.Myths and dogmas of biocontrol:changes in perceptions derived from research on Trichoderma harzianum T - 22[J].Plant Dis,2000,84:377-393.
    [27] Nemec S,Datnoff L E,Strandberg J.Efficacy of biocontrol agent in planting mixes to colonize plant roots and control root diseases of vegetables and citrus[J].Crop Prot,1996,15:735-742.
    [28] Koch E.Evaluation of commercial products for microbial control of soil-bome plant diseases[J].Crop protection,1999,18:119-125.
    [29] Ogana K. Biological control of fusarium wilt of sweet potato with cross- protection by nonpathogenic Fusarium oxysporium[J].Phytopathology,1983,73:463-469.
    [30] Postma J,Rattink H. Biological control of Fusarium wilt of carnation with anonpathogenic isolate of Fusarium oxysporum[J].Can J Bot,1992,70:1 199-1 205.
    [31] Fuchs J G,Moenne Loccoz J G,Defago G. Ability of nonpathogenic Fusarium oxysporum Fo 47 to protect tomato against Fusarium wilt[J]. Biol Control,1999,14:105-110.
    [32] Lemanceau P , Alabouvette C. Biological Control of Fusarium diseases by fluorescent Pseudomonas and nonpathogenie Fusarium[J].Crop Prot,1991,13:279-286.
    [33] Lemanceau P,Bakker P,De Kogel W J,et al. Antagonistic effect of nonpathogenic Fusarium oxysporum stain Fo 47 and pseuclobactin 358 upon pathogenic Fusarium oxysporum f . sp. dianthi [J]. Appl Environ Microbiol,1993,59:74 - 82.
    [34] Epavier A,Alabouvette C. Use of ELISA and GUS-transformed strains to study competition between pathogenic and nonpathogenic Fusarium oxysporum for root colonization[J]. Biocontrol Sic Technol,1994,4:35-47.
    [35] Duiff B J,Pouhair D,Olivain C,et al.Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescensWCS 417r and by non-pathogenic Fusarium oxysporum Fo 47 [J].Eur JPlant Pathol,1998,104:903-910.
    [36] Fuchs J G,Moenne Locloz,Defago G. Nonpathogenie Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato[J].Plant Dis,1997,81:492-496.
    [37] 李长松.拮抗性细菌防治植物土传病害的研究进展[J].生物防治通报,1992,8(4):168-172.
    [38] Keer A.Biological control of crown gall through production of agrocin 84[J].Plant Disease,1980,64:25-30.
    [39] New P B,Kerr A. Biological control of crown gall:field observation and glasshouse experiments[J].J Appl Bact,1972,35:279-287.
    [40] 陈龙英.桃树根癌病的生物防治[J].中国果树,1995,1:8-10.
    [41] 梁志宏,王葱敏,王建辉.E26 防治植物根癌病的效果及其稳定性初步研究[J].中国农业大学学报,2001,6(1):91-95.
    [42] Howie W J& SuslowT V. Role of antibiotic biosynthesis in the inhibition of Pythium ultimurn in the cotton spermosphere and rhizosphere by Pseudomonas fluoerscens[J].Mol.Plant-M icorbe Interact,1991,4:393-399.
    [43] Schippers B .Exploitation of microbial mechanisms to promote plant health and plant growth[J].Phytopathology,1993,21:275-279.
    [44] Bardin S D,Huang H C,Moyer J R. Contorl of Pythium damping-of of sugar beet by seed treatment with crop straw powders and a biocontrol agent[J].Biological contral,2004,29:453-460.
    [45] 张中鸽,彭于发,黄大眆,等.荧光 93 菌体和代谢物对全蚀病菌和小麦生长影响的初步研究[J].生物防治通报,1992,8(3):125-128.
    [46] Backman P A ,Brannen PM,Mahuffee WF.Plant response and disease control following seed inoculation with Bacillus subtilis[A].Ryder MH,Stephens PM.Improving plant productivity with Rhizosphere Bacteria [C].Adelaide,Aust:CSIRO Div Soil,1994,3-8.
    [47] Grosch R,Junge H,Krebs B,et al.Use of Bacillus subtilis as a biocontrol agent. III. Influence of Bacillus subtilis on fungal root diseases and on yield in soilless culture[J]. Pflanzenkr , Pflanzen- schutz,1999,106:568-580.
    [48] 严志农.植物微生态制剂—增产菌及应用[A].梅汝鸿.植物微生态学研究,第一届中国微生态学术讨论会文集[C].北京:北京农业大学出版社,1991,67-70.
    [49] 徐 钦.植物土传病害的克星—百抗[J].当代农业,2002,11:34.
    [50] 魏春妹,张春明,姚树玉,等.番茄青枯病的生防制剂的研究与应用[J].上海农业学报,2000,16:69-72.
    [51] Beyer M,Dielanann H. The chitinase system of Streptomyces sp.ATCC11238 and its significance for fungal cell wall degradation[J].Appl Microbiol Biotechnol,1985,23:140-146.
    [52] Postma J,Willemsen - de KM,Rattink H,et al.Disease suppressive soilless culture systems:charactetization of its microflora[J].Acta Hortic,2001,306:66-76.
    [53] Lahdenpera ML. The control of Fusarium wilt on carnation with a Streptomyces preparation[J].Acta Hortic,1987,216:85-92.
    [54] Glick B R. The enhancement of plant by free-living bacteria[J].Can J Micorbiol,1995,41:109-117.
    [55] Wang AY,Brown HN,Crowley DE ,et al. Evidence for direct utilization of a siderophore,fe rrtioxamine B,in axenically grown cucumber[J].Plant Cell Environ,1993,16:579-585.
    [56] Singh HP,Singh TA. The interaction of rockphosphate,Brarhizobium,vesicular-arbuscular mycorrhizae and phosphate-solubilizing microbes on soybean groum in a sub-Himalayan mollisol[J].Mycorrhiza,1993,4:34-43.
    [57] Gaudin V,Vrain D and Jouanin L.Bacterial genes modifying hormonal balance in plant[J].Plant Physiol Biochem,1994,32:11-29.
    [58] Glick BR,Jacobson CB,Schwarze MMK,et al.Aminocyclopropane-l-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium[J].Pseudomonas putida GR12-2 do not stimulate canola root elongation[J].Can J Micorbiol,1994,40:911-915.
    [59] Dobbelaere S,Croonenborghs A,Thys A,et al.Analysis and relevance of the phytostimulatory effect of genetically modified Azospirillum brasilienxe strains upon wheat inocu lation[J].Plant soil,1999,212:155-164.
    [60] Dobbelaere S,Croonenborghs A,Thys A,et al.Responses of agronomically important crops to inoculation with Azospirillum[J].Aust J Plant Physiol,2001,28:871-879.
    [61] Arshad M&Frankenberger WTJ.Plant growth-ergulating substances in the rhizosphere:microbia l production and functions[J].Adv Agorn,1998,62:145-151.
    [62] Weller D M,Cook R J.Suppression of take-all of wheat by seed treatments with fluorescent Pseudomonas[J].Phytopathology,1983,73:463-469.
    [63] Bangers M G&Thomashow L S.Characterization of a genomic locus required for synthesis of the antibiotic 2-4-diacetylphloroglucinol by the biological control agent[J]. Pseudomonas fluorescens Q 2-87.Mol Plant Micorbe Interact,1996,9:83-90.
    [64] Pierson L S & Pierson E A.Phenazine antibiotic production in Pseudomonas aureofaciens:Role in rhizosphere ecology and pathogen suppression[J]. FEMS Microbiol Lett,1995,136:101-108.
    [65] Mavrodi D V,Ksenzenko N V,Bonsall F R,et al.A Seven-Gene Locus for Synthesis ofPhenazine-l-Carboxylic Acid by Pseudomonas fluorescens 2-79[J].J Bacteriol,1998,180:2541-2548.
    [66] Silo-SuhL A,Lethbridge B J,Rafel S J, et al.Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85[J].Appl Enviorn Micorbiol,60:2023-2030.
    [67] Milner J L,Silo-Suh L,Lee J C,et al.Production of kanosamine by Bacillus cereus UW 85[J].J Bacteriol,1996,62:3061-3065.
    [68] Wood D W&Pierson L S.The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a difusible signal required for phenazine antibiotic production[J]. Gene,1996,168:49-53.
    [69] Corbell N&Loper J E.Aglobal regulator of secondary metabolite production in Pseudomonas f uoerscens Pf-5[J].J Bacteriol,1995,177:6230-6236.
    [70] Haas D&Keel C.Regulation of antibiotic production in root-colonizing Pseudomonas spp. And relevance for biological control of plant disease.Ann Rev Phytopathol,2003,41:117-153.
    [71] Dufy B K&Defago G.Environmental Factors Modulating Antibiotic and Sideorphore Bio synthesis by Pseudomonas fluoerscens Biocontrol Srtains[J].J Bacteriol,1999,65:2429-2438.
    [72] Neilands J B.Micorbial iron compounds[J].Anna. Rev.Biochem,1981,50:715-731.
    [73] O'Sllivan DJ,O'Gara F.Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens[J].Micorbial Molecular Biology Rev,1992,56:662-676.
    [74] Buysens S,Heungens K,Poppe J ,et al. Involvement of Pyochelin and Pyoverdin in Suppression of Pythium-Induced Damping-Off of Tomato by Pseudomonas aeruginosa7NSK2[J].Appl Environ Micorbiol,1996,62:865-871.
    [75] Lorito M,Hayes CK,Di Pietro A, et al. Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA[J].Curr Genet,1993,24:349-356.
    [76] Lorito M,Hayes CK,Zoina A,et al.Potential of genes and gene products fromTrichoderma sp. and Gliocladium sp.for the development of biological pesticides[J].Mol Biotechnol,1994,2:209-217.
    [77] Etchebar C,Trigalet-Demery D,van Gijsegem F et al.Xylem Colonization by an HrcV Mutant of Ralstonia solanaceanun Is a Key Factor for the Efficient Biological Conrtrol of Tomato Bacterial Wilt[J].Mol Micorbial Plant Interact,1998,11:869-877.
    [78] 任欣正,张建华,方中达.无致病力产细菌素拮抗菌 nOE-104 在番茄植株定殖能力研究[J].植物病理学报,1987,17(3):129-133.
    [79] Thomma B P,Penninckx IA,BroekaertW F,et al. The complexity of disease signaling in Arabidopsis[J].Curr Opin Immunol,2001,13:63-68.
    [80] Pieterse CM,van Wees SC,Hoflland E,et al. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression[J].Plant Cell,1996,8:1225-1237.
    [81] van Wees,SCM,Pieterse CMJ,Trijssenaar A, et al. Differential induction of systemic resistance in Arabidopsis by bioconrtol bacteria[J].Mol Plant-Microbe Interact,1997,10:716-724.
    [82] Leeman M,van Pelt J A,den Ouden F M,et al. Induction of systemice rsistance againt Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens[J].Phytopathology,1995,85:1021-1027.
    [83] Leenman M,den Ouden FM,van Pelt JA,et al. Iron availability afects induction of systemicresistance to Fusarium wilt of radish by Pseudomanas fluoerscens[J].Phytopathology,1996,86:149-155.
    [84] 秦国政,田世平,刘海波等.拮抗菌与病原菌处理对采后桃果实多酚氧化酶、过氧化物酶及苯丙氨酸解氨酶的诱导[J].中国农业科学,2003,36(1):89-93.
    [85] 杨秀云.西瓜枯萎病的发生特点及防治措施[J].植物保护,2005,(8):16.
    [86] 吉加兵.西瓜枯萎病的病理学研究简况与防治途径展望[J].植物保护,1995,21(2):34-35.
    [87] 魏景超.真菌鉴定手册[M].上海,上海科学技术出版社,1979.
    [88] 张显.西瓜枯萎病抗性机制研究[J].西北农业大学学报,1989,17(4):29-34.
    [89] 谢大森,陈家旺.西瓜枯萎病研究进展[J].江西农业大学学报,1997,19(4):42-45.
    [90] Zhang X P,Bill R. Inheritance of resistance to race 0 , 1 and 2 of Fusarium oxysporum f.sp niveum in watermelon (Citrullus sp.PI296341)[J].CGC report,1993,16:77-78.
    [91] 葛慈斌,刘波等. 生防菌NH-BS-2000 对西瓜枯萎病原菌抑制作用的研究[J].厦门大学学报(自然科学版),2004,43(增刊):87-90.
    [92] 王纯利,王冬梅.西瓜枯萎病菌致病力与镰刀菌酸和 β- 1,4 -葡萄糖苷酶活性的关系[J].新疆农业大学学报,2000,23(1):1- 6.
    [93] 马国斌,林德佩,王叶筠,等.西瓜枯萎病菌镰刀菌酸对西瓜苗作用机制的初步探讨[J].植物病理学报,2000,30(4):373-374.
    [94] 苗琛,尚富德,江静,等.西瓜枯萎病抗性的细胞学研究[J].四川农业大学学报(自然科学版),2004,41(4):877-880.
    [95] 许勇,葛秀春.枯萎病菌诱导的结构抗性和相关酶活性的变化与西瓜枯萎病抗性的关系[J]果树科学,2000,17(2):123-127.
    [96] 徐敬华,黄丹枫,支月娥. PAL 活性与嫁接西瓜枯萎病抗性传递的相关性[J].上海交通大学学报(农业科学版),2004,22(1):12-16.
    [97] 张显,王鸣.西瓜枯萎病抗性及其与体内一些生化物质含量的关系[J].西北农业学报,2001,10(4):34-36.
    [98] 于天祥,张明方. 西瓜枯萎病研究进展[J].中国西瓜甜瓜,2004,(1):17-19.
    [99] 王毓洪,李林章,黄芸萍,等.不同砧木嫁接西瓜大棚栽培试验[J].安徽农学通报,2005,11(7):94.
    [100] 孔 鹤,刘 芳,杨杰玲.西瓜枯萎病防治进展[J].北京农业,2004(6):15- 16.
    [101] 雷 鸣.嫁接对西瓜枯萎病抗性的影响[J].安徽农业科学,2001,29 (5):655-656.
    [102] Amore R D,Morra L,Parisi B.Grafted watermelon p roduction results[J].Colture Protette,1996,25(9):29-31.
    [103] Armengol J,Jose C M,Moya M J,et al.Fusarium solani f sp.cucurbitaerace,a potential pathogen of grafted watermelon p roduction[J]. Spain Bulletin OEPP,2000,30(2):179-183.
    [104] 张志忠,吕柳新,黄碧琦,等.西瓜枯萎病防治技术研究进展[J].中国蔬菜,2005,(7):38-40.
    [105] 丁建成,张其安,方凌,等.西瓜新品种抗枯萎病鉴定[J].中国瓜菜,2005,(6):27-29.
    [106] 孔祥义,李劲松,曹 兵.我国西瓜枯萎病防治研究进展[J].安徽农业科学,2006,34(20):5 287-5 288..
    [107] Karayel D,Ozmerzi A.Comparison of vertical and lateral seed distribution of furrow openers using a new criterion[J].Soil&Tillage Reserch,2006,(12):35-42.
    [108] Loannou N,poullis C A,Heale J B.Fusarium wilt of watermelon in Cyprus and its managementwith soil solarizaion combined with fumigation or ammonium fertilizers[J].Spain Bulletin OEPP,2000,30(2):233-230.
    [109] 刘 伟.西瓜枯萎病防治研究进展[J].安徽农业科学,2004,32(6):38-41.
    [110] Ozaktan H, Bora T. Biological control of fusarium oxysporum f.sp.melonis by the formulations of fluorescent pseudomonads[J].Journal of Turkish Pytopathology,2000,29(2-3):133-149.
    [111] Dula B,AponyiGaramvolgy I,Vajina L.Biological control of Fusarium wilt of watermelon by means of the antagonistic fungus Trichoderma[J].Noveyvedelem,1987,23(6):249-251.
    [112] Homma Y. Biological control of plant disease and virus vectors in Japan[J].Journal phytopathology,1991,17-21.
    [113] 宗兆锋,钮绪燕,李君彦,等.西瓜枯萎病拮抗菌的筛选研究[J]. 西北农业大学学报,1995,23(2):60-64.
    [114] 赵国其,林福呈.绿色木霉对西瓜枯萎病苗期的控制作用[J].浙江农业科学,1998,10(4):206-209.
    [115] 黎起秦,陈永宁.西瓜枯萎病生防细菌的筛选[J].广西农业生物科学,2000,19(2):81-84.
    [116] 王守正,王海燕.瓜类植物诱导抗病性研究[J].河南农业科学,2001(10)28-30.
    [117] 李君彦,张硕成.提前接种非致病尖孢镰刀菌防治西瓜枯萎病试验[J].生物防治通报,1990,(4):165-169.
    [118] 林纬,黎起秦.拮抗菌防治西瓜枯萎病的试验[J].广西农业生物科学,2002,21(4):242-244.
    [119] 李 敏,刘润进.大田条件下丛枝菌根真菌对西瓜生长和枯萎病的影响[J].2004,34(5):472-473.
    [120] 马利平,乔雄梧.防病促生枯萎病拮抗菌“98-I”对 4 种枯萎病防治效果研究[J].中国生态农业学报,2005,30(1):91-94.
    [121] 阮继生,刘志恒,梁丽糯,等.放线菌研究与应用[M].北京:科学出版社,1990.
    [122] 魏艳敏,刘大群,田世民,等.放线菌(Streptomyces spp.) 对几种蔬菜病原菌的拮抗作用[J].河北农业大学学报,2000,23(3):65-68.
    [123] S.Manulis,D.Zutra,F.Kleitman,et al. Distribution of streptomycin-resistant strains of Erwinia amylovora in Israel and occurrence of blossom blight in the autumn[J].Phytoparasitica,1998,26:223-230.
    [124] Adams P.B.The potential of mycoparasites for biological control of plant diseases[J].Ann Rev Phytopathol,1990,28:59-72.
    [125] EL-Tarabily K.A,Soliman M.H,Nassar A.H,et al.Biological control of Sclerotinia minor using achitinolytic bacterium and actinomycetes[J].Plant Pathology,2000,49:573-583.
    [126] 宗兆锋,乔宏萍,何杞真.2 株重寄生菌的分离和对靶标菌的抑制作用[J].西北农业学报,2002,11(4):1-3.
    [127] Benson D.R,Silvester W.B.Biology of Frankia strains,actinomycete symbionts of actinorhizai plants [J].Microbiol Rev.,1993,57:293-319.
    [128] Kortemaa H,Pennanen T,Smolander A,et al. Distribution of Antagonistic Streptomyces griseoviridis in Rhizosphere and Non-rhizosphere[J].Sand J. Phytopathology,1997,145:137-143.
    [129] 尹萃耘.我国利用抗生素防治农作物病害的进展[J].中国生物防治的进展,1984.
    [130] 刘志恒,姜成林.放线菌现代生物学与生物技术[M].北京:科学出版社,2004.
    [131] 范玲.微生物农药研究进展及产业发展对策[J].中国生物工程杂志,2002,22(5):83-86.
    [132] 戴高明,周世明.防治小麦赤霉病微生物菌株的筛选与利用[J].植物保护学报,1995,22(2):112-116.
    [133] 丁爱云,郑继法.烟草几种重要病害拮抗菌的筛选[J].中国烟草科学,1999,20(1):10-11.
    [134] 宗兆锋,钮绪燕.菌药接合防治土传病害[J].陕西农业科学,1995,(1):38-39.
    [135] Levin B R,V Perrot,N Walker.Compensatory mutations,antibiotic resistance and the population genetics of adaptive evolution in bacteria[J].Genetics,2000,154:985-997.
    [1] 纪明山,王英姿,程根武,等.西瓜枯萎病拮抗菌株筛选及田间防效试[J].中国生物防治,2002,18(2):71-74.
    [2] Ozaktan H,Bora T.Biological control of Fusarium oxysporum f.sp.melons by the formulations of fluorescent pseudomonas[J].Journal of Turkish Pytopathology,2000,29(2-3):133-149.
    [3] Dula B, AponyiGaramvolgy I,Vajina L.Biological control of Fusarium wilt of watermelon by means of the antagonistic fungus Trichoderma[J]. Noveyvedelem,1987,23(6):249-251.
    [4] Homma Y. Biological control of plant disease and virus vectors in Japan[J]. Journal of phytopathology,1991,132(1),17-21.
    [5] 李君彦,张硕成.提前接种非致病尖孢镰刀菌防治西瓜枯萎病试验[J].生物防治通报,1990,(4):165-169.
    [6] 王守正,王海燕,李洪连,等.瓜类植物诱导抗病性研究[J].河南农业科学,2001,(10):28-30.
    [7] 李 敏,刘润进,李晓林,等.大田条件下丛枝菌根真菌对西瓜生长和枯萎病的影响[J].植物病理学报,2004,34(5):472-473.
    [8] 马利平,乔雄梧,高 芬,等.防病促生枯萎病拮抗菌“98-I”对 4 种枯萎病防治效果研究[J].中国生态农业学报,2005,30(1):91-94.
    [9] 林 纬,黎起秦,彭好友,等.拮抗菌防治西瓜枯萎病的试验[J].广西农业生物科学,2002,21(4):242-244.
    [10] 黎起秦,陈永宁,林 纬,等.西瓜枯萎病生防细菌的筛选[J].广西农业生物科学,2000,19(2):81-84.
    [11] 葛慈斌,刘 波,朱育菁,等.生防菌 NH-BS-2000 对西瓜枯萎病原菌抑制作用的研究[J].厦门大学学报:自然科学版,2004,43(增刊):87-90.
    [12] 宗兆锋,钮绪燕,李君彦,等.西瓜枯萎病拮抗菌的筛选研究[J].西北农业大学学报,1995,23(2):60-64.
    [13] 赵国其,林福呈,陈卫良,等.绿色木霉对西瓜枯萎病苗期的控制作用[J].浙江农业科学,1998,10(4):206-209.
    [14] Anderson A S.The taxonomy of streptomyces and related genera[J].Int J Syst Evol Microb,2001,51:797-814.
    [15] 韩立荣,赵克刚,顾彪等,5 株放线菌对 9 种靶标病原真菌的持续抑菌作用[J]西北农林科技大学学报(自然科学版)2006,34(2):53-56.
    [16] Hopwood D A.streptomyces genes:from Waksman to Sanger[J].J Ind Microbiol Biotechnol,2003,30:468-471.
    [17] Watve M G,Tickoo R.How many antibiotics are produced by the genus Streptomyces [J].Microbiol,2001,176:386-390.
    [18] 司美茹,薛泉宏,余 博等 36 株生防菌对辣椒疫病等 4 种病原真菌的拮抗作用研究[J]. 西北农林科技大学学报(自然科学版)2005,33(1):49-54.
    [19] 蔡艳, 薛泉宏, 陈占全等.青海高原东部土壤辣椒疫霉生防菌的初步筛选[J].西北农业学报,2007 ,16 (2) :241~244.
    [20] 涂璇,薛泉宏,张宁燕,等.辣椒疫病生防放线菌筛选及其对辣椒根系微生物区系的影响[J].西北农林科技大学学报,2007,35(6):141-146.
    [21] 乔红萍,宗兆锋.用重寄生菌防治植物病害[J].中国生物防治,2002,18(4):176-179.
    [22] 乔红萍,宗兆锋.重寄生菌 F46 和 PR 对苹果采后病害 3 种致病菌的控制作用[J].中国生物防治,2003,19(1):76-79.
    [23] 李敏,刘润进,赵洪海.AM 真菌和镰刀菌对西瓜根系几种酶活性的影响[J].菌物系统,2001,20(4):547-551.
    [24] 卢燕回,黎起秦,林纬,等.西瓜枯萎病生防菌枯草芽孢杆菌 B11 菌株高产拮抗物质的诱变选育[J].广西农业生物科学,2006,25(4):300-304.
    [25] 阮继生,刘志恒,梁丽糯,等.放线菌研究与应用[M].北京:科学出版社,1990.
    [1] 张华,姜成林,徐丽华,等.药用微生物资源[J].微生物学通报,2004,31(2):152.
    [2] 杨汝德,许喜林,罗立新,等.现代工业微生物[M].广州:华南理工大学出版社,2001:28.
    [3] 司美茹,薛泉宏,陈占全,等.青海高原土壤拮抗性放线菌的生态分布[J].应用与环境生物学报,2005,11(1):104-111.
    [4] 司美茹,薛泉宏,余 博,等.36 株生防菌对辣椒疫病等 4 种病原真菌的拮抗作用研究[J].西北农林科技大学学报(自然科学版),2005,33(1):49-54.
    [5] 蔡艳,薛泉宏,陈占全等.青海高原东部土壤辣椒疫霉生防菌的初步筛选[J].西北农业学报,2007,16 (2):241-244.
    [6] 涂璇,薛泉宏,张宁燕,等.辣椒疫病生防放线菌筛选及其对辣椒根系微生物区系的影响[J].西北农林科技大学学报,2007,35(6):141-146.
    [7] 刘翠娟,段琦梅,安德荣. 抗真菌拮抗放线菌的筛选及摇床发酵条件的优化[J].微生物学杂志,2004,24(4):12-14.
    [8] 疏秀林,安德荣,张勤福,等.土壤拮抗放线菌 S2521026 的筛选及其初步分类鉴定[J].西北农林科技大学学报(自然科学版),2004,32(12):57-64.
    [9] 谷祖敏,苏州,刘宏伟,等.,番茄灰霉病菌拮抗放线菌的分离和筛选[J].辽宁农业科学,2004,(3):1-2.
    [10] 方羽生,杨卫华,张洪玲,等.,放线菌对 4 种病原真菌的拮抗作用初探[J]. 广东农业科学,2001,5:39-41.
    [11] 孙敬祖,薛泉宏,梁军锋,等.辣椒疫病生防真菌 F1 的生物学特性及生防作用[J].西北农林科技大学学报(自然科学版),2006,34(12):163-168.
    [12] 梁军锋,薛泉宏,牛晓磊,等.7 株放线菌在辣椒根部定殖及对辣椒叶片的 PAL 与 PPO 活性的影响[J].西北植物学报,2005,25(10):2 118-2 123.
    [13] Munta ola-Cvetkovic M,Vukojevic J,Mihaljcevic M. Differential growth inhibition of diaporthe and phomopsis isolates by the metabolic activity of five actinomycetes[J].Journal of Phytopathology,2000,148(5):289-295.
    [14] 张尉文. 放线菌次生代谢的分子遗传学研究进展(上)[J]. 国外医药抗生素分册,1997,18(1):1-4.
    [15] 刘秋,吴元华,于基成.东北地区保护地土壤拮抗放线菌的筛选[J].土壤,2004,36(5):573-575.
    [16] 安德荣,慕小倩,刘翠娟,等.土壤拮抗放线菌的分离和筛选[J].微生物学杂志,2002,22(5):1-3.
    [17] 梁军锋.辣椒疫病生防菌的防病促生效应、作用机制及应用研究[D]陕西杨凌,西北农林科技大学硕士学位论文,2006
    [18] 高俊凤.植物生理学实验技术[M].世界图书出版公司, 2000, 203-204.
    [19] 雷东锋,冯 怡,将大宗.植物多酚氧化酶的特征[J].自然科学进展,2004,14(6):606-613.
    [20] 张红生,朱立宏,沙学延,等.水稻纹枯病抗病性机理的初步研究[M].苏州:江苏科学技术出版社,1990,153-164.
    [21] 李 盾,王振中,林孔勋. 花生体内几种酶活性与抗锈病的关系[J].华南农业大学学报(自然科学版),1991,123 (3):1-6.
    [22] 王国梁,卢浩然,陈启峰.水稻品种抗瘟性生化鉴定的研究[J].福建农学院学报(自然科学版),1986,15 (3):195-203.
    [23] 刘 娟,王 智,汪宜萱,等.小麦在叶锈病菌侵染过程中过氧化物酶及多酚氧化酶活性的变化[J].河北农业大学学报,1989,12 (3):41-46.
    [1] COOK K J , BAKER K F.The nature and practice of biological control of plant pathogens[M].USA:APS Press,1984.
    [2] CHEF I. Innovative approaches to plant disease control [M] .New York:Wiley,1987:372.
    [3] JATALA P. Biological control of plant-parasitic nematodes[J].Ann Rev Phytopathology,1986,24:453-479.
    [4] 魏春妹,张春明,陶树玉,等.番茄青枯病生防制剂的研制与应用[J].上海农业学报,2000,16 (增刊):69-72.
    [5] 占新华,蒋延惠,徐阳春,宗良纲.微生物制剂促进植物生长机理的研究进展[J].植物营养与肥料学报,1999,5(2):97-105.
    [6] 高俊凤.植物生理学实验技术[M].西安:世界图书出版公司,2000.
    [7] 李合生,孙群.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [8] 雷东锋,冯 怡,将大宗.植物多酚氧化酶的特征[J].自然科学进展,2004,14(6):606-613.
    [9] 李阜棣,周湘家,胡正嘉,等.土壤微生物学[M].北京:中国农业出版社,1993:184-187.
    [10] Kloepper J W.Pseudomonas inoculants to benefit plant production[J].Anim Plant Sci,1988:60-64.
    [11] Ryals J A,Neuenschwander U H,Willits M G,et al.Systemic acquired resistance[J].The Plant Cell,1996,8:1809-1819.
    [12] 吴霞,张一宾.作物抗御病害新技术—由微生物诱导作物全株抗性[J].现代农药,2004,4:28-30.
    [13] Ran L X, Li Z N,Wu GJ,et al.Induction of systematic resistance against bacterial wilt in Eucalyptusuropsylla by fuorescent Pseudomonas spp.[J].European Journal of Plant Pathology,2005,113:59-70.
    [14] Zhang S,Reddy M S,Kloepper J W.Development of assays for assessing induced systemic resistance by plant growth-promoting rhizobacteria against blue mold of tobacco[J].Biological Control,2002,23:79-86.
    [15] 夏正俊,顾本康,吴蔼民,等.植物内生及根际土壤细菌诱导棉花对大丽轮枝菌抗性的研究[J].中国生物防治,1996,12 (1):7-10.
    [16] 杨海莲,孙晓璐,宋未,等.植物根际促生细菌和内生细菌的诱导抗病性的研究进展[J].植物病理学报,2000,30(2):106-110.
    [17] 梁晋玲,梁俊峰,曾卫芳.番茄疫病诱导抗病性研究进展[J].山西农业科学,2003,31(3):73-76.
    [18] Mayer A M, Harel E. Polyphnol oxidase in plants [J]. Phytochem,1979,18:193-215.
    [19] 路兴波,吴洵耻,周凯南.小麦抗感纹枯病品种酶活性比较研究.植物保护 21 世纪展望.暨第三届全国青年植物保护科技工作者学术研讨会论文集. 北京:科学技术出版社,1998:267-269.
    [20] 郭红莲,程根武,陈捷,等.玉米灰斑病抗性反应中酚类物质代谢作用的研究[J]植物病理学报,2003,33(4):342-346.
    [1] 刘峰,温学森.根系分泌物与根际微生物关系的研究进展 食品与药品 2006, 8(9):37-40
    [2] 喻景权,杜尧舜. 蔬菜设施栽培可持续发展中的连作障碍问题 .沈阳农业大学学报, 2000, 31(1): 124-126
    [3] Wang J L, Xn R, Chen C L. General review in the study of barrier mechanism caused by continuous soybean cropping[J]. Soybean Sci-ence,2000,19(4):367-371.
    [4] 张淑香,高于勤.连作障碍与根际微生态研究[J].应用生态学报,2000,11(1):152-154.
    [5] 赵 艳 张晓波.影响植物根际微生物区系之因素研究进展 中国农学通报 2007,23(8):425-430
    [6] 程丽娟,薛泉宏.微生物学实验技术[M].西安:世界图书出版社,2000
    [7] 孙敬祖,薛泉宏,梁军锋,等.辣椒疫病生防真菌 F1 的生物学特性及生防作用[J].西北农林科技大学学报:自然科学版,2006,34(12):163-168.
    [8] 梁军锋,薛泉宏,牛晓磊,等.7 株放线菌在辣椒根部定殖及对辣椒叶片的 PAL 与 PPO 活性的影响[J].西北植物学报,2005,25(10):2118-2123.
    [9] 阎逊初.放线菌的分类与鉴定[M].北京:科学出版社,1992.
    [10] 魏景超.真菌鉴定手册[M]. 上海:上海科学技术出版社,1979.
    [11] 张纪忠.微生物分类学[M].上海:复旦大学出版社,1990.
    [12] 东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [13] 马汇泉 勒学惠 孙伟萍 等 大豆连作障碍及其生产机理初探 中国农学会 全国第二界青年农学学术会论文集 北京 农业出版社[C], 1995: 528-530.
    [14] 马云华,魏 珉,王秀峰.日光温室连作黄瓜根区微生物区系及酶活性的变化[J].应用生态学报,2004,15(6):1 005-1 008.
    [15] 杨建霞,范小峰,刘建新.温室黄瓜连作对根际微生物区系的影响[J].浙江农业科学,2005,(6):441-443.
    [16] 黎起秦,陈永宁,林 纬,等.西瓜枯萎病生防细菌的筛选[J].广西农业生物科学,2000,19(2):81-84.
    [17] 汪立刚,王 玉, 华天懋. 土壤灭菌对大豆的增产效果及其机理探讨. 西北农业学报, 2001, 10(1): 67-71.
    [18] 吴凤芝,王 伟,栾非时. 土壤灭菌对大棚连作黄瓜生长发育影响. 北方园艺, 1999, (5): 49.
    [19] 张春兰, 吕卫光,袁 飞. 生物有机肥减轻设施栽培黄瓜连作障碍的效果. 中国农学通报, 1999, 15(6): 67-69.
    [20] Yoshitaka Shiomi, Masaya Nishiyama, Tomoko Onizuka, Takuya Marumoto. Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt. Applied and Environmental Microbiology, 1999, 65 (9): 3996-4001.
    [21] 徐瑞富,任永信.连作花生田土壤微生物群落动态与减产因素分析[J].农业系统科学与综合研究,2003,19(1):33- 35.
    [22] 胡元森 ,吴 坤,李翠香,等.黄瓜连作对土壤微生物区系影响Ⅱ-基于 DGGE 方法对微生物种群的变化分析[J].中国农业科学,2007,40(10):2 267-2 273.
    [23] 龚明福,贺江舟,孙晓棠等.土壤微生物与土壤抑病性形成关系研究进展[J]新疆农业科学 2007,44 (6):814-819
    [24] 李晓磊,李井会,宋述尧.秸秆有机肥改善设施黄瓜连作土壤微生物区系[J].长春大学学报,2006,16(6):119-122.
    [1] 纪明山 , 王英姿 , 程根武 , 等 . 西瓜枯萎病拮抗菌株筛选及田间防效试 [J]. 中国生物防治,2002,18(2):71-74.
    [2] Ozaktan H, Bora T. Biological control of Fusarium oxysporum f.sp.melons by the formulations of fluorescent pseudomonas[J]. Journal of Turkish Pytopathology,2000,29(2-3):133-149.
    [3] Dula B, AponyiGaramvolgy I, Vajina L. Biological control of Fusarium wilt of watermelon by means of the antagonistic fungus Trichoderma[J]. Noveyvedelem,1987,23(6):249-251.
    [4] Homma Y. Biological control of plant disease and virus vectors in Japan[J]. Journal of phytopathology,1991,132(1),17-21.
    [5] 李 君 彦 , 张 硕 成 . 提 前 接 种 非 致 病 尖 孢 镰 刀 菌 防 治 西 瓜 枯 萎 病 试 验 [J]. 生 物 防 治 通报,1990(4):165-169.
    [6] 王守正,王海燕,李洪连,等.瓜类植物诱导抗病性研究[J].河南农业科学,2001,(10):28-30.
    [7] 李 敏,刘润进,李晓林,等.大田条件下丛枝菌根真菌对西瓜生长和枯萎病的影响[J].植物病理学报,2004,34(5):472-473.
    [8] 马利平,乔雄梧,高 芬,等.防病促生枯萎病拮抗菌“98-I”对 4 种枯萎病防治效果研究[J].中国生态农业学报,2005,30(1):91-94.
    [9] 林 纬 , 黎 起 秦 , 彭 好 友 , 等 . 拮 抗 菌 防 治 西 瓜 枯 萎 病 的 试 验 [J]. 广 西 农 业 生 物 科学,2002,21(4):242-244.
    [10] 黎起秦,陈永宁,林 纬,等.西瓜枯萎病生防细菌的筛选[J].广西农业生物科学,2000,19(2):81-84.
    [11] 葛慈斌,刘 波,朱育菁,等.生防菌 NH-BS-2000 对西瓜枯萎病原菌抑制作用的研究[J].厦门大学学报:自然科学版,2004,43(增刊):87-90.
    [12] 宗 兆 锋 , 钮 绪 燕 , 李 君 彦 , 等 . 西 瓜 枯 萎 病 拮 抗 菌 的 筛 选 研 究 [J]. 西 北 农 业 大 学 学报,1995,23(2):60-64.
    [13] 赵国其 , 林福呈 , 陈卫良 , 等 . 绿色木霉对西瓜枯萎病苗期的控制作用 [J]. 浙江农业科学,1998,10(4):206-209.
    [14] 蔡 艳,薛泉宏,陈占全,等. 青藏高原东部几种自然土壤放线菌的生态分布[J]. 应用与环境生物学报,2004,10(3):378-383.
    [15] 司美茹,薛泉宏,陈占全,等. 青海高原土壤拮抗性放线菌的生态分布[J]. 应用与环境生物学报,2005,11(1):104-111.
    [16] 司美茹, 薛泉宏, 余 博,等. 36 株生防菌对辣椒疫病等 4 种病原真菌的拮抗作用研究[J]. 西北农林科技大学学报:自然科学版, 2004 33(1):49-54.
    [17] 程丽娟,薛泉宏.微生物学实验技术[M].西安:世界图书出版社,2000
    [18] 孙敬祖,薛泉宏,梁军锋,等.辣椒疫病生防真菌 F1 的生物学特性及生防作用[J].西北农林科技大学学报:自然科学版,2006,34(12):163-168.
    [19] 梁军锋,薛泉宏,牛晓磊,等.7 株放线菌在辣椒根部定殖及对辣椒叶片的 PAL 与 PPO 活性的影响[J].西北植物学报,2005,25(10):2118-2123.
    [20] 阎逊初.放线菌的分类与鉴定[M].北京:科学出版社,1992.
    [21] 东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [22] 张纪忠.微生物分类学[M].上海:复旦大学出版社,1990.
    [23] 魏景超.真菌鉴定手册[M]. 上海:上海科学技术出版社,1979.
    [24] 陈宗泽,殷勤燕,戴秉丽,等.连作大豆土壤病原菌的分离及其致病性的研究[J].吉林农业科学,1999,24(2):36-39.
    [25] 李琼芳.不同连作年限麦冬根际微生物区系动态研究[J].土壤通报,2006,.37(3):563-565.
    [26] 张炳欣,张 平,陈晓斌. 影响引入微生物根部定殖的因素[J]. 应用生态学报,2000,11(6):951-953.
    [27] 万方浩,叶正楚,Peter Harris.生物防治作用风险评价的方法[J].中国生物防治,1997,13 (1):37-41.